Aciduliprofundum Boonei’’, a Cultivated Obligate Thermoacidophilic Euryarchaeote from Deep-Sea Hydrothermal Vents

Total Page:16

File Type:pdf, Size:1020Kb

Aciduliprofundum Boonei’’, a Cultivated Obligate Thermoacidophilic Euryarchaeote from Deep-Sea Hydrothermal Vents Extremophiles (2008) 12:119–124 DOI 10.1007/s00792-007-0111-0 ORIGINAL PAPER Tetraether membrane lipids of Candidatus ‘‘Aciduliprofundum boonei’’, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents Stefan Schouten Æ Marianne Baas Æ Ellen C. Hopmans Æ Anna-Louise Reysenbach Æ Jaap S. Sinninghe Damste´ Received: 11 June 2007 / Accepted: 28 August 2007 / Published online: 28 September 2007 Ó Springer 2007 Abstract The lipid composition of Candidatus ‘‘Acidu- vents contain ecosystems, which are predominantly fueled liprofundum boonei’’, the only cultivated representative of by geochemical energy and are host to many newly archaea falling in the DHVE2 phylogenetic cluster, a group described free-living microbes, which are often associated of microorganisms ubiquitously occurring at hydrothermal with actively venting porous deep-sea vent deposits or vents, was studied. The predominant core membrane lipids ‘‘chimneys’’. The steep chemical and thermal gradients in this thermophilic euryarchaeote were found to be com- within the walls of these deposits provide a wide range of posed of glycerol dibiphytanyl glycerol tetraethers microhabitats for microorganisms with suitable conditions (GDGTs) containing 0–4 cyclopentyl moieties. In addition, for aerobic and anaerobic thermophiles and mesophiles GDGTs with an additional covalent bond between the (e.g. McCollom and Schock 1997). Indeed, both culture- isoprenoid hydrocarbon chains, so-called H-shaped dependent and -independent approaches have exposed a GDGTs, were present. The latter core lipids have been vast diversity of Bacteria and Archaea associated with rarely reported previously. Intact polar lipid analysis deep-sea vent deposits (e.g. Reysenbach and Shock 2002; revealed that they predominantly consist of GDGTs with a Schrenk et al. 2003). Numerous Archaea have been iso- phospho-glycerol headgroup. lated from these deposits but few of these are found in environmental 16S rRNA gene clone libraries and most Keywords Aciduliprofundum boonei Á DHVE2 cluster Á detected environmental clones in these environments have Glycerol dialkyl glycerol tetraethers Á Thermoacidophile no representatives available in pure culture. In particular, one archaeal lineage is widespread at deep- sea vents, namely the ‘‘deep-sea hydrothermal vent eury- Introduction archaeotic’’ lineage DHVE2, and is frequently associated with actively venting sulphide deposits (e.g. Nercessian Deep-sea hydrothermal vents are unique environments, et al. 2003; Hoek et al. 2003; Reysenbach and Shock 2002; which are thought to represent models for both the origin of Takai et al. 1999, 2001). In some cases it has been reported life on Earth and exploration of life on other planets. These as the most dominant clone type in archaeal clone libraries (Hoek et al. 2003), yet the physiology of these organisms was unclear. Recently, Reysenbach et al. (2006) isolated Communicated by J. N. Reeve. and cultivated a member of the DHVE2 phylogenetic DHVE2 cluster, Candidatus ‘‘Aciduliprofundum boonei’’, & S. Schouten ( ) Á M. Baas Á E. C. Hopmans Á J. S. S. Damste´ and showed it to be an obligate thermoacidophilic sulphur Department of Marine Biogeochemistry and Toxicology, Royal Netherlands Institute for Sea Research, PO Box 59, and iron reducing heterotroph capable of growing from 1790 AB Den Burg, Texel, The Netherlands pH 3.3 to 5.8 and between 60 and 75°C. This provided the e-mail: [email protected] first evidence that thermoacidophiles may be key players in sulphur and iron cycling at deep-sea vents. A.-L. Reysenbach Department of Biology, Portland State University, Portland, Archaea are not only unique in their 16S rRNA phylo- OR 97201, USA genetic position in the tree of life, but also synthesize 123 120 Extremophiles (2008) 12:119–124 specific membrane lipids. Analysis of cultivated hyper- Materials and methods thermophilic Archaea showed that their membrane is predominantly composed of isoprenoid glycerol dib- Culture conditions iphytanyl glycerol tetraethers (GDGTs) with additional cyclopentyl moieties (e.g. Structures I–VI in Fig. 1). The Aciduliprofundum boonei was grown as previously structural differences from diacyl membrane lipids of non- described (Reysenbach et al. 2006). Cells were harvested at thermophilic Eukarya and Bacteria, i.e. ether bonds and the late log phase of growth. Cell pellets were freeze-dried and formation of a monolayer rather than a bilayer, have been stored frozen until analysis. suggested to contribute to the stability of membranes of hyperthermophiles at high temperatures and low pH (e.g. De Rosa and Gambacorta 1988; van den Vossenberg et al. Core lipid analysis 1998; Macalady et al. 2004). This suggests that members of the DHVE2 cluster may be also synthesizing GDGT Cell material (74 mg dry weight) of A. boonei was membrane lipids. Therefore, in this study we analyzed the hydrolyzed by refluxing in ca. 4 ml 1 M KOH in methanol lipid composition of the only cultivated representative of for 1 h. The pH of the hydrolyzed extract was adjusted to DHVE2, Aciduliprofundum boonei, and examined both the pH 3 using 2 M HCl/methanol (MeOH) 1/1 (v/v) and core GDGT lipid composition as well as its intact polar transferred to a separatory funnel. The residual cell mate- lipid composition. rial was washed subsequently with 2 ml MeOH/water Fig. 1 HPLC/APCI/MS base II peak chromatogram of GDGT core lipids in extract released after base hydrolysis (using KOH/methanol mixture) of the cell material of Candidatus ‘‘Aciduliprofundum boonei’’. iy [M+H]+ 1300 Inset shows the atmospheric tnst 100 i c pressure chemical ionization e a 80 d n mass spectrum of GDGT VII. u b 60 ltiven A e Note that the position of the e vn Ra 40 a covalent bond between the lie Re t 20 isoprenoid hydrocarbon chains 1282 1226 in GDGTs VII–XI is tentative 0 (Morii et al. 1998) 900 1000 1100 1200 1300 1400 III m/z IV VI V VII I VIII IX X XI Relative retention time HO HO O O I O O O O O VII O HO OH OH HO O O O O II O O OH HO VIII O O O HO OH O III O O O IX O O OH HO O O HO OH IV O O O O X O O HO OH HO O O O OH V O O XI O O O HO OH O VI O OH O O O OH 123 Extremophiles (2008) 12:119–124 121 1/1 (v/v), MeOH and dichloromethane (DCM, three times). chromatography manager software. Separation was The washings and 6 ml bidistilled water were added to the achieved on a Prevail Cyano column (2.1 · 150 mm, separatory funnel, which was shaken vigorously. The DCM 3 lm; Alltech, Deerfield, IL, USA), maintained at 30°C. layer was removed and the residual water/MeOH layer was Injection volumes were 10 ll. GDGTs were eluted iso- re-extracted two times using DCM. The combined DCM cratically with 99% A and 1% B for 5 min, followed by a layers were dried using a sodium sulfate column to yield linear gradient to 1.8% B in 45 min, where A = hexane and the hydrolyzed extract. The extract released upon hydro- B = isopropanol. Flow rate was 0.2 ml/min. After each lysis was condensed by rotary evaporation. Elemental analysis the column was cleaned by back-flushing hexane/ sulphur was removed with activated Cu. The extract was isopropanol (90:10, v/v) at 0.2 ml/min for 10 min. Detec- methylated by diazomethane and filtered over a silicagel tion was achieved using atmospheric pressure positive ion column using ethyl acetate. One aliquot of the eluate was chemical ionization mass spectrometry (APCI-MS) of the silylated using BSTFA (with 1% TMCS) in pyridine (1/1, eluent. Conditions for the HP 1100 APCI-MSD SL were as v/v) for 20 min at 60°C and subsequently analyzed by gas follows: nebulizer pressure 60 psi, vaporizer temperature chromatography (GC) and GC/mass spectrometry (GC/ 400°C, drying gas (N2) flow 6 l/min and temperature MS). Another aliquot of the eluate was dissolved in hex- 200°C, capillary voltage –3 kV, corona 5 lA(*3.2 kV). ane/isopropanol (99:1, v/v), ultrasonicated and filtered GDGTs were detected by mass scanning from m/z 950– using a PTFE 0.45-lm filter prior to analysis for GDGTs 1,450. on the high performance liquid chromatography (HPLC)/ MS. Part of the GDGT fraction was hydrogenated by dis- Intact polar lipid analysis solving it in ethyl acetate, adding a small amount of PtO2 and a drop of acetic acid and bubbling hydrogen for 1 h. For analysis of the intact polar lipids, cell material of Subsequently, the solution was stirred overnight and fil- A. boonei were extracted using a modified Bligh–Dyer tered over a small pipette column containing Na2CO3 (top) procedure (Bligh and Dyer 1959). To an aliquot of the cell and MgSO4 (bottom). Ethyl acetate was evaporated and the material, a solvent mixture of phosphate-buffer (0.05 M, hydrogenated GDGT fraction was dissolved in hexane/ pH 7.4)/MeOH/DCM 0.8/2/1 (v/v) was added. The mixture isopropanol (99:1, v/v), ultrasonicated and analyzed using was sonicated for 10 min after which DCM and phosphate HPLC/MS. buffer were added to a volume ratio of 0.9/l/1. After cen- A second aliquot of the GDGT fraction was separated trifuging (2,500 rpm, 5 min) the DCM layer was collected. using HPLC with a preparative device (Foxy jr) and the The residue was re-extracted twice following the same fractions collected were analyzed by flow injection analysis procedure. The combined DCM layers were concentrated mass spectrometry (Smittenberg et al. 2002). The fractions by evaporating solvent under a N2 stream, dried with containing the unusual GDGT (see text below) were Na2SO4 and the solvent was removed under a N2 stream.
Recommended publications
  • Diversity of Understudied Archaeal and Bacterial Populations of Yellowstone National Park: from Genes to Genomes Daniel Colman
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 7-1-2015 Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes Daniel Colman Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Colman, Daniel. "Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes." (2015). https://digitalrepository.unm.edu/biol_etds/18 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Daniel Robert Colman Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Cristina Takacs-Vesbach , Chairperson Robert Sinsabaugh Laura Crossey Diana Northup i Diversity of understudied archaeal and bacterial populations from Yellowstone National Park: from genes to genomes by Daniel Robert Colman B.S. Biology, University of New Mexico, 2009 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2015 ii DEDICATION I would like to dedicate this dissertation to my late grandfather, Kenneth Leo Colman, associate professor of Animal Science in the Wool laboratory at Montana State University, who even very near the end of his earthly tenure, thought it pertinent to quiz my knowledge of oxidized nitrogen compounds. He was a man of great curiosity about the natural world, and to whom I owe an acknowledgement for his legacy of intellectual (and actual) wanderlust.
    [Show full text]
  • Intra-Field Variation of Prokaryotic Communities on and Below the Seafloor 24 in the Back-Arc Hydrothermal System of the Southern Mariana Trough
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Intra-Field Variation of Prokaryotic Communities On and Below the Seafloor 24 in the Back-Arc Hydrothermal System of the Southern Mariana Trough Shingo Kato, Moriya Ohkuma, and Akihiko Yamagishi Abstract Deep-sea hydrothermal vents harbor diverse prokaryotes. There are a variety of habitat types in a deep-sea hydrothermal field, e.g., active and inactive chimneys, iron-rich mats, venting fluid and hydrothermal plume. Numerous studies have shown the diversity and composition of prokaryotic communities in individual habitats. However, it is still unclear whether and how the characteristics of prokaryotic communities in their respective habitats are different. Previously, we reported 16S rRNA genes in a variety of habitats, i.e., hydrothermally active and inactive chimneys, iron-rich mats, a vent fluid, crustal fluids from boreholes, as well as ambient seawater in a back-arc basin hydrothermal field of the Southern Mariana Trough. Here we summarize the prokaryotic communities in the col- lected samples at higher taxonomic resolution (up to family level) using the detected 16S rRNA gene sequences and compare them using recently developed bioinformatics tools. The comparative analysis clearly highlights differences in prokaryotic communities among the habitat types on and below the seafloor in the Southern Mariana Trough. Furthermore, descriptions of cultured species and environmental clones close to the detected sequences provide valuable information for understanding of their distribution and potential of ecological roles in deep-sea hydrothermal fields. Keywords 16S rRNA gene Archaea Back-arc basin Bacteria Chemosynthetic ecosystem Deep- sea hydrothermal vents Prokaryotic community 24.1 Introduction The online version of this chapter (doi:10.1007/978-4-431-54865-2_24) Deep-sea hydrothermal vents are oases for organisms on the contains supplementary material, which is available to authorized users.
    [Show full text]
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • Deep-Sea Hydrothermal Vent Euryarchaeota 2”
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL RESEARCH ARTICLE published: 20 February 2012provided by PubMed Central doi: 10.3389/fmicb.2012.00047 Distribution, abundance, and diversity patterns of the thermoacidophilic “deep-sea hydrothermal vent euryarchaeota 2” Gilberto E. Flores†, Isaac D. Wagner,Yitai Liu and Anna-Louise Reysenbach* Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, USA Edited by: Cultivation-independent studies have shown that taxa belonging to the “deep-sea Kirsten Silvia Habicht, University of hydrothermal vent euryarchaeota 2” (DHVE2) lineage are widespread at deep-sea Southern Denmark, Denmark hydrothermal vents. While this lineage appears to be a common and important mem- Reviewed by: Kuk-Jeong Chin, Georgia State ber of the microbial community at vent environments, relatively little is known about their University, USA overall distribution and phylogenetic diversity. In this study, we examined the distribu- Elizaveta Bonch-Osmolovskyaya, tion, relative abundance, co-occurrence patterns, and phylogenetic diversity of cultivable Winogradsky Institute of Microbiology thermoacidophilic DHVE2 in deposits from globally distributed vent fields. Results of quan- Russian Academy of Sciences, Russia titative polymerase chain reaction assays with primers specific for the DHVE2 and Archaea *Correspondence: Anna-Louise Reysenbach, demonstrate the ubiquity of the DHVE2 at deep-sea vents and suggest that they are sig- Department of Biology, Center for nificant members of the archaeal communities of established vent deposit communities. Life in Extreme Environments, Local similarity analysis of pyrosequencing data revealed that the distribution of the DHVE2 Portland State University, PO Box was positively correlated with 10 other Euryarchaeota phylotypes and negatively correlated 751, Portland, OR 97207-0751, USA.
    [Show full text]
  • Pan-Genome Analysis and Ancestral State Reconstruction Of
    www.nature.com/scientificreports OPEN Pan‑genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super‑order Sonam Gaba1,2, Abha Kumari2, Marnix Medema 3 & Rajeev Kaushik1* Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan‑genome analysis of class Halobacteria was done to explore the core (300) and variable components (Softcore: 998, Cloud:36531, Shell:11784). The core component revealed genes of replication, transcription, translation and repair, whereas the variable component had a major portion of environmental information processing. The pan‑gene matrix was mapped onto the core‑gene tree to fnd the ancestral (44.8%) and derived genes (55.1%) of the Last Common Ancestor of Halobacteria. A High percentage of derived genes along with presence of transformation and conjugation genes indicate the occurrence of horizontal gene transfer during the evolution of Halobacteria. A Core and pan‑gene tree were also constructed to infer a phylogeny which implicated on the new super‑order comprising of Natrialbales and Halobacteriales. Halobacteria1,2 is a class of phylum Euryarchaeota3 consisting of extremely halophilic archaea found till date and contains three orders namely Halobacteriales4,5 Haloferacales5 and Natrialbales5. Tese microorganisms are able to dwell at wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl6. Halobacteria, as the name suggests were once considered a part of a domain "Bacteria" but with the discovery of the third domain "Archaea" by Carl Woese et al.7, it became part of Archaea.
    [Show full text]
  • Phylogeny and Taxonomy of Archaea: a Comparison of the Whole-Genome-Based Cvtree Approach with 16S Rrna Sequence Analysis
    Life 2015, 5, 949-968; doi:10.3390/life5010949 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis Guanghong Zuo 1, Zhao Xu 2 and Bailin Hao 1;* 1 T-Life Research Center and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; E-Mail: [email protected] 2 Thermo Fisher Scientific, 200 Oyster Point Blvd, South San Francisco, CA 94080, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-21-6565-2305. Academic Editors: Roger A. Garrett, Hans-Peter Klenk and Michael W. W. Adams Received: 9 December 2014 / Accepted: 9 March 2015 / Published: 17 March 2015 Abstract: A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1) the whole-genome-based and alignment-free CVTree using 179 genomes; (2) the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3) the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation.
    [Show full text]
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Calditol-Linked Membrane Lipids Are Required for Acid Tolerance in Sulfolobus Acidocaldarius
    Calditol-linked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius Zhirui Zenga,1, Xiao-Lei Liub,1, Jeremy H. Weia, Roger E. Summonsc, and Paula V. Welandera,2 aDepartment of Earth System Science, Stanford University, Stanford, CA 94305; bDepartment of Geology and Geophysics, University of Oklahoma, Norman, OK 73019; and cDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Katherine H. Freeman, Pennsylvania State University, University Park, PA, and approved November 7, 2018 (received for review August 14, 2018) Archaea have many unique physiological features of which the lipid and sea-surface temperatures in the Mesozoic and early Cenozoic, composition of their cellular membranes is the most striking. and the geologic history of archaea in ancient sediments (13, 14). Archaeal ether-linked isoprenoidal membranes can occur as bilayers However, deciphering the evolutionary implications of archaeal or monolayers, possess diverse polar head groups, and a multiplicity lipid biosynthesis, as well as being able to properly interpret ar- of ring structures in the isoprenoidal cores. These lipid structures chaeal lipid biomarkers, requires a full understanding of the are proposed to provide protection from the extreme temperature, biosynthetic pathways and the physiological roles of these various pH, salinity, and nutrient-starved conditions that many archaea structures in extant archaea. inhabit. However, many questions remain regarding the synthesis Studies of archaeal membrane lipid synthesis have revealed and physiological role of some of the more complex archaeal lipids. distinct proteins and biochemical reactions, but several open In this study, we identify a radical S-adenosylmethionine (SAM) questions remain (4, 15).
    [Show full text]
  • Diversity of Archaea Domain in Cuatro Cienegas Basin: Archaean Domes
    bioRxiv preprint doi: https://doi.org/10.1101/766709; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Diversity of Archaea Domain in Cuatro Cienegas Basin: Archaean Domes 2 3 Medina-Chávez Nahui Olin1, Viladomat-Jasso Mariette2, Olmedo-Álvarez Gabriela3, Eguiarte Luis 4 E2, Souza Valeria2, De la Torre-Zavala Susana1,4 5 6 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de 7 Biotecnología. Av. Pedro de Alba S/N Ciudad Universitaria. San Nicolás de los Garza, Nuevo León, 8 México. C.P. 66455. 9 2Instituto de Ecología, UNAM, Circuito Exterior S/N anexo Jardín Botánico exterior. Ciudad 10 Universitaria, Ciudad de México, C.P. 04500 11 3Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. 12 Campus Guanajuato, AP 629 Irapuato, Guanajuato 36500, México 13 14 4Correspondence should be addressed to Susana De la Torre-Zavala; 15 [email protected]. 16 17 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/766709; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 Herein we describe the Archaea diversity in a shallow pond in the Cuatro Ciénegas Basin (CCB), 25 Northeast Mexico, with fluctuating hypersaline conditions containing elastic microbial mats that 26 can form small domes where their anoxic inside reminds us of the characteristics of the Archaean 27 Eon, rich in methane and sulfur gases; thus, we named this site the Archaean Domes (AD).
    [Show full text]
  • 4 Metabolic and Taxonomic Diversification in Continental Magmatic Hydrothermal Systems
    Maximiliano J. Amenabar, Matthew R. Urschel, and Eric S. Boyd 4 Metabolic and taxonomic diversification in continental magmatic hydrothermal systems 4.1 Introduction Hydrothermal systems integrate geological processes from the deep crust to the Earth’s surface yielding an extensive array of spring types with an extraordinary diversity of geochemical compositions. Such geochemical diversity selects for unique metabolic properties expressed through novel enzymes and functional characteristics that are tailored to the specific conditions of their local environment. This dynamic interaction between geochemical variation and biology has played out over evolu- tionary time to engender tightly coupled and efficient biogeochemical cycles. The timescales by which these evolutionary events took place, however, are typically in- accessible for direct observation. This inaccessibility impedes experimentation aimed at understanding the causative principles of linked biological and geological change unless alternative approaches are used. A successful approach that is commonly used in geological studies involves comparative analysis of spatial variations to test ideas about temporal changes that occur over inaccessible (i.e. geological) timescales. The same approach can be used to examine the links between biology and environment with the aim of reconstructing the sequence of evolutionary events that resulted in the diversity of organisms that inhabit modern day hydrothermal environments and the mechanisms by which this sequence of events occurred. By combining molecu- lar biological and geochemical analyses with robust phylogenetic frameworks using approaches commonly referred to as phylogenetic ecology [1, 2], it is now possible to take advantage of variation within the present – the distribution of biodiversity and metabolic strategies across geochemical gradients – to recognize the extent of diversity and the reasons that it exists.
    [Show full text]
  • An Integrated Study Reveals Diverse Methanogens, Thaumarchaeota, and Yet-Uncultivated Archaeal Lineages in Armenian Hot Springs
    Antonie van Leeuwenhoek DOI 10.1007/s10482-013-9927-z ORIGINAL PAPER An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs Brian P. Hedlund • Jeremy A. Dodsworth • Jessica K. Cole • Hovik H. Panosyan Received: 27 February 2013 / Accepted: 20 April 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Culture-independent and enrichment tech- spring in Arzakan was colonized by a photosynthetic niques, with an emphasis on members of the Archaea, mat dominated by Cyanobacteria, in addition to were used to determine the composition and structure Proteobacteria, Bacteroidetes, Chloroflexi, Spiro- of microbial communities inhabiting microbial mats in chaeta and a diversity of other Bacteria. The spring the source pools of two geothermal springs near the in Jermuk was colonized by phylotypes related to towns of Arzakan and Jermuk in Armenia. Amplifi- sulfur, iron, and hydrogen chemolithotrophs in the cation of small-subunit rRNA genes using ‘‘universal’’ Betaproteobacteria and Epsilonproteobacteria, along primers followed by pyrosequencing (pyrotags) with a diversity of other Bacteria. Analysis of near revealed highly diverse microbial communities in full-length small subunit rRNA genes amplified using both springs, with [99 % of pyrosequences corre- Archaea-specific primers showed that both springs are sponding to members of the domain Bacteria. The inhabited by a diversity of methanogens, including Methanomicrobiales and Methanosarcinales and rel- atives of Methanomassiliicoccus luminyensis, close relatives of the ammonia-oxidizing archaeon (AOA) Electronic supplementary material The online version of ‘‘Candidatus Nitrososphaera gargensis’’, and the yet- this article (doi:10.1007/s10482-013-9927-z) contains supplementary material, which is available to authorized users.
    [Show full text]