Clues Into the Early Evolutionary Origin of the Acidocalcisome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strong Purifying Selection Contributes to Genome Streamlining in Epipelagic Marinimicrobia
bioRxiv preprint doi: https://doi.org/10.1101/653261; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Strong Purifying Selection Contributes to Genome Streamlining in Epipelagic Marinimicrobia Carolina Alejandra Martinez-Gutierrez and Frank O. Aylward Department of Biological Sciences, Virginia Tech, Blacksburg, VA Email for correspondence: [email protected] Abstract Marine microorganisms inhabiting nutrient-depleted waters play critical roles in global biogeochemical cycles due to their abundance and broad distribution. Many of these microbes share similar genomic features including small genome size, low % G+C content, short intergenic regions, and low nitrogen content in encoded amino acids, but the evolutionary drivers of these characteristics are unclear. Here we compared the strength of purifying selection across the Marinimicrobia, a candidate phylum which encompasses a broad range of phylogenetic groups with disparate genomic features, by estimating the ratio of non-synonymous and synonymous substitutions (dN/dS) in conserved marker genes. Our analysis shows significantly lower dN/dS values in epipelagic Marinimicrobia that exhibit features consistent with genome streamlining when compared to their mesopelagic counterparts. We found a significant positive correlation between median dN/dS values and genomic traits associated to streamlined organisms, including % G+C content, genome size, and intergenic region length. Our findings are consistent with genome streamlining theory, which postulates that small, compact genomes with low G+C contents are adaptive and the product of strong purifying selection. -
Genomics 98 (2011) 370–375
Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc. -
Diversity of Understudied Archaeal and Bacterial Populations of Yellowstone National Park: from Genes to Genomes Daniel Colman
University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 7-1-2015 Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes Daniel Colman Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Colman, Daniel. "Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes." (2015). https://digitalrepository.unm.edu/biol_etds/18 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Daniel Robert Colman Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Cristina Takacs-Vesbach , Chairperson Robert Sinsabaugh Laura Crossey Diana Northup i Diversity of understudied archaeal and bacterial populations from Yellowstone National Park: from genes to genomes by Daniel Robert Colman B.S. Biology, University of New Mexico, 2009 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2015 ii DEDICATION I would like to dedicate this dissertation to my late grandfather, Kenneth Leo Colman, associate professor of Animal Science in the Wool laboratory at Montana State University, who even very near the end of his earthly tenure, thought it pertinent to quiz my knowledge of oxidized nitrogen compounds. He was a man of great curiosity about the natural world, and to whom I owe an acknowledgement for his legacy of intellectual (and actual) wanderlust. -
Microbial Evolution and Diversity
PART V Microbial Evolution and Diversity This material cannot be copied, disseminated, or used in any way without the express written permission of the publisher. Copyright 2007 Sinauer Associates Inc. The objectives of this chapter are to: N Provide information on how bacteria are named and what is meant by a validly named species. N Discuss the classification of Bacteria and Archaea and the recent move toward an evolutionarily based, phylogenetic classification. N Describe the ways in which the Bacteria and Archaea are identified in the laboratory. This material cannot be copied, disseminated, or used in any way without the express written permission of the publisher. Copyright 2007 Sinauer Associates Inc. 17 Taxonomy of Bacteria and Archaea It’s just astounding to see how constant, how conserved, certain sequence motifs—proteins, genes—have been over enormous expanses of time. You can see sequence patterns that have per- sisted probably for over three billion years. That’s far longer than mountain ranges last, than continents retain their shape. —Carl Woese, 1997 (in Perry and Staley, Microbiology) his part of the book discusses the variety of microorganisms that exist on Earth and what is known about their characteris- Ttics and evolution. Most of the material pertains to the Bacteria and Archaea because there is a special chapter dedicated to eukaryotic microorganisms. Therefore, this first chapter discusses how the Bacte- ria and Archaea are named and classified and is followed by several chapters (Chapters 18–22) that discuss the properties and diversity of the Bacteria and Archaea. When scientists encounter a large number of related items—such as the chemical elements, plants, or animals—they characterize, name, and organize them into groups. -
Lifestyle and Genetic Evolution of Coprothermobacter
bioRxiv preprint doi: https://doi.org/10.1101/280602; this version posted July 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 From proteins to polysaccharides: lifestyle and genetic evolution of 2 Coprothermobacter proteolyticus. 3 4 5 B.J. Kunath1#, F. Delogu1#, A.E. Naas1, M.Ø. Arntzen1, V.G.H. Eijsink1, B. Henrissat2, T.R. 6 Hvidsten1, P.B. Pope1* 7 8 1. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life 9 Sciences, 1432 Ås, NORWAY. 10 2. Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille 11 Université, F-13288 Marseille, France. 12 # Equal contributors 13 14 *Corresponding Author: Phillip B. Pope 15 Faculty of Chemistry, Biotechnology and Food Science 16 Norwegian University of Life Sciences 17 Post Office Box 5003 18 1432, Ås, Norway 19 Phone: +47 6496 6232 20 Email: [email protected] 21 22 23 RUNNING TITLE: 24 The genetic plasticity of Coprothermobacter 25 26 COMPETING INTERESTS 27 The authors declare there are no competing financial interests in relation to the work described. 28 29 KEYWORDS 30 CAZymes; Horizontal gene transfer; strain heterogeneity; Metatranscriptomics 1 bioRxiv preprint doi: https://doi.org/10.1101/280602; this version posted July 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Performances and Microbial Composition During Mesophilic and Thermophilic Anaerobic Sludge Digestion Processes
Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF) Corso di Dottorato di Ricerca in SCIENZE AMBIENTALI - XXVI Ciclo Performances and microbial composition during mesophilic and thermophilic anaerobic sludge digestion processes BIO/19 Tesi di dottorato di: Dott. Maria Cristina Gagliano Coordinatore del corso Tutor Prof. Maurizio Petruccioli Prof. Maurizio Petruccioli Co-tutors Dott. Simona Rossetti Dott. Camilla Maria Braguglia Giugno 2014 A Silvana. 2 Contents Preface and thesis outlines 4 Chapter 1. Anaerobic digestion of sludge: an overview 7 Chapter 2. Identification and role of proteolytic Coprothermobacter spp. in different thermophilic anaerobic systems: a review 26 Chapter 3. In situ identification of the synthrophic protein fermentative Coprothermobacter spp. involved in thermophilic anaerobic digestion process 45 Chapter 4. Evaluation of pretreatments effects on sludge floc structure 64 Chapter 5. Thermophilic anaerobic digestion of thermal pretreated sludge:role of microbial community structure and correlation with process performances 75 Chapter 6. Microbial diversity in innovative mesophilic/thermophilic temperature phased anaerobic digestion of sludge 104 Chapter 7. Efficacy of of the methanogenic biomass acclimation in batch mesophilic anaerobic digestion of ultrasound pretreated waste activated sludge 123 Concluding remarks 137 Future recommendations and research needs 138 Acknowledgements 139 3 Preface and thesis outlines The anaerobic digestion (AD) of organic wastes still gathers a great interest due to the global needs for waste recycling and renewable energy production, in the form of biogas. The need of solutions for a sustainable sludge disposal is increasing and anaerobic sludge treatment can be used as a cost- effective strategy. In a worldwide perspective, anaerobic digestion of sewage sludge is far the most widespread use of anaerobic digestion. -
1 Strong Purifying Selection Is Associated with Genome
1 Strong Purifying Selection is Associated with Genome Streamlining in Epipelagic Marinimicrobia Carolina Alejandra Martinez-Gutierrez and Frank O. Aylward Department of Biological Sciences, Virginia Tech, Blacksburg, VA Email for correspondence: [email protected] Abstract Marine microorganisms inhabiting nutrient-depleted waters play critical roles in global biogeochemical cycles due to their abundance and broad distribution. Many of these microbes share similar genomic features including small genome size, low % G+C content, short intergenic regions, and low nitrogen content in encoded amino acid residue side chains (N-ARSC), but the evolutionary drivers of these characteristics are unclear. Here we compared the strength of purifying selection across the Marinimicrobia, a candidate phylum which encompasses a broad range of phylogenetic groups with disparate genomic features, by estimating the ratio of non-synonymous and synonymous substitutions (dN/dS) in conserved marker genes. Our analysis reveals that epipelagic Marinimicrobia that exhibit features consistent with genome streamlining have significantly lower dN/dS values when compared to the mesopelagic counterparts. We also found a significant positive correlation between median dN/dS values and % G+C content, N-ARSC, and intergenic region length. We did not identify a significant correlation between dN/dS ratios and estimated genome size, suggesting the strength of selection is not a primary factor shaping genome size in this group. Our findings are generally consistent with genome streamlining theory, which postulates that many genomic features of abundant epipelagic bacteria are the result of adaptation to oligotrophic nutrient conditions. Our results are also in agreement with previous findings that genome streamlining is common in epipelagic waters, suggesting that genomes inhabiting this region of the ocean have been shaped by strong selection together with prevalent nutritional constraints characteristic of this environment. -
The Effect of Magnetite Nanoparticles on Methane Production from the Anaerobic Digestion of Acetate, Propionate and Glucose
THE EFFECT OF MAGNETITE NANOPARTICLES ON METHANE PRODUCTION FROM THE ANAEROBIC DIGESTION OF ACETATE, PROPIONATE AND GLUCOSE A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Civil and Natural Resources Engineering at the University of Canterbury By Ethar Mohammad Al-Essa Department of Civil and Natural Resources Engineering University of Canterbury, New Zealand January 2020 ACKNOWLEDGEMENTS First and foremost, my deepest appreciation and thanks to my supervisors Dr. Ricardo Bello Mendoza and Dr. David Wareham Associate Professor, Department of Civil and Natural Resources Engineering (CNRE), University of Canterbury, New Zealand. I feel very grateful to have had an opportunity to work under their supervision. Thank you for your valuable time, co- operation, and guidance in carrying out this thesis. Great pleasure to thank my technical advisors in the Department of CNRE, Mr. Peter McGuigan, Mr. Manjula Premaratne, Aude Thierry and Mr. Dave MacPherson for their extraordinary help and technical assistance through my research work. This thesis would not have been possible without the support of many people. I am deeply grateful to the College of Engineering and the department of CNRE for helping me during these years of my study both academically and officially. My thanks to all my UC friends for their generous help and suggestions through my thesis writing. My heartfelt thanks and love to my husband (Khaldoun), my parents, brothers, sisters and my little son (Omar). I would not have got where I am today without their endless love, constant unconditional support and encouragement. Above all, thanks to almighty God who enabled me to complete my research and get overcome all the challenges that faced me through my thesis journey. -
Thermophilic Anaerobic Digestion of Second Cheese Whey: Microbial Community Response to H2 Addition in a Partially Immobilized Anaerobic Hybrid Reactor
processes Article Thermophilic Anaerobic Digestion of Second Cheese Whey: Microbial Community Response to H2 Addition in a Partially Immobilized Anaerobic Hybrid Reactor Giuseppe Lembo 1,2, Silvia Rosa 1, Valentina Mazzurco Miritana 1,3 , Antonella Marone 4, Giulia Massini 1, Massimiliano Fenice 2 and Antonella Signorini 1,* 1 Department of Energy Technologies and Renewable Source, Casaccia Research Center, ENEA-Italian Agency for New Technologies, Energy and Sustainable Development, Via Anguillarese 301, 00123 Rome, Italy; [email protected] (G.L.); [email protected] (S.R.); [email protected] (V.M.M.); [email protected] (G.M.) 2 Ecological and Biological Sciences Department, University of Tuscia, 01100 Viterbo, Italy; [email protected] 3 Water Research Institute, National Research Council (IRSA-CNR) Via Salaria km 29,300-C.P. 10, Monterotondo Street, 00015 Rome, Italy 4 Department of Energy Efficiency Unit, Casaccia Research Center, ENEA-Italian Agency for New Technologies, Energy and Sustainable Development, Via Anguillarese 301, 00123 Rome, Italy; [email protected] * Correspondence: [email protected] Abstract: In this study, we investigated thermophilic (55 ◦C) anaerobic digestion (AD) performance and microbial community structure, before and after hydrogen addition, in a novel hybrid gas-stirred tank reactor (GSTR) implemented with a partial immobilization of the microbial community and fed with second cheese whey (SCW). The results showed that H2 addition led to a 25% increase in the methane production rate and to a decrease of 13% in the CH4 concentration as compared with the control. The recovery of methane content (56%) was reached by decreasing the H2 flow rate. -
Aciduliprofundum Boonei’’, a Cultivated Obligate Thermoacidophilic Euryarchaeote from Deep-Sea Hydrothermal Vents
Extremophiles (2008) 12:119–124 DOI 10.1007/s00792-007-0111-0 ORIGINAL PAPER Tetraether membrane lipids of Candidatus ‘‘Aciduliprofundum boonei’’, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents Stefan Schouten Æ Marianne Baas Æ Ellen C. Hopmans Æ Anna-Louise Reysenbach Æ Jaap S. Sinninghe Damste´ Received: 11 June 2007 / Accepted: 28 August 2007 / Published online: 28 September 2007 Ó Springer 2007 Abstract The lipid composition of Candidatus ‘‘Acidu- vents contain ecosystems, which are predominantly fueled liprofundum boonei’’, the only cultivated representative of by geochemical energy and are host to many newly archaea falling in the DHVE2 phylogenetic cluster, a group described free-living microbes, which are often associated of microorganisms ubiquitously occurring at hydrothermal with actively venting porous deep-sea vent deposits or vents, was studied. The predominant core membrane lipids ‘‘chimneys’’. The steep chemical and thermal gradients in this thermophilic euryarchaeote were found to be com- within the walls of these deposits provide a wide range of posed of glycerol dibiphytanyl glycerol tetraethers microhabitats for microorganisms with suitable conditions (GDGTs) containing 0–4 cyclopentyl moieties. In addition, for aerobic and anaerobic thermophiles and mesophiles GDGTs with an additional covalent bond between the (e.g. McCollom and Schock 1997). Indeed, both culture- isoprenoid hydrocarbon chains, so-called H-shaped dependent and -independent approaches have exposed a GDGTs, were present. The latter core lipids have been vast diversity of Bacteria and Archaea associated with rarely reported previously. Intact polar lipid analysis deep-sea vent deposits (e.g. Reysenbach and Shock 2002; revealed that they predominantly consist of GDGTs with a Schrenk et al. -
Deep-Sea Hydrothermal Vent Euryarchaeota 2”
View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL RESEARCH ARTICLE published: 20 February 2012provided by PubMed Central doi: 10.3389/fmicb.2012.00047 Distribution, abundance, and diversity patterns of the thermoacidophilic “deep-sea hydrothermal vent euryarchaeota 2” Gilberto E. Flores†, Isaac D. Wagner,Yitai Liu and Anna-Louise Reysenbach* Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, USA Edited by: Cultivation-independent studies have shown that taxa belonging to the “deep-sea Kirsten Silvia Habicht, University of hydrothermal vent euryarchaeota 2” (DHVE2) lineage are widespread at deep-sea Southern Denmark, Denmark hydrothermal vents. While this lineage appears to be a common and important mem- Reviewed by: Kuk-Jeong Chin, Georgia State ber of the microbial community at vent environments, relatively little is known about their University, USA overall distribution and phylogenetic diversity. In this study, we examined the distribu- Elizaveta Bonch-Osmolovskyaya, tion, relative abundance, co-occurrence patterns, and phylogenetic diversity of cultivable Winogradsky Institute of Microbiology thermoacidophilic DHVE2 in deposits from globally distributed vent fields. Results of quan- Russian Academy of Sciences, Russia titative polymerase chain reaction assays with primers specific for the DHVE2 and Archaea *Correspondence: Anna-Louise Reysenbach, demonstrate the ubiquity of the DHVE2 at deep-sea vents and suggest that they are sig- Department of Biology, Center for nificant members of the archaeal communities of established vent deposit communities. Life in Extreme Environments, Local similarity analysis of pyrosequencing data revealed that the distribution of the DHVE2 Portland State University, PO Box was positively correlated with 10 other Euryarchaeota phylotypes and negatively correlated 751, Portland, OR 97207-0751, USA. -
Pan-Genome Analysis and Ancestral State Reconstruction Of
www.nature.com/scientificreports OPEN Pan‑genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super‑order Sonam Gaba1,2, Abha Kumari2, Marnix Medema 3 & Rajeev Kaushik1* Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan‑genome analysis of class Halobacteria was done to explore the core (300) and variable components (Softcore: 998, Cloud:36531, Shell:11784). The core component revealed genes of replication, transcription, translation and repair, whereas the variable component had a major portion of environmental information processing. The pan‑gene matrix was mapped onto the core‑gene tree to fnd the ancestral (44.8%) and derived genes (55.1%) of the Last Common Ancestor of Halobacteria. A High percentage of derived genes along with presence of transformation and conjugation genes indicate the occurrence of horizontal gene transfer during the evolution of Halobacteria. A Core and pan‑gene tree were also constructed to infer a phylogeny which implicated on the new super‑order comprising of Natrialbales and Halobacteriales. Halobacteria1,2 is a class of phylum Euryarchaeota3 consisting of extremely halophilic archaea found till date and contains three orders namely Halobacteriales4,5 Haloferacales5 and Natrialbales5. Tese microorganisms are able to dwell at wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl6. Halobacteria, as the name suggests were once considered a part of a domain "Bacteria" but with the discovery of the third domain "Archaea" by Carl Woese et al.7, it became part of Archaea.