String Theory in the Early Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												Arxiv:0711.0760V3 [Hep-Th]
DBI N-flation John Ward1 Department of Physics and Astronomy, University of Victoria, Victoria BC, V8P 1A1, Canada Abstract We investigate DBI inflation using N multiple branes and show how the configuration is equivalent to a single wrapped D5-brane with flux. We then show how 1/N corrections can be implemented, and we examine the sound speed and levels of non-Gaussianities in two distinct cases. For models with constant warping we find that the non-Gaussian amplitude is bounded from above (as a function of γ). For AdS backgrounds we find that the signature is generally large and positive, although is no longer globally defined over the full phase space. We then investigate an inflationary mechanism using a representation cascade, whereby the transition from a reducible representation to the irrep drives inflation. arXiv:0711.0760v3 [hep-th] 26 Nov 2007 [email protected] 1 Introduction In the absence of any direct test of string theory, cosmology remains the best laboratory with which to test string theoretic models [1]. Over the past few years we have witnessed cosmology become a precision science, with COBE, WMAP and SDSS [2] providing crucial support for the flatness of the universe, the existence of dark energy and for a period of cosmic inflation. Whilst the dark energy puzzle remains an outstanding problem for theoretical physics in general [3], inflation has been a carefully developed paradigm with many explicit models. Unfortunately as far as inflationary model building is concerned, there are still many problems to be resolved. Particularly since many of the models suffer from super-Planckian VEV’s for the inflaton field [1], and therefore find themselves in a region where quantum gravity effects are non-negligible. - 
												
												The Top Yukawa Coupling from 10D Supergravity with E8 × E8 Matter
hep-th/9804107 ITEP-98-11 The top Yukawa coupling from 10D supergravity with E E matter 8 × 8 K.Zyablyuk1 Institute of Theoretical and Experimental Physics, Moscow Abstract We consider the compactification of N=1, D=10 supergravity with E E Yang- 8 × 8 Mills matter to N=1, D=4 model with 3 generations. With help of embedding SU(5) → SO(10) E E we find the value of the top Yukawa coupling λ = 16πα =3 → 6 → 8 t GUT at the GUT scale. p 1 Introduction Although superstring theories have great success and today are the best candidates for a quantum theory unifying all interactions, they still do not predict any experimentally testable value, mostly because there is no unambiguous procedure of compactification of extra spatial dimensions. On the other hand, many phenomenological models based on the unification group SO(10) were constructed (for instance [1]). They describe quarks and leptons in representa- tions 161,162,163 and Higgses, responsible for SU(2) breaking, in 10. Basic assumption of these models is that there is only one Yukawa coupling 163 10 163 at the GUT scale, which gives masses of third generation. Masses of first two families· and· mixings are generated due to the interaction with additional superheavy ( MGUT ) states in 16 + 16, 45, 54. Such models explain generation mass hierarchy and allow∼ to express all Yukawa matrices, which well fit into experimentally observable pattern, in terms of few unknown parameters. Models of [1] are unlikely derivable from ”more fundamental” theory like supergrav- ity/string. Nevertheless, something similar can be constructed from D=10 supergravity coupled to E8 E8 matter, which is low-energy limit of heterotic string [2]. - 
												
												Is There Eternal Inflation in the Cosmic Landscape ?
Is there eternal inflation in the cosmic landscape ? Henry Tye Cornell University hep-th/0611148 ArXiv:0708.4374 [hep-th] with Qing-Guo Huang, ArXiv:0803.0663 [hep-th] with Dan Wohns and Yang Zhang, ArXiv:0811.3753 [hep-th] IPMU, 04/01/09 Expansion of the universe k ρm ρr H2 =Λ+ + + a2 a3 a4 • a(t) = the cosmic scale factor ~ size of universe • H = Hubble constant =(da/dt)/a • Λ = dark energy ~ cosmological constant ~ effective potential • k = curvature • ρm = matter density at initial time • ρr = radiation density at initial time • H = constant ⇒ a = eHt Inflation BRIEF ARTICLE THE AUTHOR 1 (1) d = s(Λc)/ξ +1 ∼ ∼ 1 ∼ −1/4 (2) ξ s(Λs) Λs ms (3) d>60 BRIEF ARTICLE (4) T (n) " T0/n THE AUTHOR 4 (5) Γ = msT (6) n ∼ 1/Hs 1 Eternal Inflation Ht 3 3Ht (7) (1) a(t) " e → V = a(t) " e τ > 1/H Suppose the universe is sitting at a local minimum, with a ln L (2)lifetime longer than the Hubble lntime:g ∼− L = −e Then the number of Hubble patches will increase −Si (3) exponentially. Even after some Hubble patchesαi have∼ e decayed, there would be many remaining Hubble patches (4) that continue to inflate. |βij| < αi (5) Eternal inflation impliesφi = thatϕi/f i somewhere in the universe (outside our horizon),d −1 (6) Γt ∼ n Γ0 inflation is still happening today. T (A → B)T (B → C) (7) T (A → C)= ∼ T0/2 T (A → B)+T (B → C) −S (8) ΓA→B = ΓB→C = Γ0 ∼ e 2 (9) ΓA→C ∼ ΓA→BΓB→C = Γ0 1 1 2 (10) tA→C = tA→B + tB→C = + ∼ → → 1 ΓA B ΓB C Γ0 Γ0 (11) Γ → = A C 2 −S (12) Γ(1) = Γ0 ∼ e − (13) Γ(2) ∼ e 2S − (14) Γ(2) ∼ e S − (15) Γ(n) ∼ e S (16) +H2φ2 2 2 (17) H = U/3MP 1 Flux compactification in Type II string theory where all moduli of the 6-dim. - 
												
												Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. - 
												
												Arxiv:1805.06347V1 [Hep-Th] 16 May 2018 Sa Rte O H Rvt Eerhfudto 08Awar 2018 Foundation Research Gravity the for Written Essay Result
Maximal supergravity and the quest for finiteness 1 2 3 Sudarshan Ananth† , Lars Brink∗ and Sucheta Majumdar† † Indian Institute of Science Education and Research Pune 411008, India ∗ Department of Physics, Chalmers University of Technology S-41296 G¨oteborg, Sweden and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences Nanyang Technological University, Singapore 637371 March 28, 2018 Abstract We show that N = 8 supergravity may possess an even larger symmetry than previously believed. Such an enhanced symmetry is needed to explain why this theory of gravity exhibits ultraviolet behavior reminiscent of the finite N = 4 Yang-Mills theory. We describe a series of three steps that leads us to this result. arXiv:1805.06347v1 [hep-th] 16 May 2018 Essay written for the Gravity Research Foundation 2018 Awards for Essays on Gravitation 1Corresponding author, [email protected] [email protected] [email protected] Quantum Field Theory describes three of the four fundamental forces in Nature with great precision. However, when attempts have been made to use it to describe the force of gravity, the resulting field theories, are without exception, ultraviolet divergent and non- renormalizable. One striking aspect of supersymmetry is that it greatly reduces the diver- gent nature of quantum field theories. Accordingly, supergravity theories have less severe ultraviolet divergences. Maximal supergravity in four dimensions, N = 8 supergravity [1], has the best ultraviolet properties of any field theory of gravity with two derivative couplings. Much of this can be traced back to its three symmetries: Poincar´esymmetry, maximal supersymmetry and an exceptional E7(7) symmetry. - 
												
												Introduction to String Theory A.N
Introduction to String Theory A.N. Schellekens Based on lectures given at the Radboud Universiteit, Nijmegen Last update 6 July 2016 [Word cloud by www.worldle.net] Contents 1 Current Problems in Particle Physics7 1.1 Problems of Quantum Gravity.........................9 1.2 String Diagrams................................. 11 2 Bosonic String Action 15 2.1 The Relativistic Point Particle......................... 15 2.2 The Nambu-Goto action............................ 16 2.3 The Free Boson Action............................. 16 2.4 World sheet versus Space-time......................... 18 2.5 Symmetries................................... 19 2.6 Conformal Gauge................................ 20 2.7 The Equations of Motion............................ 21 2.8 Conformal Invariance.............................. 22 3 String Spectra 24 3.1 Mode Expansion................................ 24 3.1.1 Closed Strings.............................. 24 3.1.2 Open String Boundary Conditions................... 25 3.1.3 Open String Mode Expansion..................... 26 3.1.4 Open versus Closed........................... 26 3.2 Quantization.................................. 26 3.3 Negative Norm States............................. 27 3.4 Constraints................................... 28 3.5 Mode Expansion of the Constraints...................... 28 3.6 The Virasoro Constraints............................ 29 3.7 Operator Ordering............................... 30 3.8 Commutators of Constraints.......................... 31 3.9 Computation of the Central Charge..................... - 
												
												S-Duality-And-M5-Mit
N . More on = 2 S-dualities and M5-branes .. Yuji Tachikawa based on works in collaboration with L. F. Alday, B. Wecht, F. Benini, S. Benvenuti, D. Gaiotto November 2009 Yuji Tachikawa (IAS) November 2009 1 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 2 / 47 Montonen-Olive duality • N = 4 SU(N) SYM at coupling τ = θ=(2π) + (4πi)=g2 equivalent to the same theory coupling τ 0 = −1/τ • One way to ‘understand’ it: start from 6d N = (2; 0) theory, i.e. the theory on N M5-branes, put on a torus −1/τ τ 0 1 0 1 • Low energy physics depends only on the complex structure S-duality! Yuji Tachikawa (IAS) November 2009 3 / 47 S-dualities in N = 2 theories • You can wrap N M5-branes on a more general Riemann surface, possibly with punctures, to get N = 2 superconformal field theories • Different limits of the shape of the Riemann surface gives different weakly-coupled descriptions, giving S-dualities among them • Anticipated by [Witten,9703166], but not well-appreciated until [Gaiotto,0904.2715] Yuji Tachikawa (IAS) November 2009 4 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 5 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 6 / 47 S-duality in N = 2 . SU(2) with Nf = 4 . - 
												
												The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions
[PDF] The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions Shing-Tung Yau, Steve Nadis - download pdf free book The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions PDF, The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions Download PDF, Read Online The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions E-Books, Read The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions Full Collection Shing-Tung Yau, Steve Nadis, I Was So Mad The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions Shing- Tung Yau, Steve Nadis Ebook Download, PDF The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions Free Download, Read Online The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions Ebook Popular, online free The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions, Download Online The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions Book, Download PDF The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions, Download pdf The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions, Read Best Book Online The Shape Of Inner Space: String Theory And The Geometry Of The Universe's Hidden Dimensions, Read Online The - 
												
												Observational Cosmology - 30H Course 218.163.109.230 Et Al
Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity. - 
												
												E 8 in N= 8 Supergravity in Four Dimensions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Chalmers Research E 8 in N= 8 supergravity in four dimensions Downloaded from: https://research.chalmers.se, 2019-05-11 18:56 UTC Citation for the original published paper (version of record): Ananth, S., Brink, L., Majumdar, S. (2018) E 8 in N= 8 supergravity in four dimensions Journal of High Energy Physics, 2018(1) http://dx.doi.org/10.1007/JHEP01(2018)024 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) Published for SISSA by Springer Received: November 30, 2017 Accepted: December 23, 2017 Published: January 8, 2018 E8 in N = 8 supergravity in four dimensions Sudarshan Ananth,a Lars Brinkb,c and Sucheta Majumdara aIndian Institute of Science Education and Research, Pune 411008, India bDepartment of Physics, Chalmers University of Technology, S-41296 G¨oteborg, Sweden cDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore E-mail: [email protected], [email protected], [email protected] Abstract: We argue that = 8 supergravity in four dimensions exhibits an exceptional N E8(8) symmetry, enhanced from the known E7(7) invariance. Our procedure to demonstrate this involves dimensional reduction of the = 8 theory to d = 3, a field redefinition to N render the E8(8) invariance manifest, followed by dimensional oxidation back to d = 4. - 
												
												String Theory, Einstein, and the Identity of Physics: Theory Assessment in Absence of the Empirical
String theory, Einstein, and the identity of physics: Theory assessment in absence of the empirical Jeroen van Dongen Institute for Theoretical Physics Vossius Center for History of the Humanities and Sciences University of Amsterdam, Amsterdam, The Netherlands Abstract String theorists are certain that they are practicing physicists. Yet, some of their recent critics deny this. This paper argues that this conflict is really about who holds authority in making rational judgment in theoretical physics. At bottom, the conflict centers on the question: who is a proper physicist? To illustrate and understand the differing opinions about proper practice and identity, we discuss different appreciations of epistemic virtues and explanation among string theorists and their critics, and how these have been sourced in accounts of Einstein’s biography. Just as Einstein is claimed by both sides, historiography offers examples of both successful and unsuccessful non-empirical science. History of science also teaches that times of conflict are often times of innovation, in which novel scholarly identities may come into being. At the same time, since the contributions of Thomas Kuhn historians have developed a critical attitude towards formal attempts and methodological recipes for epistemic demarcation and justification of scientific practice. These are now, however, being considered in the debate on non-empirical physics. Introduction Theoretical high energy physics is in crisis. Many physicists may wish to deny this, but it is richly illustrated by the heated exchanges, charged manifestos and exclamations of despair in highly visible publications. For example, three prominent cosmologists, Anna Ijjas, Paul Steinhardt and Abraham Loeb, argued in the February 2017 issue of Scientific American that the long favoured model for the early universe, inflationary cosmology, has no data to support it and has gone through so many patch-ups that it is now beyond testability. - 
												
												CHINA and LATIN AMERICA Economic and Trade Cooperation in the Next 10 Years
Advance Information CHINA AND LATIN AMERICA Economic and Trade Cooperation in the Next 10 Years By Zhenxing Su (China Academy of Social Sciences, China) Translated by Hongling Zhao (Beijing Institute of Technology, China) Key Features: Pub Date: May 2017 • Features solid argumentation and substantial evidences Binding: Hardcover • Contains historical materials, analyses current situation and predicts the future trends ISBN: 978-981-3202-28-3 of relationship between China and Latin America Price: £123 Description: Page Extent: 500pp The international financial crisis in 2008 marked the beginning of important changes in the international economic system. The emerging market economies are increasingly Type: Monograph becoming a driving force for the global economic growth. Under such circumstances, the Main Subject: Asian Studies Sino–Latin American economic and trade cooperation has entered a new period of historical Sub-subjects: China Studies; opportunity. Based on the economic development trend and the adjustment of policy, this Asian Economies; Asian Politics/ book explores the prospect for Sino–Latin American economic and trade cooperation. It Society; International Relations; tracks the development path for this cooperation in the next 10 years by analyzing resource International Economics; General endowment, industrial structure, economic system, development pattern, basic economic Economics; Developmental policy, economic environment, economic and trade relations between China and Latin Economics America. BIC: KCLT Author: BISAC: BUS069020; POL011020; Su Zhenxing studied Russian in the Beijing Foreign Language College for one year from 1959 POL024000 to 1960. From 1960 to 1964, he studied Spanish at the department of western languages and Keywords: China; Latin America; literature in Peking University. He is a Researcher and PhD student advisor at the Institute of Economic Cooperation; Trade Latin American Studies of the Chinese Academy of Social Sciences.