The Nihoku Ecosystem Restoration Project: a Case Study in Predator Exclusion Fencing, Ecosystem Restoration, and Seabird Translocation

Total Page:16

File Type:pdf, Size:1020Kb

The Nihoku Ecosystem Restoration Project: a Case Study in Predator Exclusion Fencing, Ecosystem Restoration, and Seabird Translocation PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 198 The Nihoku Ecosystem Restoration Project: A case study in predator exclusion fencing, ecosystem restoration, and seabird translocation September 2018 Lindsay C. Young1, Jessica H. Behnke1, Eric A. Vanderwerf1, André F. Raine2, Christen 3 1 1 4 4 Mitchell , C. Robert Kohley , Megan Dalton , Michael Mitchell , Heather Tonneson , 5 6 6 7 4 Mike DeMotta , George Wallace , Hannah Nevins , C. Scott Hall , and Kim Uyehara 1 Pacific Rim Conservation, Honolulu, HI, USA. 2Kauaʻi Endangered Seabird Recovery Project, Hanapepe, HI, USA. 3Anden Consulting, Honolulu, HI USA. 4U.S. Fish and Wildlife Service, National Wildlife Refuges, Kīlauea , HI, USA. 5National Tropical Botanical Garden, Lawai, HI, USA. 6 American Bird Conservancy, The Plains, VA, USA. 7 National Fish and Wildlife Foundation, Washington, DC, USA PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: Pacific Rim Conservation, PO Box 61827 Honolulu, Hawaii 96839. Telephone: +1 (808) 377-7114. E- mail: [email protected] Recommended Citation: Young, L.C., J.H. Behnke, E.A. Vanderwerf, A.F. Raine, C. Mitchell, C.R. Kohley, M. Dalton, M. Mitchell, H. Tonneson, M. DeMotta, G. Wallace, H. Nevins, C.S. Hall and K. Uyehara. 2018. The Nihoku Ecosystem Restoration Project: A case study in predator exclusion fencing, ecosystem restoration, and seabird translocation. Pacific Cooperative Studies Unit Technical Report 198. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 83 pages. Key words: Newell’s Shearwater (Puffinus auricularis newelli), Hawaiian Petrel (Pterodroma sandwichensis), Nēnē (Branta sandvicensis), The Nihoku Ecosystem Restoration Project Place key words: Kīlauea Point National Wildlife Refuge, Hawai‘i Editor: David C. Duffy, PCSU Unit Leader (Email: [email protected]) Series Editor: Clifford W. Morden, PCSU Deputy Director (Email: [email protected]) About this technical report series: This technical report series began in 1973 with the formation of the Cooperative National Park Resources Studies Unit at the University of Hawai'i at Mānoa. In 2000, it continued under the Pacific Cooperative Studies Unit (PCSU). The series currently is supported by the PCSU. The Pacific Cooperative Studies Unit at the University of Hawai'i at Mānoa works to protect cultural and natural biodiversity in the Pacific while encouraging a sustainable economy. PCSU works cooperatively with private, state and federal land management organizations, allowing them to pool and coordinate their efforts to address problems across the landscape. TABLE OF CONTENTS Executive Summary .......................................................................................................................... 4 1. Introduction .................................................................................................................................. 6 1.1 Project background ................................................................................................................. 6 1.2 Objectives ............................................................................................................................... 8 1.3 Partners ................................................................................................................................... 9 1.4 Timeline and chronology ...................................................................................................... 10 2. Permits and Regulatory Process .................................................................................................. 11 2.1 Environmental assessments ................................................................................................. 11 2.2 Special management area permit ......................................................................................... 13 2.3 Recovery permit .................................................................................................................... 13 2.4 Land owner permits .............................................................................................................. 14 2.5 Archaeological survey and section 106 consultation ............................................................ 14 2.6 Conclusions ........................................................................................................................... 14 3. Public Outreach........................................................................................................................... 15 3.1 Introduction .......................................................................................................................... 15 3.2 Approach ............................................................................................................................... 15 3.3 Materials produced ............................................................................................................... 15 3.4 Website and blog posts ......................................................................................................... 16 3.5 Summary ............................................................................................................................... 16 4. Biological Monitoring .................................................................................................................. 17 4.1 Introduction .......................................................................................................................... 17 4.2 Methods ................................................................................................................................ 18 4.3 Results ................................................................................................................................... 22 5. Fence Construction and Maintenance ......................................................................................... 27 5.1 Introduction .......................................................................................................................... 27 5.2 Cost ....................................................................................................................................... 29 5.3 Fence design ......................................................................................................................... 29 5.4 Contract and selection of fence vendor ................................................................................ 31 5.5 Construction logistics ............................................................................................................ 32 5.6 Maintenance ......................................................................................................................... 33 5.7 Design improvements ........................................................................................................... 34 6. Predator Monitoring and Eradication Plan .................................................................................. 36 6.1 Introduction .......................................................................................................................... 36 6.2 Pre‐eradication pest monitoring methods ........................................................................... 37 6.3 Monitoring results and discussion ........................................................................................ 38 6.4 Eradication plan outline ........................................................................................................ 41 7. Habitat Restoration ..................................................................................................................... 43 7.1 Introduction .......................................................................................................................... 43 7.2 Methods ................................................................................................................................ 45 7.3 Outcomes .............................................................................................................................. 49 2 8. Seabird Translocation Plan .......................................................................................................... 50 8.1 Introduction .......................................................................................................................... 50 8.2 Translocation site preparation .............................................................................................. 55 8.3 Translocation source colony selection .................................................................................. 59 8.4 Collection and removal of donor chicks ................................................................................ 62 8.5 Chick care at the translocation site ....................................................................................... 66 8.6 Translocation assessment ..................................................................................................... 72 9. Conclusions................................................................................................................................. 74 9.1 Summary ..............................................................................................................................
Recommended publications
  • Biology and Conservation of the Juan Fernandez Archipelago Seabird Community
    Biology and Conservation of the Juan Fernández Archipelago Seabird Community Peter Hodum and Michelle Wainstein Dates: 29 December 2001 – 29 March 2002 Participants: Dr. Peter Hodum California State University at Long Beach Long Beach, CA USA Dr. Michelle Wainstein University of Washington Seattle, WA USA Erin Hagen University of Washington Seattle, WA USA Additional contributors: 29 December 2001 – 19 January 2002 Brad Keitt Island Conservation Santa Cruz, CA USA Josh Donlan Island Conservation Santa Cruz, CA USA Karl Campbell Charles Darwin Foundation Galapagos Islands Ecuador 14 January 2002 – 24 March 2002 Ronnie Reyes (student of Dr. Roberto Schlatter) Universidad Austral de Chile Valdivia Chile TABLE OF CONTENTS Introduction 3 Objectives 3 Research on the pink-footed shearwater 3 Breeding population estimates 4 Reproductive biology and behavior 6 Foraging ecology 7 Competition and predation 8 The storm 9 Research on the Juan Fernández and Stejneger’s petrels 10 Population biology 10 Breeding biology and behavior 11 Foraging ecology 14 Predation 15 The storm 15 Research on the Kermadec petrel 16 Community Involvement 17 Public lectures 17 Seabird drawing contest 17 Radio show 18 Material for CONAF Information Center 18 Local pink-footed shearwater reserve 18 Conservation concerns 19 Streetlights 19 Eradication and restoration 19 Other fauna 20 Acknowledgements 20 Figure 1. Satellite tracks for pink-footed shearwaters 22 Appendices (for English translations please contact P. Hodum or M. Wainstein) A. Proposal for Kermadec petrel research 23 B. Natural history materials left with Information Center 24 C. Proposal for a local shearwater reserve 26 D. Contact information 32 2 INTRODUCTION Six species of seabirds breed on the Juan Fernández Archipelago: the pink-footed shearwater (Puffinus creatopus), Juan Fernández petrel (Pterodroma externa), Stejneger’s petrel (Pterodroma longirostris), Kermadec petrel (Pterodroma neglecta), white-bellied storm petrel (Fregetta grallaria), and Defilippe’s petrel (Pterodroma defilippiana).
    [Show full text]
  • Seabirds in Southeastern Hawaiian Waters
    WESTERN BIRDS Volume 30, Number 1, 1999 SEABIRDS IN SOUTHEASTERN HAWAIIAN WATERS LARRY B. SPEAR and DAVID G. AINLEY, H. T. Harvey & Associates,P.O. Box 1180, Alviso, California 95002 PETER PYLE, Point Reyes Bird Observatory,4990 Shoreline Highway, Stinson Beach, California 94970 Waters within 200 nautical miles (370 km) of North America and the Hawaiian Archipelago(the exclusiveeconomic zone) are consideredas withinNorth Americanboundaries by birdrecords committees (e.g., Erickson and Terrill 1996). Seabirdswithin 370 km of the southern Hawaiian Islands (hereafterreferred to as Hawaiian waters)were studiedintensively by the PacificOcean BiologicalSurvey Program (POBSP) during 15 monthsin 1964 and 1965 (King 1970). Theseresearchers replicated a tracklineeach month and providedconsiderable information on the seasonaloccurrence and distributionof seabirds in these waters. The data were primarily qualitative,however, because the POBSP surveyswere not basedon a strip of defined width nor were raw counts corrected for bird movement relative to that of the ship(see Analyses). As a result,estimation of density(birds per unit area) was not possible. From 1984 to 1991, using a more rigoroussurvey protocol, we re- surveyedseabirds in the southeasternpart of the region (Figure1). In this paper we providenew informationon the occurrence,distribution, effect of oceanographicfactors, and behaviorof seabirdsin southeasternHawai- ian waters, includingdensity estimatesof abundant species. We also document the occurrenceof six speciesunrecorded or unconfirmed in thesewaters, the ParasiticJaeger (Stercorarius parasiticus), South Polar Skua (Catharacta maccormicki), Tahiti Petrel (Pterodroma rostrata), Herald Petrel (P. heraldica), Stejneger's Petrel (P. Iongirostris), and Pycroft'sPetrel (P. pycrofti). STUDY AREA AND SURVEY PROTOCOL Our studywas a piggybackproject conducted aboard vessels studying the physicaloceanography of the easterntropical Pacific.
    [Show full text]
  • Acoustic Attraction of Grey-Faced Petrels (Pterodroma Macroptera Gouldi) and Fluttering Shearwaters (Puffinus Gavia) to Young Nick’S Head, New Zealand
    166 Notornis, 2010, Vol. 57: 166-168 0029-4470 © The Ornithological Society of New Zealand, Inc. SHORT NOTE Acoustic attraction of grey-faced petrels (Pterodroma macroptera gouldi) and fluttering shearwaters (Puffinus gavia) to Young Nick’s Head, New Zealand STEVE L. SAWYER* Ecoworks NZ Ltd, 369 Wharerata Road, RD1, Gisborne 4071, New Zealand SALLY R. FOGLE Ecoworks NZ Ltd, 369 Wharerata Road, RD1, Gisborne 4071, New Zealand Burrow-nesting and surface-nesting petrels colonies at sites following extirpation or at novel (Families Procellariidae, Hydrobatidae and nesting habitats, as the attraction of prospecting Oceanitidae) in New Zealand have been severely non-breeders to a novel site is unlikely and the affected by human colonisation, especially through probabilities of recolonisation further decrease the introduction of new predators (Taylor 2000). as the remaining populations diminish (Gummer Of the 41 extant species of petrel, shearwater 2003). and storm petrels in New Zealand, 35 species are Both active (translocation) and passive (social categorised as ‘threatened’ or ‘at risk’ with 3 species attraction) methods have been used in attempts to listed as nationally critical (Miskelly et al. 2008). establish or restore petrel colonies (e.g. Miskelly In conjunction with habitat protection, habitat & Taylor 2004; Podolsky & Kress 1992). Methods enhancement and predator control, the restoration for the translocation of petrel chicks to new colony of historic colonies or the attraction of petrels to sites are now fairly well established, with fledging new sites is recognised as important for achieving rates of 100% achievable, however, the return of conservation and species recovery objectives translocated chicks to release sites is still awaiting (Aikman et al.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Plant Section Introduction
    Re-introduction Practitioners Directory - 1998 RE-INTRODUCTION PRACTITIONERS DIRECTORY 1998 Compiled and Edited by Pritpal S. Soorae and Philip J. Seddon Re-introduction Practitioners Directory - 1998 © National Commission for Wildlife Conservation and Development, 1998 Printing and Publication details Legal Deposit no. 2218/9 ISBN: 9960-614-08-5 Re-introduction Practitioners Directory - 1998 Copies of this directory are available from: The Secretary General National Commission for Wildlife Conservation and Development Post Box 61681, Riyadh 11575 Kingdom of Saudi Arabia Phone: +966-1-441-8700 Fax: +966-1-441-0797 Bibliographic Citation: Soorae, P. S. and Seddon, P. J. (Eds). 1998. Re-introduction Practitioners Directory. Published jointly by the IUCN Species Survival Commission’s Re-introduction Specialist Group, Nairobi, Kenya, and the National Commission for Wildlife Conservation and Development, Riyadh, Saudi Arabia. 97pp. Cover Photo: Arabian Oryx Oryx leucoryx (NWRC Photo Library) Re-introduction Practitioners Directory - 1998 CONTENTS FOREWORD Professor Abdulaziz Abuzinadai PREFACE INTRODUCTION Dr Mark Stanley Price USING THE DIRECTORY ACKNOWLEDGEMENTS PART A. ANIMALS I MOLLUSCS 1. GASTROPODS 1.1 Cittarium pica Top Shell 1.2 Placostylus ambagiosus Flax Snail 1.3 Placostylus ambagiosus Land Snail 1.4 Partula suturalis 1.5 Partula taeniata 1.6 Partula tahieana 1.7 Partula tohiveana 2. BIVALVES 2.1 Freshwater Mussels 2.2 Tridacna gigas Giant Clam II ARTHROPODS 3. ORTHOPTERA 3.1 Deinacrida sp. Weta 3.2 Deinacrida rugosa/parva Cook’s Strait Giant Weta Re-introduction Practitioners Directory - 1998 3.3 Gryllus campestris Field Cricket 4. LEPIDOPTERA 4.1 Carterocephalus palaemon Chequered Skipper 4.2 Lycaena dispar batavus Large Copper 4.3 Lycaena helle 4.4 Lycaeides melissa 4.5 Papilio aristodemus ponoceanus Schaus Swallowtail 5.
    [Show full text]
  • Molecular Ecology of Petrels
    M o le c u la r e c o lo g y o f p e tr e ls (P te r o d r o m a sp p .) fr o m th e In d ia n O c e a n a n d N E A tla n tic , a n d im p lic a tio n s fo r th e ir c o n se r v a tio n m a n a g e m e n t. R u th M a rg a re t B ro w n A th e sis p re se n te d fo r th e d e g re e o f D o c to r o f P h ilo so p h y . S c h o o l o f B io lo g ic a l a n d C h e m ic a l S c ie n c e s, Q u e e n M a ry , U n iv e rsity o f L o n d o n . a n d In stitu te o f Z o o lo g y , Z o o lo g ic a l S o c ie ty o f L o n d o n . A u g u st 2 0 0 8 Statement of Originality I certify that this thesis, and the research to which it refers, are the product of my own work, and that any ideas or quotations from the work of other people, published or otherwise, are fully acknowledged in accordance with the standard referencing practices of the discipline.
    [Show full text]
  • Conservation Services Programme Project MIT2015-02: Mitigating
    Conservation Services Programme Project MIT2015-02: Mitigating seabird captures during hauling on smaller longline vessels J. P. Pierre 6 April 2018 Executive summary ___________________________________________________________________________ Seabird captures in longline fisheries may occur on the set, soak or haul. Bycatch reduction measures are best developed, tested and implemented for reducing seabird captures occurring during longline sets. Measures affecting the nature and extent of haul captures, and mitigation approaches to reduce those captures, are not well-known. Further, the difficulty of accurately identifying captures as occurring on the haul means that live seabird captures are typically used as a proxy for haul captures in bycatch datasets. A global review shows four broad categories of mitigation used during longline hauling: physical barriers, measures that reduce the attractiveness of the haul area, deterrents, and operational approaches that are part of fishing. Of devices that operate as physical barriers to seabirds, bird exclusion devices, tori lines and towed buoys have been tested and proven effective in reducing seabird interactions with hauled longline gear. Discharging fish waste such that seabirds are not attracted to the hauling bay is another effective measure, and seabird abundance around vessels is reduced by retaining fish waste during hauling. While a number of deterrents and ad hoc or reactive approaches to reducing haul captures have been discussed in the literature (e.g. water sprays), these have generally not been empirically tested. Information collected by government fisheries observers on 73 bottom longline and 60 surface longline trips that have occurred since 1 October 2012 on New Zealand vessels < 34 m in overall length showed that most of these measures are in place here.
    [Show full text]
  • 074 Kermadec Petrel
    Text and images extracted from Marchant, S. & Higgins, P.J. (co-ordinating editors) 1990. Handbook of Australian, New Zealand & Antarctic Birds. Volume 1, Ratites to ducks; Part A, Ratites to petrels. Melbourne, Oxford University Press. Pages 263-264, 355-356, 436-440; plate 31 . Reproduced with the permission of Bird life Australia and Jeff Davies. 263 Order PROCELLARIIFORMES A rather distinct group of some 80-100 species of pelagic seabirds, ranging in size from huge to tiny and in habits from aerial (feeding in flight) to aquatic (pursuit-diving for food), but otherwise with similar biology. About three-quarters of the species occur or have been recorded in our region. They are found throughout the oceans and most come ashore voluntarily only to breed. They are distinguished by their hooked bills, covered in horny plates with raised tubular nostrils (hence the name Tubinares). Their olfactory systems are unusually well developed (Bang 1966) and they have a distinctly musky odour, which suggest that they may locate one another and their breeding places by smell; they are attracted to biogenic oils at sea, also no doubt by smell. Probably they are most closely related to penguins and more remotely to other shorebirds and waterbirds such as Charadrii­ formes and Pelecaniiformes. Their diversity and abundance in the s. hemisphere suggest that the group originated there, though some important groups occurred in the northern hemisphere by middle Tertiary (Brodkorb 1963; Olson 1975). Structurally, the wings may be long in aerial species and shorter in divers of the genera Puffinus and Pel­ ecanoides, with 11 primaries, the outermost minute, and 10-40 secondaries in the Oceanitinae and great albatrosses respectively.
    [Show full text]
  • Aerial Surveys
    Seabird, marine mammal and surface-fish surveys of Tasman and Golden Bay, Nelson Part A: Aerial Surveys Prepared for Friends of Nelson Haven and Tasman Bay Incorporated and AWE New Zealand Pty. Ltd. August 2011 Authors/Contributors : Sean Handley Paul Sagar For any information regarding this report please contact: Sean Handley Marine Ecology and Aquaculture +64-3-548 1715 [email protected] National Institute of Water & Atmospheric Research Ltd 217 Akersten Street, Port Nelson PO Box 893 Nelson 7040 New Zealand Phone +64-3-548 1715 Fax +64-3-548 1716 NIWA Client Report No: NEL2011-018 Report date: August 2011 NIWA Project: AWE11401 © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be give in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client Contents 1 Executive summary.....................................................................................................5 2 Introduction .................................................................................................................7
    [Show full text]
  • Huttons Shearwater
    The Hutton’s Shearwater Charitable Trust PO Box 58, Kaikoura 7340, New Zealand www.huttonsshearwater.org.nz Email: [email protected] Find us on Facebook! The Hutton’s Shearwater/Kaikōura Tītī The nationally endangered Hutton’s shearwater (Puffinus huttoni) is the only seabird globally to breed in an alpine environment, with the only two breeding colonies remaining in the Seaward Kaikōura Range in the South Island of New Zealand. Kaikōura is therefore literally their last place on earth. Identification The Hutton’s shearwater is a small black and white shearwater, 36-38 cm in length with a wingspan of about 75 cm. The upperparts are uniform brownish black. The dark brown of the cap extends below the eye merging into the white of the chin and throat. The dark hindneck extends down behind the cap to form a broad collar almost encircling the neck and upper breast. The rest of the underbody extending from the lower breast to the undertail coverts is white except for a small dark patch on the thigh and the sides of the undertail coverts. The underwing is off-white with broad brownish borders with extensive dusky grey armpits. Bill is long, slender, and dark grey. Iris brown. Leg is light to dark pink and mauve on the inside and pink and dark grey outside; feet pink with black webs. Māori History The Hutton’s shearwater/tītī was long known to Māori, providing a major sustainable source of protein to Ngāti Kuri, Tangata Whenua of the area. “Tītī” is the Māori name for a number of different shearwater species, particularly during the downy chick stage.
    [Show full text]
  • AOU Classification Committee – North and Middle America
    AOU Classification Committee – North and Middle America Proposal Set 2015-A 21 Jan 2015 No. Page Title 01 02 Revise the classification of the Pipridae 02 08 Add Bicolored Wren Campylorhynchus griseus to the Main List 03 11 Move Dusky Pigeon Patagioenas goodsoni from the Appendix to the Main List 04 14 Revise the classification of the Psittaciformes 05 19 Split Pterodroma heraldica and P. atrata from Herald Petrel P. arminjoniana 06 26 Transfer American Tree Sparrow Spizella arborea to Spizelloides 07 28 Split Passerina pallidior from Painted Bunting P. ciris 08 32 Split Toxostoma arenicola from LeConte’s Thrasher T. lecontei 09 35 Correct the scientific names of (a) Leptotila cassini and (b) Amazilia saucerrottei 10 37 Split Laysan Honeycreeper from Apapane Himatione sanguinea and change its specific epithet to fraithii 11 40 Split Newell’s Shearwater Puffinus newelli from Townsend’s Shearwater P. auricularis, and consider Rapa Shearwater P. myrtae as a species separate from P. newelli 12 44 Correct the citation for Pterodroma solandri 2015-A-1 N&MA Classification Committee pp. 423-426 Revise the classification of the Pipridae Background: Our current classification of the Pipridae is as follows: Corapipo altera Chiroxiphia lanceolata Chiroxiphia linearis Xenopipo holochlora Dixiphia pipra Ceratopipra mentalis Ceratopipra erythrocephala Manacus candei Manacus aurantiacus Manacus vitellinus Lepidothrix coronata New information: Ohlson et al. (2013) investigated relationships within the family using DNA sequence data from three nuclear introns and one mitochondrial gene (ND2). They sampled all genera and most species. I have pasted in a screen grab of their tree below. Their results are largely consistent with those of previous studies except for the polyphyly of Chloropipo, members of which are in three parts of the tree.
    [Show full text]
  • Herald Petrel New to the West Indies
    EXTRALIMITAL RECORD Herald Petrel new to the West Indies Michael Gochfeld,Joanna Burger, Jorge Saliva, and Deborah Gochfeld (Pterodroma)are bestrepresented SinA southGROUP temperate THEGADFLY and subantarc-PETRELS tic waterswith a few speciesbreeding on tropicalislands in the Central Pacific, Atlantic, and Indian Oceans.In the West Indies,the only member of this genusis the Black-cappedPetrel (P hasitata), which breeds in the Greater Antilles and perhaps still in the Lesser Antilles. A dose relative,the endangeredBermuda (P..cahow) breeds in Bermuda. On July 12, 1986, while studyingthe breeding Laughing Gulls (Larus atri- cilia), Royal Terns,and SandwichTerns (Sterna maxima and S. sandvicensis)on Cayo Lobito, in the Culebra National Wildlife Refuge, about 40 kilometers eastof Fajardo,Puerto Rico, we flushed an all-dark petrel from a scrapeamong the nestingterns. As soon as the bird wheeled around we realized that it was a petrel, and not the familiar Sooty Shearwater(Puj•nus griseus),a species Figure 1. Dark-phasePterodroma landing among Laughing Gulls on Cayo Lobito. Culebra, which would itselfbe extremelyunusual PuertoRico. Note the ashygray undersurface of theprimary.feathers, ending in longnarrow at Culebra. Compared to a shearwater, "digital" extensionsthat are the pale areas of the inner websof theprimaries. The greater the petrelappeared to havea largerhead underwingcoverts are pale with a narrowdark tip that showsas thefaint wavybar at the base of theprimaries. The Iongishtail and shortishbill are apparent. and a longerand slightlywedge-shaped tail. It did not showthe conspicuouspale wing linings of the Sooty Shearwater (Fig. 1). The bird circled rapidly, first low over the water and then wheeling high overthe rocky islet,before return- ing to its scrapeamong the gulls and terns.
    [Show full text]