Intra-Field Variation of Prokaryotic Communities on and Below the Seafloor 24 in the Back-Arc Hydrothermal System of the Southern Mariana Trough
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Great Oxidation Event Expanded the Genetic Repertoire of Arsenic Metabolism and Cycling
The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling Song-Can Chena,b,c,1, Guo-Xin Suna,1, Yu Yand, Konstantinos T. Konstantinidise,f, Si-Yu Zhange, Ye Denga, Xiao-Min Lia,c, Hui-Ling Cuia,c, Florin Musatb, Denny Poppg, Barry P. Rosenh,2, and Yong-Guan Zhua,i,2 aState Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; bDepartment of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany; cCollege of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China; dDepartment of Environmental Science and Engineering, Huaqiao University, 361021 Xiamen, China; eSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332; fSchool of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332; gDepartment of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany; hDepartment of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199; and iKey Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China Edited by Donald E. Canfield, Institute of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Odense M., Denmark, and approved March 20, 2020 (received for review January 25, 2020) The rise of oxygen on the early Earth about 2.4 billion years ago under an atmosphere with very low oxygen levels (<<0.001% reorganized the redox cycle of harmful metal(loids), including that compared with present atmospheric level) (9). -
Global Metagenomic Survey Reveals a New Bacterial Candidate Phylum in Geothermal Springs
ARTICLE Received 13 Aug 2015 | Accepted 7 Dec 2015 | Published 27 Jan 2016 DOI: 10.1038/ncomms10476 OPEN Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs Emiley A. Eloe-Fadrosh1, David Paez-Espino1, Jessica Jarett1, Peter F. Dunfield2, Brian P. Hedlund3, Anne E. Dekas4, Stephen E. Grasby5, Allyson L. Brady6, Hailiang Dong7, Brandon R. Briggs8, Wen-Jun Li9, Danielle Goudeau1, Rex Malmstrom1, Amrita Pati1, Jennifer Pett-Ridge4, Edward M. Rubin1,10, Tanja Woyke1, Nikos C. Kyrpides1 & Natalia N. Ivanova1 Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia’) found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot’ because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. 1 Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA. 2 Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada. -
Geomicrobiological Processes in Extreme Environments: a Review
202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments. -
The Phylogenetic Composition and Structure of Soil Microbial Communities Shifts in Response to Elevated Carbon Dioxide
The ISME Journal (2012) 6, 259–272 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide Zhili He1, Yvette Piceno2, Ye Deng1, Meiying Xu1,3, Zhenmei Lu1,4, Todd DeSantis2, Gary Andersen2, Sarah E Hobbie5, Peter B Reich6 and Jizhong Zhou1,2 1Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, USA; 2Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 3Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China; 4College of Life Sciences, Zhejiang University, Hangzhou, China; 5Department of Ecology, Evolution, and Behavior, St Paul, MN, USA and 6Department of Forest Resources, University of Minnesota, St Paul, MN, USA One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. -
Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
bioRxiv preprint first posted online Sep. 27, 2018; doi: http://dx.doi.org/10.1101/428698. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m. -
Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. -
Sulfide Mineralization in an Ultramafic-Rock Hosted Seafloor
Marine Geology 245 (2007) 20–39 www.elsevier.com/locate/margeo Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides ⁎ Ana Filipa A. Marques a,b, , Fernando J.A.S. Barriga a, Steven D. Scott b a CREMINER (LA/ISR), Universidade de Lisboa, Faculdade de Ciências, Departamento de Geologia, Edif. C6 Piso 4. 1749-016 Campo Grande, Lisboa, Portugal b Scotiabank Marine Geology Research Laboratory, Department of Geology, University of Toronto, 22 Russell St., Toronto, Canada M5S 3B1 Received 12 December 2006; received in revised form 2 May 2007; accepted 12 May 2007 Abstract The Rainbow vent field is an ultramafic rock-hosted seafloor hydrothermal system located on the Mid-Atlantic ridge issuing high temperature, acidic, metal-rich fluids. Hydrothermal products include Cu–Zn–(Co)-rich massive sulfides with characteristics comparable to those found in mafic volcanic-hosted massive sulfide deposits. Petrography, mineralogy and geochemistry of nonmineralized and mineralized rocks sampled in the Rainbow vent field indicate that serpentinized peridotites host the hydrothermal vent system but serpentinization reactions occurred prior to and independently of the sulfide mineralization event. The onset of sulfide mineralization is reflected by extensive textural and chemical transformations in the serpentine-group minerals that show clear signs of hydrothermal corrosion. Element remobilization is a recurrent process in the Rainbow vent field rocks and, during simple peridotite serpentinization, Ni and Cr present in olivine and pyroxene are incorporated in the pseudomorphic serpentine mesh and bastite, respectively. Ni is later remobilized from pseudomorphic serpentine into the newly formed sulfides as a result of extensive hydrothermal alteration. -
Aciduliprofundum Boonei’’, a Cultivated Obligate Thermoacidophilic Euryarchaeote from Deep-Sea Hydrothermal Vents
Extremophiles (2008) 12:119–124 DOI 10.1007/s00792-007-0111-0 ORIGINAL PAPER Tetraether membrane lipids of Candidatus ‘‘Aciduliprofundum boonei’’, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents Stefan Schouten Æ Marianne Baas Æ Ellen C. Hopmans Æ Anna-Louise Reysenbach Æ Jaap S. Sinninghe Damste´ Received: 11 June 2007 / Accepted: 28 August 2007 / Published online: 28 September 2007 Ó Springer 2007 Abstract The lipid composition of Candidatus ‘‘Acidu- vents contain ecosystems, which are predominantly fueled liprofundum boonei’’, the only cultivated representative of by geochemical energy and are host to many newly archaea falling in the DHVE2 phylogenetic cluster, a group described free-living microbes, which are often associated of microorganisms ubiquitously occurring at hydrothermal with actively venting porous deep-sea vent deposits or vents, was studied. The predominant core membrane lipids ‘‘chimneys’’. The steep chemical and thermal gradients in this thermophilic euryarchaeote were found to be com- within the walls of these deposits provide a wide range of posed of glycerol dibiphytanyl glycerol tetraethers microhabitats for microorganisms with suitable conditions (GDGTs) containing 0–4 cyclopentyl moieties. In addition, for aerobic and anaerobic thermophiles and mesophiles GDGTs with an additional covalent bond between the (e.g. McCollom and Schock 1997). Indeed, both culture- isoprenoid hydrocarbon chains, so-called H-shaped dependent and -independent approaches have exposed a GDGTs, were present. The latter core lipids have been vast diversity of Bacteria and Archaea associated with rarely reported previously. Intact polar lipid analysis deep-sea vent deposits (e.g. Reysenbach and Shock 2002; revealed that they predominantly consist of GDGTs with a Schrenk et al. -
The Phylogenetic Composition and Structure of Soil Microbial Communities Shifts in Response to Elevated Carbon Dioxide
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Minnesota Digital Conservancy The ISME Journal (2012) 6, 259–272 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide Zhili He1, Yvette Piceno2, Ye Deng1, Meiying Xu1,3, Zhenmei Lu1,4, Todd DeSantis2, Gary Andersen2, Sarah E Hobbie5, Peter B Reich6 and Jizhong Zhou1,2 1Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, USA; 2Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 3Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China; 4College of Life Sciences, Zhejiang University, Hangzhou, China; 5Department of Ecology, Evolution, and Behavior, St Paul, MN, USA and 6Department of Forest Resources, University of Minnesota, St Paul, MN, USA One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. -
Phylogeny and Taxonomy of Archaea: a Comparison of the Whole-Genome-Based Cvtree Approach with 16S Rrna Sequence Analysis
Life 2015, 5, 949-968; doi:10.3390/life5010949 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis Guanghong Zuo 1, Zhao Xu 2 and Bailin Hao 1;* 1 T-Life Research Center and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; E-Mail: [email protected] 2 Thermo Fisher Scientific, 200 Oyster Point Blvd, South San Francisco, CA 94080, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-21-6565-2305. Academic Editors: Roger A. Garrett, Hans-Peter Klenk and Michael W. W. Adams Received: 9 December 2014 / Accepted: 9 March 2015 / Published: 17 March 2015 Abstract: A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1) the whole-genome-based and alignment-free CVTree using 179 genomes; (2) the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3) the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation. -
Marine Microbes
11/18/2007 Major Concepts 9 Microbes are small, but incredibly abundant and found Marine Microbes everywhere OCN201 Fall 2007 9 Microbes are genetically and physiologically diverse Zackary Johnson Department of Oceanography 9 Micro bes are responsible for most of the energy and http://www.soest.hawaii.edu/oceanography/zij/education.html mass transformations in the ocean 9 Most microbes have never been cultured and in general microbes are poorly understood Major Concepts What’s in a liter of water? 9 Microbes are small, but incredibly abundant and found 9 Fish none everywhere 9 Copepods 10 Microbes! 9 Microbes are genetically and physiologically diverse 9 Diatoms 10,000 9 Micro bes are responsible for most of the energy and 9 Dinoflagellates 100, 000 mass transformations in the ocean 9 Nanoflagellates 1,000,000 9 Most microbes have never been cultured and in 9 Cyanobacterium 100,000,000 general microbes are poorly understood Archaea/Bacteria 1,000,000,000 Viruses 10,000,000,000 Microbes by Epifluorescence Microscopy Microbes are small #/L diameter Fish none >10‐2 m Copepods 10 10‐3 m Diatoms 10,000 10‐4 m Dinoflagellates 100, 000 10‐5 m nanoflagellate Nanoflagellates 1,000,000 10‐5 m Cyanobacterium 100,000,000 10‐6 m Archaea/Bacteria 1,000,000,000 10‐7 m Viruses 10,000,000,000 10‐8 m ~1 μl 1 11/18/2007 Microbes are found everywhere! •DNA stains (DAPI or Sybr) allow visualization of DNA containing particles (cells) vs. non‐ liv ing partilicles •Most microbes are free living, but they can be attached to particles too (particles are concentrated -
Long-Term Monitoring of the Mid-Atlantic Ridge
Long-Term Monitoring of the Mid-Atlantic Ridge Proceedings of the III MOMAR Workshop 7-9 April 2005 Lisbon, Portugal Convenors Fernando Barriga Universidade de Lisboa, Portugal Ana Colaço University of the Azores, Portugal Javier Escartin CNRS, Paris, France Emilie Hooft University of Oregon, USA Susan Humphris Woods Hole Oceanographic Institution, USA Nadine Le Bris IFREMER, France Celia Lee Universidade de Lisboa, Portugal Nuno Lourenço University of Algarve, Portugal Frank Wenzhofer Max Planck Institute for Marine Microbiology, Germany 1 INTRODUCTION The third in a series of workshops to define the objectives of the Monitoring the Mid- Atlantic Ridge (MOMAR) project was convened at the Museu de Ciêcia in Lisbon, Portugal, on 7-9 April 2005 with approximately 80 scientists from 12 countries participating. MOMAR brings together researchers from the international scientific community to plan a long-term monitoring program on the Mid-Atlantic Ridge in a region south of the Azores. With an emphasis on real-time data retrieval, MOMAR plans to combine long-term monitoring of geological, physico-chemical, and biological activity at hydrothermal vents with broader-scale monitoring of tectonic, volcanic and hydrothermal processes at the ridge axis. These studies will lead to a comprehensive, interdisciplinary understanding of temporal changes in, and linkages among magmatic, tectonic, seismic, hydrothermal, and biological activity at this slow-spreading plate boundary, enabling the development of quantitative, whole-system models of the inter-linked