Implications for Vegetation, Climate and Human Occupation During the Msa

Total Page:16

File Type:pdf, Size:1020Kb

Implications for Vegetation, Climate and Human Occupation During the Msa PHYTOLITHS AT SIBUDU (SOUTH AFRICA): IMPLICATIONS FOR VEGETATION, CLIMATE AND HUMAN OCCUPATION DURING THE MSA MAY LESLEY MURUNGI Student number: 675046 Thesis submitted in fulfilment of the requirement for the award of the Degree of Doctor of Philosophy of the University of the Witwatersrand, School of Geosciences and the Evolutionary Studies Institute Supervisor: Professor Marion Bamford October 2017 DECLARATION I hereby declare that the work presented in this thesis is my original work based on research done by me and to the best of my knowledge has never been submitted for a degree at this or any other University or Institution of higher learning. All information from this thesis unless otherwise stated is based on my analysis and conclusions. Signed Date 31st October 2017 May L. Murungi i ACKNOWLEDGMENTS Importantly, I would like to thank and acknowledge the Palaeoanthropological Scientific Trust (PAST), South Africa, the Leakey Foundation, USA, the National Research Foundation (NRF), South Africa and Prof. Lyn Wadley (for awarding me the NRF bursary) for their financial support that made this study, my stay in South Africa and conference attendance possible. I also thank Lyn Wadley for providing access to the archaeological material from Sibudu Cave and other material used in this study. I owe my deepest gratitude to my supervisor Prof. Marion Bamford who introduced me to archaeobotanical research. Her guidance, commitment and persistent patience with me made this project possible. I am grateful to Dr. Christine Sievers and Fletcher Reed for assistance during fieldwork to collect modern plant material in KwaZulu Natal and to Christine Seivers for providing some of the modern material used in this study and for discussions from time to time. I thank Prof. Muthama Muasya for assistance with identification of a few sedge species, Dr. Dolores Piperno and Dr. Mariana Fernádez Honaine on sedge phytolith discussions. I thank Prof. Fernando Abdala, Dr. Moshood Adegboyega and Badru Mugerwa who assisted me with the use of some software. I thank the Evolutionary Studies Institute (ESI) for hosting me in a pleasant environment, the staff and students of the ESI who made my stay worthwhile. I particularly thank Dr. Paloma de la Peña, together with Dr. Guillaume Porraz and Dr. Aurore Val who led me to my first archaeological excavation experience at Bushman Rock Shelter in Limpopo and the opportunity to grow in this field. Guillaume Porraz, the French Embassy in South Africa and the French Institute in Southern Africa (IFAS) are acknowledged for support to further my archaeological field experience at Comps sur Artuby in France in 2014. I am grateful to the administrators (Tandi Scott and Bronwyn Quinn) and the palynology lab techinicians Petrus Chakane and Prosper Bande for their kind help whenever I needed it during my stay at the ESI. I thank Dr. Julius Lejju and the Faculty of Science of Mbarara University, Uganda for according me office space towards the end of my write up. Aisha Kyakuwa of Mbarara University, I thank you for your assistance during this period. To the many people that made my stay in South Africa memorable and my life easier in one way or the other notably: Lucy Mbugua, Catherine Namono, Alice Novello, Ellison Tjirera, Anita Rwihandagaza, Fernando Abdala, Guillaume Porraz, Manfred Mahle, Rose Mugira, Marion Bamford, Bob Elwange, Norman Sempijja, Marine Wojcieszak, Monica Kiwanuka, ii Phiona Mpanga, Joseph Chikumbirike, Rosemary Kakai, Irene Esteban, Iris Guillemard, Viola Schmid, Itumeleng Mafatshe and Lisa Adolph; I am grateful. Lastly, my sincere thanks go to my family and friends back home and elsewhere for their help in one way or the other through the years. I could not have stayed sane without you! Notably my mother, Florence Murungi, for whom words could never be enough; my brothers, Richard Musiime and Peter Muheki, who have constantly called me out of my ‘comfort zone’ character, I still struggle but because of the two of you I have made progress; my friends Aisha Kyakuwa, Diane Kyobutungi, Cathy Kilyewala, Judith Nabaasa, Peter Twesigye, Charity Itungo, Rogers Ankunda, Marlon Mpamize, Esther Asiimwe, Winnie Ahumuza and Lilian Mayanja who constantly checked in or helped in different ways during this study; and finally my newest arrival, Judas Katatumba, you have been very influencial in your own special way as I completed this project. It is to you all that I dedicate this work. iii Contents DECLARATION ............................................................................................................................... i ACKNOWLEDGMENTS .................................................................................................................. ii ABSTRACT ................................................................................................................................. viii CHAPTER ONE .............................................................................................................................. 1 INTRODUCTION ........................................................................................................................... 1 1.0 General Introduction ..................................................................................................................... 1 1.1 Phytoliths at Sibudu: a brief background ...................................................................................... 6 1.2 Problem Statement ....................................................................................................................... 8 1.3 Aims of the thesis ........................................................................................................................ 11 1.4. Hypotheses ................................................................................................................................ 12 1.5 Scope of the thesis ................................................................................................................ 13 1.6 Structure of the thesis ................................................................................................................ 13 CHAPTER TWO ........................................................................................................................... 15 BACKGROUND TO THE STUDY .................................................................................................... 15 2.0 History of archaeological research at Sibudu Cave ..................................................................... 15 2.1 Sources of evidence at Sibudu .................................................................................................... 17 2.2 Summary of palaeovegetion and paleoclimate at Sibudu Cave during the MSA ....................... 21 2.3 Occupation and culture at Sibudu Cave .................................................................................. 25 2.4 Phytoliths as a tool for reconstructing past environments ........................................................ 27 2.4.1 Advantages of using phytoliths as a proxy and their limitations ......................................... 29 2.5 Phytolith research in Africa: a short history ............................................................................... 31 2.6 Cyperaceae (sedges) phytoliths in this study: a brief background ............................................. 34 CHAPTER THREE ......................................................................................................................... 37 PRESENT-DAY SIBUDU CAVE: SITE DESCRIPTION ......................................................................... 37 3.0 SIBUDU CAVE: PRESENT-DAY ...................................................................................................... 37 3.1. Geographical location ................................................................................................................ 37 3.1.1 Geology ................................................................................................................................ 38 3.1.2 Local climatic conditions ...................................................................................................... 38 3.1.3 Local vegetation ................................................................................................................... 40 3.1.4 Human activities .................................................................................................................. 42 3.2 MSA Sediments at Sibudu: stratigraphy and age chronology ..................................................... 43 CHAPTER FOUR .......................................................................................................................... 51 MATERIALS AND METHODS ........................................................................................................ 51 4.0 Field-based sampling and Laboratory-based analyses ............................................................... 51 iv 4.1 Sampling of sediments ................................................................................................................ 51 4.2 Collection of voucher specimens and the rationale ................................................................... 51 4.3 Extraction of phytoliths from modern plant material ................................................................ 57 4.4 Extraction of phytoliths from archaeological sediments ............................................................ 58 4.5 Phytolith identification,
Recommended publications
  • Comparative Anatomy of the Fig Wall (Ficus, Moraceae)
    Botany Comparative anatomy of the fig wall (Ficus, Moraceae) Journal: Botany Manuscript ID cjb-2018-0192.R2 Manuscript Type: Article Date Submitted by the 12-Mar-2019 Author: Complete List of Authors: Fan, Kang-Yu; National Taiwan University, Institute of Ecology and Evolutionary Biology Bain, Anthony; national Sun yat-sen university, Department of biological sciences; National Taiwan University, Institute of Ecology and Evolutionary Biology Tzeng, Hsy-Yu; National Chung Hsing University, Department of Forestry Chiang, Yun-Peng;Draft National Taiwan University, Institute of Ecology and Evolutionary Biology Chou, Lien-Siang; National Taiwan University, Institute of Ecology and Evolutionary Biology Kuo-Huang, Ling-Long; National Taiwan University, Institute of Ecology and Evolutionary Biology Keyword: Comparative Anatomy, Ficus, Histology, Inflorescence Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 29 Botany Comparative anatomy of the fig wall (Ficus, Moraceae) Kang-Yu Fana, Anthony Baina,b *, Hsy-Yu Tzengc, Yun-Peng Chianga, Lien-Siang Choua, Ling-Long Kuo-Huanga a Institute of Ecology and Evolutionary Biology, College of Life Sciences, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan b current address: Department of Biological Sciences, National Sun Yat-sen University, 70 Lien-Hai road, Kaohsiung, Taiwan.Draft c Department of Forestry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 402, Taiwan. * Corresponding author: [email protected]; Tel: +886-75252000-3617; Fax: +886-75253609. 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 29 Abstract The genus Ficus is unique by its closed inflorescence (fig) holding all flowers inside its cavity, which is isolated from the outside world by a fleshy barrier: the fig wall.
    [Show full text]
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • The Use of Barcoding Sequences for the Construction of Phylogenetic Relationships in the Euphorbiaceae
    University of Padova Department of Land, Environment Agriculture and Forestry MSc in Mediterranean Forestry and Natural Resources Management The use of barcoding sequences for the construction of phylogenetic relationships in the Euphorbiaceae Supervisor: Alessandro Vannozzi Co-supervisor: Prof. Dr. Oliver Gailing Submitted by: Bikash Kharel Matriculation No. 1177536 ACADEMIC YEAR 2017/2018 Acknowledgments This dissertation has come to this positive end through the collective efforts of several people and organizations: from rural peasants to highly academic personnel and institutions around the world. Without their mental, physical and financial support this research would not have been possible. I would like to express my gratitude to all of them who were involved directly or indirectly in this endeavor. To all of them, I express my deep appreciation. Firstly, I am thankful to Prof. Dr. Oliver Gailing for providing me the opportunity to conduct my thesis on this topic. I greatly appreciate my supervisor Alessandro Vannozzi for providing the vision regarding Forest Genetics and DNA barcoding. My cordial thanks and heartfelt gratitude goes to him whose encouragements, suggestions and comments made this research possible to shape in this form. I am also thankful to Prof. Dr. Konstantin V. Krutovsky for his guidance in each and every step of this research especially helping me with the CodonCode software and reviewing the thesis. I also want to thank Erasmus Mundus Programme for providing me with a scholarship for pursuing Master’s degree in Mediterranean Forestry and Natural Resources Management (MEDFOR) course. Besides this, I would like to thank all my professors who broadened my knowledge during the period of my study in University of Lisbon and University of Padova.
    [Show full text]
  • Capparis Tomentosa (Capparidaceae)
    id7158906 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com Capparis tomentosa (Capparidaceae) English: Caper, woolly caper-bush, caper bud French: Tapenade, tapeno Spanish: Tapeno African vernacular names: Swahili: Mkoyo Tswana: Motawana Zulu: Iqwanene, iqwaningi, quanini, umabusane The plant A small spiny tree or scrambling shrub found in tropical or other warm regions. In northern Botswana and South West Africa it is a good sized tree. It grows up to 10m height, well-branched and with dense leaves. It occurs in a wide range of habitats, as evergreen and costal forests, in open woodlands and hot dry thornvelds, and on mountain slopes. Leaves are oblong to broadly elliptic, 3.5 to 8 and 1 to 2.5 cm, light green or greyish green, soft or velvety, with stipules. Flowers white or lilac, sepals thickly hairy, fruits always more than 2 cm in diameter. The baby leaves and fresh shoots of the related species C. spinosa are eaten as a vegetable or salad. The flower buds are pickled und used as a pungent condiment. The fruits of other species are reported to be edible. Plant parts used: The aerial parts or leaves, the fruits, the roots Constituents Glucosinolates are the characteristic compounds of the Capparidaceae plants. If plants are destroyed by crushing, glucosinolates are altered by the enzyme myrosinase into mustard oils. These bring a bitter taste and a hot smell and have skin irritant and antibacterial properties. Therefore plants of this family are used as condiments like radish or the fresh leaves of the lettuce Rucola.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Project Rapid-Field Identification of Dalbergia Woods and Rosewood Oil by NIRS Technology –NIRS ID
    Project Rapid-Field Identification of Dalbergia Woods and Rosewood Oil by NIRS Technology –NIRS ID. The project has been financed by the CITES Secretariat with funds from the European Union Consulting objectives: TO SELECT INTERNATIONAL OR NATIONAL XYLARIUM OR WOOD COLLECTIONS REGISTERED AT THE INTERNATIONAL ASSOCIATION OF WOOD ANATOMISTS – IAWA THAT HAVE A SIGNIFICANT NUMBER OF SPECIES AND SPECIMENS OF THE GENUS DALBERGIA TO BE ANALYZED BY NIRS TECHNOLOGY. Consultant: VERA TERESINHA RAUBER CORADIN Dra English translation: ADRIANA COSTA Dra Affiliations: - Forest Products Laboratory, Brazilian Forest Service (LPF-SFB) - Laboratory of Automation, Chemometrics and Environmental Chemistry, University of Brasília (AQQUA – UnB) - Forest Technology and Geoprocessing Foundation - FUNTEC-DF MAY, 2020 Brasília – Brazil 1 Project number: S1-32QTL-000018 Host Country: Brazilian Government Executive agency: Forest Technology and Geoprocessing Foundation - FUNTEC Project coordinator: Dra. Tereza C. M. Pastore Project start: September 2019 Project duration: 24 months 2 TABLE OF CONTENTS 1. INTRODUCTION 05 2. THE SPECIES OF THE GENUS DALBERGIA 05 3. MATERIAL AND METHODS 3.1 NIRS METHODOLOGY AND SPECTRA COLLECTION 07 3.2 CRITERIA FOR SELECTING XYLARIA TO BE VISITED TO OBTAIN SPECTRAS 07 3 3 TERMINOLOGY 08 4. RESULTS 4.1 CONTACTED XYLARIA FOR COLLECTION SURVEY 10 4.1.1 BRAZILIAN XYLARIA 10 4.1.2 INTERNATIONAL XYLARIA 11 4.2 SELECTED XYLARIA 11 4.3 RESULTS OF THE SURVEY OF DALBERGIA SAMPLES IN THE BRAZILIAN XYLARIA 13 4.4 RESULTS OF THE SURVEY OF DALBERGIA SAMPLES IN THE INTERNATIONAL XYLARIA 14 5. CONCLUSION AND RECOMMENDATIONS 19 6. REFERENCES 20 APPENDICES 22 APPENDIX I DALBERGIA IN BRAZILIAN XYLARIA 22 CACAO RESEARCH CENTER – CEPECw 22 EMÍLIO GOELDI MUSEUM – M.
    [Show full text]
  • Risk Analysis of Alien Grasses Occurring in South Africa
    Risk analysis of alien grasses occurring in South Africa By NKUNA Khensani Vulani Thesis presented in partial fulfilment of the requirements for the degree of Master of Science at Stellenbosch University (Department of Botany and Zoology) Supervisor: Dr. Sabrina Kumschick Co-supervisor (s): Dr. Vernon Visser : Prof. John R. Wilson Department of Botany & Zoology Faculty of Science Stellenbosch University December 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2018 Copyright © 2018 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Alien grasses have caused major impacts in their introduced ranges, including transforming natural ecosystems and reducing agricultural yields. This is clearly of concern for South Africa. However, alien grass impacts in South Africa are largely unknown. This makes prioritising them for management difficult. In this thesis, I investigated the negative environmental and socio-economic impacts of 58 alien grasses occurring in South Africa from 352 published literature sources, the mechanisms through which they cause impacts, and the magnitudes of those impacts across different habitats and regions. Through this assessment, I ranked alien grasses based on their maximum recorded impact. Cortaderia sellonoana had the highest overall impact score, followed by Arundo donax, Avena fatua, Elymus repens, and Festuca arundinacea.
    [Show full text]
  • Ecological Influences in the Biogeography of the Austral Sedges
    ECOLOGICALINFLUENCESINTHEBIOGEOGRAPHYOFTHE AUSTRALSEDGES jan-adriaan viljoen Dissertation presented in fulfillment of the requirements for the degree MSc in Botany Department of Biological Sciences Faculty of Sciences University of Cape Town UniversityFebruary of2016 Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Jan-Adriaan Viljoen. Ecological influences in the biogeography of the aus- tral sedges. MSc dissertation. University of Cape Town. Cape Town. February 2016. supervisors: A. Muthama Muasya G. Anthony Verboom ABSTRACT The biogeographic history of a species is a result of both stochastic processes such as dispersal and habitat filters that determine where a population with a given set of biological requirements can become es- tablished. In this dissertation, I examine the geographical and ecolog- ical distribution of the sedge tribe Schoeneae in conjunction with its inferred speciation history in order to determine the pattern of disper- sal and the environmental factors that have influenced establishment. The biogeographic reconstruction indicates numerous transoceanic dispersal events consistent with random diffusion from an Australian point of origin, but with a bias towards habitats with vegetation type and moisture regime similar to the ancestral conditions of the given subgroup (open and dry habitats in the majority of cases). The global distribution of the tribe also suggests a preference for low-nutrient soils, which I investigate at the local (microhabitat) scale by contrast- ing the distributions of the tribes Schoeneae and Cypereae on the Cape Peninsula along soil fertility axes.
    [Show full text]
  • Evaluating the Conservation Significance of Basin
    Evaluating the conservation significance of basin wetlands within the Avon Natural Resource Management region: Stage Three Assessment Method Susan Jones, Adrian Pinder, Lien Sim and Stuart Halse MAY 2009 1 2 Evaluating the conservation significance of basin wetlands within the Avon Natural Resource Management region: Stage Three Assessment Method May 2009 Prepared by Science Division Department of Environment and Conservation 3 4 Executive summary: Evaluating the conservation significance of basin wetlands within the Avon Natural Resource Management region: Stage Three Assessment Method . Introduction This publication describes a wetland evaluation and classification methodology for use at the individual wetland scale in the Avon Natural Resource Management (NRM) region. A trial of this method at two example wetlands in each biological wetland type is presented in section 6. Table 1 - Form of wetland inventory Form of wetland inventory Methodology Application Identification Delineation Classification √√√ Evaluation √√√ Publication details This methodology has been developed by the Science Division, Department of Environment and Conservation (DEC), Western Australia. The report was written by Susan Jones, Adrian Pinder, Lien Sim and Stuart Halse (DEC). The authors of this document would like to acknowledge the following people for their important contributions: • Members of the Wetland Status Working Group and Wetlands Coordinating Committee • John Lizamore, Danielle Halliday, Cara Francis, Margaret Collins, Anna Leung, Kirsty Quinlan
    [Show full text]
  • Revision of the Genus Ficus L. (Moraceae) in Ethiopia (Primitiae Africanae Xi)
    582.635.34(63) MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 79-3 (1979) REVISION OF THE GENUS FICUS L. (MORACEAE) IN ETHIOPIA (PRIMITIAE AFRICANAE XI) G. AWEKE Laboratory of Plant Taxonomy and Plant Geography, Agricultural University, Wageningen, The Netherlands Received l-IX-1978 Date of publication 27-4-1979 H. VEENMAN & ZONEN B.V.-WAGENINGEN-1979 BIBLIOTHEEK T)V'. CONTENTS page INTRODUCTION 1 General remarks 1 Uses, actual andpossible , of Ficus 1 Method andarrangemen t ofth e revision 2 FICUS L 4 KEY TOTH E FICUS SPECIES IN ETHIOPIA 6 ALPHABETICAL TREATMENT OFETHIOPIA N FICUS SPECIES 9 Ficus abutilifolia (MIQUEL)MIQUEL 9 capreaefolia DELILE 11 carica LINNAEUS 15 dicranostyla MILDBRAED ' 18 exasperata VAHL 21 glumosu DELILE 25 gnaphalocarpa (MIQUEL) A. RICHARD 29 hochstetteri (MIQUEL) A. RICHARD 33 lutea VAHL 37 mallotocarpa WARBURG 41 ovata VAHL 45 palmata FORSKÀL 48 platyphylla DELILE 54 populifolia VAHL 56 ruspolii WARBURG 60 salicifolia VAHL 62 sur FORSKÂL 66 sycomorus LINNAEUS 72 thonningi BLUME 78 vallis-choudae DELILE 84 vasta FORSKÂL 88 vogelii (MIQ.) MIQ 93 SOME NOTES ON FIGS AND FIG-WASPS IN ETHIOPIA 97 Infrageneric classification of Hewsaccordin gt o HUTCHINSON, related to wasp-genera ... 99 Fig-wasp species collected from Ethiopian figs (Agaonid associations known from extra- limitalsample sadde d inparentheses ) 99 REJECTED NAMES ORTAX A 103 SUMMARY 105 ACKNOWLEDGEMENTS 106 LITERATURE REFERENCES 108 INDEX 112 INTRODUCTION GENERAL REMARKS Ethiopia is as regards its wild and cultivated plants, a recognized centre of genetically important taxa. Among its economic resources, agriculture takes first place. For this reason, a thorough knowledge of the Ethiopian plant cover - its constituent taxa, their morphology, life-cycle, cytogenetics etc.
    [Show full text]
  • Vegetation Survey of Mount Gorongosa
    VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
    [Show full text]
  • First Molecular Phylogeny of the Pantropical Genus Dalbergia: Implications for Infrageneric Circumscription and Biogeography
    SAJB-00970; No of Pages 7 South African Journal of Botany xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb First molecular phylogeny of the pantropical genus Dalbergia: implications for infrageneric circumscription and biogeography Mohammad Vatanparast a,⁎, Bente B. Klitgård b, Frits A.C.B. Adema c, R. Toby Pennington d, Tetsukazu Yahara e, Tadashi Kajita a a Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Japan b Herbarium, Library, Art and Archives, Royal Botanic Gardens, Kew, Richmond, United Kingdom c NHN Section, Netherlands Centre for Biodiversity Naturalis, Leiden University, Leiden, The Netherlands d Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, United Kingdom e Department of Biology, Kyushu University, Japan article info abstract Article history: The genus Dalbergia with c. 250 species has a pantropical distribution. In spite of the high economic and eco- Received 19 May 2013 logical value of the genus, it has not yet been the focus of a species level phylogenetic study. We utilized ITS Received in revised form 29 June 2013 nuclear sequence data and included 64 Dalbergia species representative of its entire geographic range to pro- Accepted 1 July 2013 vide a first phylogenetic framework of the genus to evaluate previous infrageneric classifications based on Available online xxxx morphological data. The phylogenetic analyses performed suggest that Dalbergia is monophyletic and that fi Edited by JS Boatwright it probably originated in the New World. Several clades corresponding to sections of these previous classi - cations are revealed.
    [Show full text]