Science Olympiad 2015 Fossil List

Total Page:16

File Type:pdf, Size:1020Kb

Science Olympiad 2015 Fossil List Science Olympiad Class Cephalopoda Birds 2015 Fossil List 35) Genus Baculites Class Aves rev. 8-2-2014 36) Genus Belemnitella 73) Genus – Archaeopteryx (Note: Numbers indicate that members of that taxon rank 37) Genus Dactylioceras Mammal-like “Reptiles” should be identifiable to that level. For ranks not underlined, indented ranks are in the rank above it.) 38) Genus Nautilus Clade Synapsida 39) Genus Orthoceras Family Sphenacodontidae KINGDOM PROTOZOA For C Division add suture patterns in 74) Genus - Dimetrodon Phylum Foraminifera (Forams) Subclass Ammonoidea (Ammonites): Order Theraspidas 1) Order Fusulinida (Fusulinids) goniatitic, ceratitic, ammonitic 75) Genus Lystrosaurus 2) Genus Nummulites Class Gastropoda (snails) Mammals 40) Genus Conus Class Mammalia KINGDOM ANIMALIA 41) Genus Cypraea 76) Genus Basilosaurus Invertebrates: 42) Genus Platyceras 77) Genus Equus Phylum Porifera (Sponges) 43) Genus Turritella 78) Genus Hyracotherium 3) Genus Astraeospongia 44) Genus Worthenia Genus Homo 4) Genus Hydnoceras Phylum Echinodermata 79) Species neanderthalensis Phylum Bryozoa 45) Class Asteroidea (starfish) 80) Genus Mammut (Mastodon) (Growth forms: branching, massive, Class Blastoidea 81) Genus Mammuthus (Mammoth) fenestrate) 46) Genus Pentremites 82) Genus Smilodon 5) Genus Archimedes 47) Class Crinoidea (stems, columns, calyxes) 6) Genus Rhombopora 48) Class Echinoidea (sea urchins, sand KINGDOM CHROMISTA Phylum Hemichordata dollars) 83) Class Bacillariophyceae (diatoms) 7) Class Graptolithina (Graptolites) 49) Class Ophiuroidea (brittle stars) Phylum Cnidaria KINGDOM PLANTAE Class Anthozoa (Horn & Colonial Corals) Subphylum Vertebrata (Vertebrates) Phylum Anthophyta 8) Genus Favosites Fish: 84) Genus Acer 9) Genus Halysites 50) Superclass Agnatha (Jawless Fish) 85) Genus Populus 10) Genus Heliophyllum Class Placodermi (Armored Fish) 86) Genus Platanus 11) Genus Hexagonaria 51) Genus Bothriolepis Phylum Ginkgophyta 12) Genus Septastraea 52) Genus Dunkleosteus 87) Genus Ginkgo 13) Class Scyphozoa (True Jellyfish) Class Chondrichthyes (Cartilagenous Fish) Phylum Lycopodiophyta Phylum Arthropoda 53) Superorder Salachii (Sharks, Shark 88) Genus Lepidodendron (scale tree) Subphylum Crustacea Teeth) Phylum Pinophyta 14) Class Malacostraca (shrimp, lobster, 54) Superorder Batoidea (Rays) 89) Genus Metasequoia crabs) 55) Superclass Osteichthyes (Bony Fish) 90) Phylum Pteridophyta (Ferns) Class Maxillopoda Class Sarcoptergii 91) Genus Calamites (Horsetail) 15) Infraclass Cirripedia (barnacles) 56) Order Coelacanthiformes 92) Plant leaf: Annularia 16) Order Eurypterida (Eurypterid) (Coelacanth) Phylum Pteridospermatophyta (Seed 17) Class Insecta (Insects) 57) Genus Tiktaalik Ferns) Class Trilobita (Trilobites) (True) Reptiles: 93) Genus Glossopteris 18) Genus Cryptolithus Class Reptilia 19) Genus Elrathia 58) Order Ichthyosuria (Ichthyosaurs) OTHER 20) Genus Isotelus 59) Family Mosasauridae (Mosasaurs) Trace Fossils 21) Genus Phacops 60) Order Plesiosauria (Plesiosaurs) Trails, Tracks, Trackways Phylum Brachiopoda Dinosaurs: Borings, Burrows, Tubes Inarticulate: Clade Dinosauria Predation marks, Repair scars 22) Genus Lingula Order Saurischia (lizard-hipped) Coprolites Articulate: 61) Genus Allosaurus Stromatolites 23) Genus Atrypa 62) Genus Apatosaurus Amber/copal 24) Genus Composita 63) Genus Coelophysis Petrified wood 25) Genus Juresania 64) Genus Deinonychus Sedimentary Rocks 26) Genus Leptaena 65) Genus Plateosaurus Chert 27) Genus Mucrospirifer 66) Genus Velociraptor Coquina 28) Genus Platystrophia 67) Genus Tyrannosaurus Diatomite 29) Genus Rafinesquina Order Ornithischia (bird-hipped) Dolomite Rock 30) Order Rhynchonelida 68) Genus Iguanodon Limestone Phylum Mollusca 69) Genus Parasaurolophus Chalk Class Bivalvia 70) Genus Stegosaurus Fossiliferous Limestone 31) Genus Exogyra 71) Genus Triceratops Mudstone 32) Genus Gryphaea Flying “Reptiles” Sandstone 33) Genus Pecten 72) Order Pterosuria (Pterosaurs) Shale 34) Genus Pholadomya Siltstone .
Recommended publications
  • Wec01's SSSS Fossils Test 2019
    wec01’s SSSS Fossils Test 2019 Team Name: _________________KEY________________ Team Number: ___KEY___ Team Members: ____________KEY____________, ____________KEY____________ This test consists of 18 stations with a total of 200 points. Each answer is worth one point except where specified otherwise. You are only given 2 ½ minutes with the specimens at each station, however you can work on any station’s questions at any time. Scoring Station 1: ___10___ / 10 Station 10: ___12___ / 12 Station 2: ___10___ / 10 Station 11: ____9___ / 9 Station 3: ___11___ / 11 Station 12: ___11___ / 11 Station 4: ___10___ / 10 Station 13: ___10___ / 10 Station 5: ___10___ / 10 Station 14: ___10___ / 10 Station 6: ____9___ / 9 Station 15: ___12___ / 12 Station 7: ____9___ / 9 Station 16: ____9___ / 9 Station 8: ___10___ / 10 Station 17: ___10___ / 10 Station 9: ____9___ / 9 Station 18: ___29___ / 29 Total: __200___ / 200 Team Number: _KEY_ Station 1: Dinosaurs (10 pt) 1. Identify the genus of specimen A Tyrannosaurus (1 pt) 2. Identify the genus of specimen B Stegosaurus (1 pt) 3. Identify the genus of specimen C Allosaurus (1 pt) 4. Which specimen(s) (A, B, or C) are A, C (1 pt) Saurischians? 5. Which two specimens (A, B, or C) lived at B, C (1 pt) the same time? 6. Identify the genus of specimen D Velociraptor (1 pt) 7. Identify the genus of specimen E Coelophysis (1 pt) 8. Which specimen (D or E) is commonly E (1 pt) found in Ghost Ranch, New Mexico? 9. Which specimen (A, B, C, D, or E) would D (1 pt) specimen F have been found on? 10.
    [Show full text]
  • The Largest Tropical Peat Mires in Earth History
    Geological Society of America Special Paper 370 2003 Desmoinesian coal beds of the Eastern Interior and surrounding basins: The largest tropical peat mires in Earth history Stephen F. Greb William M. Andrews Cortland F. Eble Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky 40506, USA William DiMichele Smithsonian Institution, National Museum of Natural History, Washington, D.C., USA C. Blaine Cecil U.S. Geological Survey, Reston, Virginia, USA James C. Hower Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky, USA ABSTRACT The Colchester, Springfield, and Herrin Coals of the Eastern Interior Basin are some of the most extensive coal beds in North America, if not the world. The Colchester covers an area of more than 100,000 km^, the Springfield covers 73,500-81,000 km^, and the Herrin spans 73,900 km^. Each has correlatives in the Western Interior Basin, such that their entire regional extent varies from 116,000 km^to 200,000 km^. Correlatives in the Appalachian Basin may indicate an even more widespread area of Desmoinesian peatland development, although possibly sUghtly younger in age. The Colchester Coal is thin, but the Springfield and Herrin Coals reach thicknesses in excess of 3 m. High ash yields, dominance of vitrinite macerals, and abundant lycopsids suggest that these Desmoinesian coals were deposited in topogenous (groundwater fed) to solige- nous (mixed-water source) mires. The only modern mire complexes that are as wide- spread are northern-latitude raised-bog mires, but Desmoinesian
    [Show full text]
  • A Stable Isotopic Investigation of Resource Partitioning Among Neosauropod Dinosaurs of the Upper Jurassic Morrison Formation
    A stable isotopic investigation of resource partitioning among neosauropod dinosaurs of the Upper Jurassic Morrison Formation Benjamin T. Breeden, III SID: 110305422 [email protected] GEOL394H University of Maryland, College Park, Department of Geology 29 April 2011 Advisors: Dr. Thomas R. Holtz1, Jr., Dr. Alan Jay Kaufman1, and Dr. Matthew T. Carrano2 1: University of Maryland, College Park, Department of Geology 2: National Museum of Natural History, Department of Paleobiology ABSTRACT For more than a century, morphological studies have been used to attempt to understand the partitioning of resources in the Morrison Fauna, particularly between members of the two major clades of neosauropod (long-necked, megaherbivorous) dinosaurs: Diplodocidae and Macronaria. While it is generally accepted that most macronarians fed 3-5m above the ground, the feeding habits of diplodocids are somewhat more enigmatic; it is not clear whether diplodocids fed higher or lower than macronarians. While many studies exploring sauropod resource portioning have focused on differences in the morphologies of the two groups, few have utilized geochemical evidence. Stable isotope geochemistry has become an increasingly common and reliable means of investigating paleoecological questions, and due to the resistance of tooth enamel to diagenetic alteration, fossil teeth can provide invaluable paleoecological and behavioral data that would be otherwise unobtainable. Studies in the Ituri Rainforest in the Democratic Republic of the Congo, have shown that stable isotope ratios measured in the teeth of herbivores reflect the heights at which these animals fed in the forest due to isotopic variation in plants with height caused by differences in humidity at the forest floor and the top of the forest exposed to the atmosphere.
    [Show full text]
  • PRISCUM the Newsletter of the Paleontological Society Volume 13, Number 2, Fall 2004
    PRISCUM The Newsletter of the Paleontological Society Volume 13, Number 2, Fall 2004 Paleontological PRESIDENT’S Society Officers COLUMN: Inside... President Treasurer’s Report 2 William I. Ausich WE NEED YOU! GSA Information 2 President-Elect by William I. Ausich Reviews of PS- David Bottjer Sponsored Sessions 3 Past-President Why are you a member of The Paleontology Portal 5 Patricia H. Kelley The Paleontological Society? In PS Lecture Program 6 Secretary the not too distance past, the Books for Review 9 Roger D. K. Thomas only way to receive a copy of the Journal of Book Reviews 9 Treasurer Paleontology and Paleobiology was to pay your dues Conference Announce- and belong to the Society. I suppose one could Mark E. Patzkowsky have borrowed a copy from a friend or wander over ments 14 JP Managing Editors to the library. However, this was probably done Ann (Nancy) F. Budd with a heavy burden of guilt. Now, as we move Christopher A. Brochu into the digital age of scientific journal publishing, Jonathan Adrain one can have copies of the Journal of Paleontology and Paleobiology transmitted right to your Paleobiology Editors computer. It actually may arrive faster than the Tomasz Baumiller U.S. mail, you do not have to pay anything, and Robyn Burnham you do not even have to walk over to the library. Philip Gingerich No need for shelf space, no hassle, no dues, no Program Coordinator guilt – isn’t the Web great? The Web is great, but the Society needs dues-paying members in order Mark A. Wilson to continue to publish in paper, digitally, or both.
    [Show full text]
  • Div B Fossils Answer Key
    Div B Fossils Answer Key Name: . ​ ​ Date: . ​ ​ ​ This is a 50 minute test. Each station is 2 minutes and 30 seconds. Keep in mind that questions that require Multiple answers will only be marked correct if ALL of the answers ​ ​ chosen/written are correct. /120 ​ Station 1: 1) Brachiosaurus 2) Elmer S. Riggs 3) Diplodocus 4) Cañon City, Colorado 5) Patagotitan 6) Late Cretaceous Station 2: 7) Velociraptor ​ ​ 8) Spinosaurus ​ 9) Plateosaurus ​ 10) Ankylosaurus ​ 11) Parasaurolophus ​ 12) Dracorex ​ Station 3: 13) Platystrophia ​ ​ 14) A, C, D, E ​ 15) Composita ​ 16) Late Devonian-Late Permian ​ 17) Atrypa ​ 18) All around the world ​ Station 4: 19) .Calymene ​ ​ 20) Beautiful crescent, references the glabella ​ 21) Eldredgeops (formerly Phacops) ​ 22) 11 ​ 23) Elrathia ​ 24) Four axial rings ​ Station 5: 25) A - Thorax ​ ​ 26) B - Genal Angle ​ 27) C - Cephalon ​ 28) D - Eye ​ 29) E - Pleural furrow ​ 30) F - Librigena ​ 31) G - Fulcrum ​ Station 6: 32) Order Ammonoid ​ 33) Cretaceous–Paleogene extinction even 34) True 35) Planispirals, helically, heteromorphs ​ 36) F ​ Station 7: 37) Class Crinoidea ​ ​ 38) A ​ 39) A characteristic of a species, meaning that it has distinct male and female individual ​ organisms. 40) Yes ​ 41) 600 ​ 42) 40 m (130 ft) ​ Station 8: 43) Belemnitella ​ ​ 44) 84.9–66.043 Ma ​ 45) Europe and North America ​ 46) Internal ​ 47) North America ​ 48) True ​ Station 9: 49) Bothriolepis ​ 50) "pitted scale" or "trench scale", either or both accepted ​ 51) Bothriolepis, keyhole, mouth ​ 52) Three ​ 53) a superficial
    [Show full text]
  • U Tech Glossary
    URGLOSSARY used without permission revised the Ides of March 2014 glos·sa·ry Pronunciation: primarystressglässchwaremacron, -ri also primarystressglodots- Function: noun Inflected Form(s): -es Etymology: Medieval Latin glossarium, from Latin glossa difficult word requiring explanation + -arium -ary : a collection of textual glosses <an edition of Shakespeare with a good glossary> or of terms limited to a special area of knowledge <a glossary of technical terms> or usage <a glossary of dialectal words> Merriam Webster Unabridged tangent, adj. and n. [ad. L. tangens, tangent-em, pr. pple. of tangĕre to touch; used by Th. Fincke, 1583, as n. in sense = L. līnea tangens tangent or touching line. In F. tangent, -e adj., tangente n. (Geom.), Ger. tangente n.] c. In general use, chiefly fig. from b, esp. in phrases (off) at, in, upon a tangent, ie off or away with sudden divergence, from the course or direction previously followed; abruptly from one course of action, subject, thought, etc, to another. (http://dictionary.oed.com) As in off on a tangent. “Practice, repetition, and repetition of the repeated with ever increasing intensity are…the way.” Zen in the Art of Archery by Eugen Herrigel. For many terms, this glossary contains definitions from multiple sources, each with their own nuance, each authors variation emphasized. Reading the repeated definitions, with their slight variations, helps create a fuller, more overall understanding of the meaning of these terms. The etymology of the entries reinforces and may repeat the repetitions. Wax on, wax off. Sand da floor. For sometime, when I encounter a term I don’t understand (and there are very many), I have been looking them up in the oed and copying the definition into a Word document.
    [Show full text]
  • Annual Meeting 2002
    Newsletter 51 74 Newsletter 51 75 The Palaeontological Association 46th Annual Meeting 15th–18th December 2002 University of Cambridge ABSTRACTS Newsletter 51 76 ANNUAL MEETING ANNUAL MEETING Newsletter 51 77 Holocene reef structure and growth at Mavra Litharia, southern coast of Gulf of Corinth, Oral presentations Greece: a simple reef with a complex message Steve Kershaw and Li Guo Oral presentations will take place in the Physiology Lecture Theatre and, for the parallel sessions at 11:00–1:00, in the Tilley Lecture Theatre. Each presentation will run for a New perspectives in palaeoscolecidans maximum of 15 minutes, including questions. Those presentations marked with an asterisk Oliver Lehnert and Petr Kraft (*) are being considered for the President’s Award (best oral presentation by a member of the MONDAY 11:00—Non-marine Palaeontology A (parallel) Palaeontological Association under the age of thirty). Guts and Gizzard Stones, Unusual Preservation in Scottish Middle Devonian Fishes Timetable for oral presentations R.G. Davidson and N.H. Trewin *The use of ichnofossils as a tool for high-resolution palaeoenvironmental analysis in a MONDAY 9:00 lower Old Red Sandstone sequence (late Silurian Ringerike Group, Oslo Region, Norway) Neil Davies Affinity of the earliest bilaterian embryos The harvestman fossil record Xiping Dong and Philip Donoghue Jason A. Dunlop Calamari catastrophe A New Trigonotarbid Arachnid from the Early Devonian Windyfield Chert, Rhynie, Philip Wilby, John Hudson, Roy Clements and Neville Hollingworth Aberdeenshire, Scotland Tantalizing fragments of the earliest land plants Steve R. Fayers and Nigel H. Trewin Charles H. Wellman *Molecular preservation of upper Miocene fossil leaves from the Ardeche, France: Use of Morphometrics to Identify Character States implications for kerogen formation Norman MacLeod S.
    [Show full text]
  • Hyperodapedon Gordoni Further Observations Upon
    Downloaded from http://jgslegacy.lyellcollection.org/ at University of Virginia on October 5, 2012 Quarterly Journal of the Geological Society Further Observations upon Hyperodapedon Gordoni. T. H. Huxley Quarterly Journal of the Geological Society 1887, v.43; p675-694. doi: 10.1144/GSL.JGS.1887.043.01-04.51 Email alerting click here to receive free service e-mail alerts when new articles cite this article Permission click here to seek permission request to re-use all or part of this article Subscribe click here to subscribe to Quarterly Journal of the Geological Society or the Lyell Collection Notes © The Geological Society of London 2012 Downloaded from http://jgslegacy.lyellcollection.org/ at University of Virginia on October 5, 2012 ON HYPERODAPEDON GORDONL 675 47. FcR~n~l~ O~S~RVAT][O~S upon ~EIYPERODAPEDOI~ GORDON][. By Prof. T. tI. HvxL~, F.R.S., F.G.S. (Read May 11, 1887.) [PLA~ES XXYL & XXVII.] IT is now twenty,nine years since, in describing those remains of Stagonolepis t~obertsoni from the Elgin Sandstones which enabled me to determine the reptilian nature and the crocodilian affinities of that supposed fish, I indicated the occurrence in the same beds of a Laeertilian reptile, to which I gave the name of Hyperodapedon Gordoni. I laid stress upon the " marked affinity with certain Triassic reptiles" (e. g. _Rhynchosaurus)of Hyperodapedon, and I said that these, "when taken together with the resemblance of Stagonolelois to Mesozoic Crocodilia," led me "to require the strongest stratigraphical proof before admitting the Palmozoic age of the beds in which it occurs ,' % Many Fellows of the Society will remember the prolonged dis- cussions which took place, in the course of the ensuing ten or twelve years, before the Mesozoic age of the reptiliferous sandstones of Elgin was universally admitted.
    [Show full text]
  • Plant Evolution
    Conquering the land The rise of plants Ordovician Spores Algae (algal mats) Green freshwater algae Bacteria Fungae Bryophytes Moses? Liverworts? Little body fossil evidence Silurian Wenlock Stage 423-428mya Psilophytes Rhyniopsidsa important later in early Devonian Cooksonia Rhynia Branching stems, flattened sporangia at tips No leaves, no roots short 30 cms rhizoids Zosterophylls Early stem group of Lycopodiophytes Ancestors of Class Lycopsida (clubmosses) Prevalent in Devonian Spores at tips and on branches Lycopsids (?) Baragwanathia with microphylls in Australia Zosterophylls Silurian Cooksonia Development of Soil Fungae Bacteria Algae Organic matter Arthropods and annelids Change in erosion Change in CO2 Devonian Devonian Early Devonian simple structure Rhynie Chert (Rhyniophytes) Trimerophytes First with main shoot Give rise to Ferns and Progymnosperms Up to 3m tall Animal life (mainly arthropods) Late Devonian Forests First true wood (lignin) Forest structure develops (stories) Sphenopsids (Calamites) Lycopsids (Lepidodendron) Seed Ferns (Pteridosperm) Progymnosperm Archaeopteris Cladoxylopsid First vertebrates present Upper Devonian Lycopsida 374-360 mya Leaves and roots differentiated Most ancient with living relatives Megaphylls branching in on plane Photosynthetic webbing Shrub size vertical growth limited (weak) Lateral (secondary) growth (woody) Development of roots Homosporous Heterosporous Upper Devonian Calamites (Sphenopsid) Horestail Sphenophyta (Calamites-Annularia) Devonian Archaeopteris Ur. Devonian - Lr. Carboniferous
    [Show full text]
  • 1 Chapter 1.3. Long History of Life on Earth Chapter 1.3 Provides a Brief Overview, Mostly in Chronological Order, of the Evolut
    Chapter 1.3. Long History of Life on Earth Chapter 1.3 provides a brief overview, mostly in chronological order, of the evolution of life on Earth. Although new fascinating paleontological discoveries are made continuously and inferences based on properties of modern organisms become more and more reliable, a number of key facts about past evolution have already been firmly established. These facts provide the basis for studying modern life. Section 1.3.1 presents data on the first ~6/7 of the chronology of life, from its origin over 3.500 mya to the end of Proterozoic eon 542 mya. A number of crucial events occurred during these ancient times, including the origins of life itself, the first modern- like prokaryotes, photosynthesis, unicellular eukaryotes, multicellular eukaryotes, and a variety of animals. Early fossil record leaves a lot to be desired, and the available fossils are often hard to interpret so that combining direct and indirect data is particularly important for studying these early times. Section 1.3.2 deals with Phanerozoic eon, from 542 mya to the present. Although all large-scale clades of the Tree of Life were already present at the beginning of this eon, most of the clades of familiar and ecologically important terrestrial living beings evolved later, including land plants, insects, tetrapods, amniotes, mammals, and birds. A rather detailed fossil record of the Phanerozoic eon revealed a number of fascinating transitory forms and many episodes of diversification and extinction. Section 1.3.3 considers extant life from the perspective of its evolutionary history. Phylogenetic relationships of modern organisms, the origin of their spatial distributions, the recent changes in the environment, and the ongoing mass extinction are reviewed.
    [Show full text]
  • Sept 2005 APS Bulletin
    Palæontological S o c i e t y Bulletin VOLUMEAlberta 20 • NUMBER 3 www.albertapaleo.org SEPTEMBER 2005 ALBERTA PALÆONTOLOGICAL SOCIETY OFFICERS c. Provide information and expertise to other collectors. President Dan Quinsey 247-3022 d. Work with professionals at museums and universities Vice-President Ron Fortier 285-8041 to add to the palaeontological collections of the Treasurer Mona Marsovsky 547-0182 province (preserve Alberta’s heritage). Secretary Wendy Morrison 646-3186 Past-President Vaclav Marsovsky 547-0182 MEMBERSHIP: Any person with a sincere interest in palaeontology is eligible to present their application DIRECTORS for membership in the Society. (Please enclose mem- Editor Howard Allen 274-1858 bership dues with your request for application.) Membership Howard Allen 274-1858 Program Coordinator Philip Benham 280-6283 Single membership $20.00 annually Field Trip Coordinator Wayne Braunberger 278-5154 Family or Institution $25.00 annually COMMITTEES THE BULLETIN WILL BE PUBLISHED QUARTERLY: APAC† Howard Allen 274-1858 March, June, September and December. Deadline for sub- APS 20th Anniversary Dan Quinsey 247-3022 mitting material for publication is the 15th of the month Wayne Braunberger 278-5154 prior to publication. CRLC Show Dan Quinsey 247-3022 Wayne Braunberger 278-5154 Society Mailing Address: Education Dan Quinsey 247-3022 Alberta Palaeontological Society Fossil Collections Ron Fortier 285-8041 P.O. Box 35111, Sarcee Postal Outlet Fund Raising Dan Quinsey 247-3022 Calgary, Alberta, Canada T3E 7C7 Library Mona Marsovsky 547-0182 (Web: www.albertapaleo.org) Paleo Rangers Dan Quinsey 247-3022 Ron Fortier 285-8041 Material for the Bulletin: Social (position unfilled) Howard Allen, Editor, APS Website Vaclav Marsovsky 547-0182 7828 Hunterslea Crescent, N.W.
    [Show full text]
  • Quiz 8 – Feb 5 STATION 5 Identify the Genus of Each a ______B ______C ______
    STATION 1 (refer to pictures) STATION 2 (refer to pictures) Which creature with a backbone roamed the planet first? Which of these organisms had lysosomes? ______________ By letter ________ In what Geologic Period _______ Which of these organisms can make a siliceous rock? _______ Identify the two Anthozoans by Genus Which two plants thrived in the Carboniferous ? __________________ and __________________ _______________________________ and ____________________________ Which creature had a plueral lobe ? __________________ Which of these is a desiduous plant alive today __________ Which went extinct during the Cretaceous-Palocene major Which is pelagic ? ______________ extincton? ____________________________ Which is benthic ? _______________ Identify the creature that was on earth first: _________________ STATION 3 STATION 4 -- (in the box, or online in pcitures) Identify the 3 invertebrate fossils in the box (or in the picture): Identify the Genus of the large black round fossil (A): ____________ A. Phylum __________ Class _________________ Identify the Phylum of the white fossil (B): _________________ B. Phylum ____________ Class ________________ The small round things (C) are from my front yard. Identify the Phylum and Genus: ______________ , ________________ C. Phylum ___________ Class _______________ TRUE OR FALSE: All these genus contained plastids. Which of these creatures had a pedicle valve _____________ TRUE OR FALSE: None of these were around in the Devonian. Which of these creatures had a calyx __________________ TRUE OR FALSE: All of these contributed to Carboniferous coal Which of these creatures used nematocysts ______________ development. Quiz 8 – Feb 5 STATION 5 Identify the genus of each A ________________ B _______________ C _________________ Refer to the following statements for the two questions at the bottom i They lived at the same time ii.
    [Show full text]