Full Disclosure Form Information Provided by the Authors Is Available with the Full Text of This Article at Neurology.Org/NG
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulation of Cdc42 and Its Effectors in Epithelial Morphogenesis Franck Pichaud1,2,*, Rhian F
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs217869. doi:10.1242/jcs.217869 REVIEW SUBJECT COLLECTION: ADHESION Regulation of Cdc42 and its effectors in epithelial morphogenesis Franck Pichaud1,2,*, Rhian F. Walther1 and Francisca Nunes de Almeida1 ABSTRACT An overview of Cdc42 Cdc42 – a member of the small Rho GTPase family – regulates cell Cdc42 was discovered in yeast and belongs to a large family of small – polarity across organisms from yeast to humans. It is an essential (20 30 kDa) GTP-binding proteins (Adams et al., 1990; Johnson regulator of polarized morphogenesis in epithelial cells, through and Pringle, 1990). It is part of the Ras-homologous Rho subfamily coordination of apical membrane morphogenesis, lumen formation and of GTPases, of which there are 20 members in humans, including junction maturation. In parallel, work in yeast and Caenorhabditis elegans the RhoA and Rac GTPases, (Hall, 2012). Rho, Rac and Cdc42 has provided important clues as to how this molecular switch can homologues are found in all eukaryotes, except for plants, which do generate and regulate polarity through localized activation or inhibition, not have a clear homologue for Cdc42. Together, the function of and cytoskeleton regulation. Recent studies have revealed how Rho GTPases influences most, if not all, cellular processes. important and complex these regulations can be during epithelial In the early 1990s, seminal work from Alan Hall and his morphogenesis. This complexity is mirrored by the fact that Cdc42 can collaborators identified Rho, Rac and Cdc42 as main regulators of exert its function through many effector proteins. -
1 Running Head
medRxiv preprint doi: https://doi.org/10.1101/2020.09.16.20194639; this version posted August 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . RUNNING HEAD: Alcohol use disorder dual methylation study Dual methylation and hydroxymethylation study of alcohol use disorder Shaunna L. Clark1, Robin F. Chan2, Min Zhao2, Lin Y. Xie2, William E. Copeland3, Brenda W.J.H. Penninx3, Karolina A. Aberg2, Edwin J.C.G. van den Oord2 1Department of Psychiatry, Texas A&M University 2Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University 3 Department of Psychiatry, University of Vermont 4 Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands Corresponding Author: Shaunna L. Clark, Email: [email protected]; Address: 8441 Riverside Parkway, Bryan, TX, 77807; Phone: (979) 436-0179 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.09.16.20194639; this version posted August 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . ABSTRACT Using an integrative, multi-tissue design we sought to characterize methylation and hydroxymethylation changes in blood and brain associated with alcohol use disorder (AUD). -
Linkage and Association Studies in African
中国科技论文在线 http://www.paper.edu.cn Molecular Psychiatry (2006),1–12 & 2006 Nature Publishing Group All rights reserved 1359-4184/06 $30.00 www.nature.com/mp ORIGINAL ARTICLE Linkage and association studies in African- and Caucasian-American populations demonstrate that SHC3 is a novel susceptibility locus for nicotine dependence MD Li1, D Sun1,2, X-Y Lou1, J Beuten1, TJ Payne3 and JZ Ma4 1Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA; 2Department of Animal Genetics and Breeding and Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, China Agricultural University, Beijing, PR China; 3ACT Center for Tobacco Treatment, Education and Research, University of Mississippi Medical Center, Jackson, MS, USA and 4Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA Our previous linkage study demonstrated that the 9q22–q23 chromosome region showed a ‘suggestive’ linkage to nicotine dependence (ND) in the Framingham Heart Study population. In this study, we provide further evidence for the linkage of this region to ND in an independent sample. Within this region, the gene encoding Src homology 2 domain-containing transform- ing protein C3 (SHC3) represents a plausible candidate for association with ND, assessed by smoking quantity (SQ), the Heaviness of Smoking Index (HSI) and the Fagerstro¨ m Test for ND (FTND). We utilized 11 single-nucleotide polymorphisms within SHC3 to examine the association with ND in 602 nuclear families of either African-American (AA) or European- American (EA) origin. Individual SNP-based analysis indicated three SNPs for AAs and one for EAs were significantly associated with at least one ND measure. -
The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem. -
The Tumor Suppressor CIC Directly Regulates MAPK Pathway Genes Via Histone Deacetylation Simon Weissmann1,2, Paul A
Published OnlineFirst May 29, 2018; DOI: 10.1158/0008-5472.CAN-18-0342 Cancer Genome and Epigenome Research The Tumor Suppressor CIC Directly Regulates MAPK Pathway Genes via Histone Deacetylation Simon Weissmann1,2, Paul A. Cloos1,2, Simone Sidoli2,3, Ole N. Jensen2,3, Steven Pollard4, and Kristian Helin1,2,5 Abstract Oligodendrogliomas are brain tumors accounting for approximately 10% of all central nervous system can- Low MAPK signaling High MAPK signaling cers. CIC is a transcription factor that is mutated in most RTKs patients with oligodendrogliomas; these mutations are believed to be a key oncogenic event in such cancers. MEK Analysis of the Drosophila melanogaster ortholog of ERK SIN3 CIC, Capicua, indicates that CIC loss phenocopies CIC HDAC activation of the EGFR/RAS/MAPK pathway, and HMG C-term studies in mammalian cells have demonstrated a role SIN3 CIC HDAC for CIC in repressing the transcription of the PEA3 HMG C-term Ac Ac subfamily of ETS transcription factors. Here, we address Ac Ac the mechanism by which CIC represses transcription and assess the functional consequences of CIC inacti- vation. Genome-wide binding patterns of CIC in several cell types revealed that CIC target genes were enriched ETV, DUSP, CCND1/2, SHC3,... for MAPK effector genes involved in cell-cycle regulation Normal Astrocytoma and proliferation. CIC binding to target genes was Glioblastoma multiforme abolished by high MAPK activity, which led to their 1p/19q deletion CIC-Mutants transcriptional activation. CIC interacted with the SIN3 SIN3 deacetylation complex and, based on our results, we SIN3 CIC suggest that CIC functions as a transcriptional repressor HDAC HDAC HMG C-term through the recruitment of histone deacetylases. -
Mouse Baiap2 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Baiap2 Knockout Project (CRISPR/Cas9) Objective: To create a Baiap2 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Baiap2 gene (NCBI Reference Sequence: NM_130862 ; Ensembl: ENSMUSG00000025372 ) is located on Mouse chromosome 11. 14 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 14 (Transcript: ENSMUST00000075180). Exon 2~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygotes for a knock-out allele show mid to late gestation lethality, developmental delay, oligodactyly, subcutaneous edema, and severely impaired cardiac and placental development. Adult homozygotes fail to regulate synaptic plasticity and exhibit hippocampus-associated learning deficits. Exon 2 starts from about 3.51% of the coding region. Exon 2~3 covers 10.41% of the coding region. The size of effective KO region: ~3142 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 14 Legends Exon of mouse Baiap2 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. -
Genes Involved and Proteins
Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Scope The Atlas of Genetics and Cytogenetics in Oncology and Haematology is a peer reviewed on-line journal in open access, devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. It presents structured review articles ("cards") on genes, leukaemias, solid tumours, cancer-prone diseases, more traditional review articles on these and also on surrounding topics ("deep insights"), case reports in hematology, and educational items in the various related topics for students in Medicine and in Sciences. Editorial correspondance Jean-Loup Huret Genetics, Department of Medical Information, University Hospital F-86021 Poitiers, France tel +33 5 49 44 45 46 or +33 5 49 45 47 67 [email protected] or [email protected] Staff Mohammad Ahmad, Mélanie Arsaban, Houa Delabrousse, Marie-Christine Jacquemot-Perbal, Maureen Labarussias, Vanessa Le Berre, Anne Malo, Catherine Morel-Pair, Laurent Rassinoux, Sylvie Yau Chun Wan - Senon, Alain Zasadzinski. Philippe Dessen is the Database Director, and Alain Bernheim the Chairman of the on-line version (Gustave Roussy Institute – Villejuif – France). The Atlas of Genetics and Cytogenetics in Oncology and Haematology (ISSN 1768-3262) is published 12 times a year by ARMGHM, a non profit organisation, and by the INstitute for Scientific and Technical Information of the French National Center for Scientific Research (INIST-CNRS) since 2008. The Atlas is hosted by INIST-CNRS (http://www.inist.fr) http://AtlasGeneticsOncology.org © ATLAS - ISSN 1768-3262 The PDF version of the Atlas of Genetics and Cytogenetics in Oncology and Haematology is a reissue of the original articles published in collaboration with the Institute for Scientific and Technical Information (INstitut de l’Information Scientifique et Technique - INIST) of the French National Center for Scientific Research (CNRS) on its electronic publishing platform I-Revues. -
Targeting the DEK Oncogene in Head and Neck Squamous Cell Carcinoma: Functional and Transcriptional Consequences
Targeting the DEK oncogene in head and neck squamous cell carcinoma: functional and transcriptional consequences A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements to the degree of Doctor of Philosophy (Ph.D.) in the Department of Cancer and Cell Biology of the College of Medicine March 2015 by Allie Kate Adams B.S. The Ohio State University, 2009 Dissertation Committee: Susanne I. Wells, Ph.D. (Chair) Keith A. Casper, M.D. Peter J. Stambrook, Ph.D. Ronald R. Waclaw, Ph.D. Susan E. Waltz, Ph.D. Kathryn A. Wikenheiser-Brokamp, M.D., Ph.D. Abstract Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies worldwide with over 50,000 new cases in the United States each year. For many years tobacco and alcohol use were the main etiological factors; however, it is now widely accepted that human papillomavirus (HPV) infection accounts for at least one-quarter of all HNSCCs. HPV+ and HPV- HNSCCs are studied as separate diseases as their prognosis, treatment, and molecular signatures are distinct. Five-year survival rates of HNSCC hover around 40-50%, and novel therapeutic targets and biomarkers are necessary to improve patient outcomes. Here, we investigate the DEK oncogene and its function in regulating HNSCC development and signaling. DEK is overexpressed in many cancer types, with roles in molecular processes such as transcription, DNA repair, and replication, as well as phenotypes such as apoptosis, senescence, and proliferation. DEK had never been previously studied in this tumor type; therefore, our studies began with clinical specimens to examine DEK expression patterns in primary HNSCC tissue. -
Endocrine System Local Gene Expression
Copyright 2008 By Nathan G. Salomonis ii Acknowledgments Publication Reprints The text in chapter 2 of this dissertation contains a reprint of materials as it appears in: Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR. GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics. 2007 Jun 24;8:218. The co-authors listed in this publication co-wrote the manuscript (AP and KH) and provided critical feedback (see detailed contributions at the end of chapter 2). The text in chapter 3 of this dissertation contains a reprint of materials as it appears in: Salomonis N, Cotte N, Zambon AC, Pollard KS, Vranizan K, Doniger SW, Dolganov G, Conklin BR. Identifying genetic networks underlying myometrial transition to labor. Genome Biol. 2005;6(2):R12. Epub 2005 Jan 28. The co-authors listed in this publication developed the hierarchical clustering method (KP), co-designed the study (NC, AZ, BC), provided statistical guidance (KV), co- contributed to GenMAPP 2.0 (SD) and performed quantitative mRNA analyses (GD). The text of this dissertation contains a reproduction of a figure from: Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5(10):R74. Epub 2004 Sep 13. The reproduction was taken without permission (chapter 1), figure 1.3. iii Personal Acknowledgments The achievements of this doctoral degree are to a large degree possible due to the contribution, feedback and support of many individuals. To all of you that helped, I am extremely grateful for your support. -
Differential DNA Methylation and Changing Cell-Type Proportions As Fibrotic Stage Progresses in NAFLD
Johnson et al. Clin Epigenet (2021) 13:152 https://doi.org/10.1186/s13148-021-01129-y RESEARCH Open Access Diferential DNA methylation and changing cell-type proportions as fbrotic stage progresses in NAFLD Nicholas D. Johnson1,2†, Xiumei Wu3†, Christopher D. Still4, Xin Chu4, Anthony T. Petrick4, Glenn S. Gerhard5, Karen N. Conneely1,2† and Johanna K. DiStefano3*† Abstract Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by changes in cell composition that occur throughout disease pathogenesis, which includes the development of fbrosis in a subset of patients. DNA methyla- tion (DNAm) is a plausible mechanism underlying these shifts, considering that DNAm profles difer across tissues and cell types, and DNAm may play a role in cell-type diferentiation. Previous work investigating the relationship between DNAm and fbrosis in NAFLD has been limited by sample size and the number of CpG sites interrogated. Results: Here, we performed an epigenome-wide analysis using Infnium MethylationEPIC array data from 325 indi- viduals with NAFLD, including 119 with severe fbrosis and 206 with no histological evidence of fbrosis. After adjust- ment for latent confounders, we identifed 7 CpG sites whose DNAm associated with fbrosis (p < 5.96 10–8). Analysis of RNA-seq data collected from a subset of individuals (N 56) revealed that gene expression at 288 genes× associated with DNAm at one or more of the 7 fbrosis-related CpGs.= DNAm-based estimates of cell-type proportions showed that estimated proportions of natural killer cells increased, while epithelial cell proportions decreased with disease stage. Finally, we used an elastic net regression model to assess DNAm as a biomarker of fbrotic stage and found that our model predicted fbrosis with a sensitivity of 0.93 and provided information beyond a model based solely on cell- type proportions. -
Indications of Linkage and Association of Gilles De La Tourette Syndrome in Two Independent Family Samples: 17Q25 Is a Putative Susceptibility Region P
Am. J. Hum. Genet. 75:545–560, 2004 Indications of Linkage and Association of Gilles de la Tourette Syndrome in Two Independent Family Samples: 17q25 Is a Putative Susceptibility Region P. Paschou,1 Y. Feng,2 A. J. Pakstis,1 W. C. Speed,1 M. M. DeMille,1 J. R. Kidd,1 B. Jaghori,2 R. Kurlan,5 D. L. Pauls,6 P. Sandor,2,3 C. L. Barr,2,4 and K. K. Kidd1 1Department of Genetics, Yale University School of Medicine, New Haven; 2Toronto Western Research Institute, University Health Network, 3Department of Psychiatry, University of Toronto, and 4Department of Psychiatry, Brain and Behaviour Programme, The Hospital for Sick Children, Toronto; 5Cognitive and Behavioral Neurology Unit, Department of Neurology, University of Rochester School of Medicine, Rochester, NY; and 6Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA Gilles de la Tourette syndrome (GTS) is characterized by multiple motor and phonic tics and high comorbidity rates with other neurobehavioral disorders. It is hypothesized that frontal-subcortical pathways and a complex genetic background are involved in the etiopathogenesis of the disorder. The genetic basis of GTS remains elusive. However, several genomic regions have been implicated. Among them, 17q25 appears to be of special interest, as suggested by various independent investigators. In the present study, we explored the possibility that 17q25 con- tributes to the genetic component of GTS. The initial scan of chromosome 17 performed on two large pedigrees provided a nonparametric LOD score of 2.41 near D17S928. Fine mapping with 17 additional microsatellite markers increased the peak to 2.61 (P p .002 ). -
Rho Gtpase Cdc42 Controls Invariant Chain Processing and MHC II Loading in Dendritic Cells
Aus dem Institut für Immunologie der Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. Thomas Brocker Rho GTPase Cdc42 controls invariant chain processing and MHC II loading in Dendritic Cells Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Anna Schulz, geb. Wähe aus Darmstadt 2013 Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Betreuer: Prof. Dr. Thomas Brocker Zweitgutachter: Prof. Dr. Patrick A. Baeuerle Dekan: Prof. Dr. med Dr.h.c. Maximilian Reiser, FACR, FRCR Tag der mündlichen Prüfung: 06.11.2013 ii AUTHOR’S DECLARATION Ich versichere hiermit ehrenwörtlich, dass die vorgelegte Dissertation „Rho GTPase Cdc42 controls invariant chain processing and MHC II loading in Dendritic Cells“ von mir selbständig und ohne unerlaubte Hilfe angefertigt wurde. Ich habe mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Hilfen und Quellen bedient. Die Dissertation wurde in der jetzigen oder ähnlichen Form bei keiner anderen Hochschule eingereicht und hat auch noch keinen anderen Prüfungszwecken gedient. Anna Schulz iii This work contains results presented in the following publication: Schulz, A. et al. Rho GTPase Cdc42 controls invariant chain processing and MHC II loading in Dendritic Cells. Manuscript in preparation. This publication was also achieved and will be cited as “Paper I”: Luckashenak, N.*, Wähe, A.*, Breit, K., Brakebusch, C., Brocker, T. 2013. Rho- family GTPase Cdc42 controls migration of Langerhans cells in vivo. J Immunol. 190:27-35. *equal contribution iv ABBREVIATIONS ABBREVIATIONS SI Units were applied as described elsewhere. APC 1. antigen presenting cell 2.