Multiple Links Between 5-Methylcytosine Content of Mrna
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
By Submitted in Partial Satisfaction of the Requirements for Degree of in In
Developments of Two Imaging based Technologies for Cell Biology Researches by Xiaowei Yan DISSERTATION Submitted in partial satisfaction of the requirements for degree of DOCTOR OF PHILOSOPHY in Biochemistry and Molecular Biology in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Approved: ______________________________________________________________________________Ronald Vale Chair ______________________________________________________________________________Jonathan Weissman ______________________________________________________________________________Orion Weiner ______________________________________________________________________________ ______________________________________________________________________________ Committee Members Copyright 2021 By Xiaowei Yan ii DEDICATION Everything happens for the best. To my family, who supported me with all their love. iii ACKNOWLEDGEMENTS The greatest joy of my PhD has been joining UCSF, working and learning with such a fantastic group of scientists. I am extremely grateful for all the support and mentorship I received and would like to thank: My mentor, Ron Vale, who is such a great and generous person. Thank you for showing me that science is so much fun and thank you for always giving me the freedom in pursuing my interest. I am grateful for all the guidance from you and thank you for always supporting me whenever I needed. You are a person full of wisdom, and I have been learning so much from you and your attitude to science, science community and even life will continue inspire me. Thank you for being my mentor and thank you for being such a great mentor. Everyone else in Vale lab, past and present, for making our lab a sweet home. I would like to give my special thank to Marvin (Marvin Tanenbaum) and Nico (Nico Stuurman), two other mentors for me in the lab. I would like to thank them for helping me adapt to our lab, for all the valuable advice and for all the happiness during the time that we work together. -
RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases
G C A T T A C G G C A T genes Review RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases Amber Willbanks, Shaun Wood and Jason X. Cheng * Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL 60637, USA; [email protected] (A.W.); [email protected] (S.W.) * Correspondence: [email protected] Abstract: Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases. Keywords: 5’ cap (5’ cap); 7-methylguanosine (m7G); R-loops; N6-methyladenosine (m6A); RNA editing; A-to-I; C-to-U; 2’-O-methylation (Nm); 5-methylcytosine (m5C); NOL1/NOP2/sun domain Citation: Willbanks, A.; Wood, S.; (NSUN); MYC Cheng, J.X. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes 2021, 12, 627. -
Epigenetic Mechanisms of Lncrnas Binding to Protein in Carcinogenesis
cancers Review Epigenetic Mechanisms of LncRNAs Binding to Protein in Carcinogenesis Tae-Jin Shin, Kang-Hoon Lee and Je-Yoel Cho * Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; [email protected] (T.-J.S.); [email protected] (K.-H.L.) * Correspondence: [email protected]; Tel.: +82-02-800-1268 Received: 21 September 2020; Accepted: 9 October 2020; Published: 11 October 2020 Simple Summary: The functional analysis of lncRNA, which has recently been investigated in various fields of biological research, is critical to understanding the delicate control of cells and the occurrence of diseases. The interaction between proteins and lncRNA, which has been found to be a major mechanism, has been reported to play an important role in cancer development and progress. This review thus organized the lncRNAs and related proteins involved in the cancer process, from carcinogenesis to metastasis and resistance to chemotherapy, to better understand cancer and to further develop new treatments for it. This will provide a new perspective on clinical cancer diagnosis, prognosis, and treatment. Abstract: Epigenetic dysregulation is an important feature for cancer initiation and progression. Long non-coding RNAs (lncRNAs) are transcripts that stably present as RNA forms with no translated protein and have lengths larger than 200 nucleotides. LncRNA can epigenetically regulate either oncogenes or tumor suppressor genes. Nowadays, the combined research of lncRNA plus protein analysis is gaining more attention. LncRNA controls gene expression directly by binding to transcription factors of target genes and indirectly by complexing with other proteins to bind to target proteins and cause protein degradation, reduced protein stability, or interference with the binding of other proteins. -
NIH Public Access Provided by CDC Stacks Author Manuscript Mol Genet Metab
View metadata, citation and similar papers at core.ac.uk brought to you by CORE NIH Public Access provided by CDC Stacks Author Manuscript Mol Genet Metab. Author manuscript; available in PMC 2013 November 01. Published in final edited form as: Mol Genet Metab. 2012 November ; 107(3): 596–604. doi:10.1016/j.ymgme.2012.09.022. Associations between maternal genotypes and metabolites implicated in congenital heart defects $watermark-text $watermark-text $watermark-text Shimul Chowdhury1,2, Charlotte A. Hobbs1, Stewart L. MacLeod1, Mario A. Cleves1, Stepan Melnyk1, S. Jill James1, Ping Hu1, and Stephen W. Erickson1,3 1Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital Research Institute, 13 Children’s Way, Slot 512, Little Rock, AR 72202, USA 2Clinical Molecular Genetics Department, Providence Sacred Heart Medical Center, 101 W. Eighth Avenue, Spokane, WA 99204, USA 3Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital Research Institute, 4301 W. Markham Street, Slot 781, Little Rock, AR 72205, USA Abstract Background—The development of non-syndromic congenital heart defects (CHDs) involves a complex interplay of genetics, metabolism, and lifestyle. Previous studies have implicated maternal single nucleotide polymorphisms (SNPs) and altered metabolism in folate-related pathways as CHD risk factors. Objective—We sought to discover associations between maternal SNPs and metabolites involved in the homocysteine, folate, and transsulfuration pathways, and determine if these associations differ between CHD cases and controls. Design—Genetic, metabolic, demographic, and lifestyle information was available for 335 mothers with CHD-affected pregnancies and 263 mothers with unaffected pregnancies. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Coding RNA Genes
Review A guide to naming human non-coding RNA genes Ruth L Seal1,2,* , Ling-Ling Chen3, Sam Griffiths-Jones4, Todd M Lowe5, Michael B Mathews6, Dawn O’Reilly7, Andrew J Pierce8, Peter F Stadler9,10,11,12,13, Igor Ulitsky14 , Sandra L Wolin15 & Elspeth A Bruford1,2 Abstract working on non-coding RNA (ncRNA) nomenclature in the mid- 1980s with the approval of initial gene symbols for mitochondrial Research on non-coding RNA (ncRNA) is a rapidly expanding field. transfer RNA (tRNA) genes. Since then, we have worked closely Providing an official gene symbol and name to ncRNA genes brings with experts in the ncRNA field to develop symbols for many dif- order to otherwise potential chaos as it allows unambiguous ferent kinds of ncRNA genes. communication about each gene. The HUGO Gene Nomenclature The number of genes that the HGNC has named per ncRNA class Committee (HGNC, www.genenames.org) is the only group with is shown in Fig 1, and ranges in number from over 4,500 long the authority to approve symbols for human genes. The HGNC ncRNA (lncRNA) genes and over 1,900 microRNA genes, to just four works with specialist advisors for different classes of ncRNA to genes in the vault and Y RNA classes. Every gene symbol has a ensure that ncRNA nomenclature is accurate and informative, Symbol Report on our website, www.genenames.org, which where possible. Here, we review each major class of ncRNA that is displays the gene symbol, gene name, chromosomal location and currently annotated in the human genome and describe how each also includes links to key resources such as Ensembl (Zerbino et al, class is assigned a standardised nomenclature. -
Overview of Distinct 5-Methylcytosine Profiles of Messenger RNA In
Zhang et al. J Transl Med (2020) 18:245 https://doi.org/10.1186/s12967-020-02417-6 Journal of Translational Medicine RESEARCH Open Access Overview of distinct 5-methylcytosine profles of messenger RNA in human hepatocellular carcinoma and paired adjacent non-tumor tissues Qiyao Zhang1,2,3,4†, Qingyuan Zheng1,2,3,4†, Xiao Yu1,2,3,4†, Yuting He1,2,3,4* and Wenzhi Guo1,2,3,4* Abstract Background: Post-transcriptional methylation modifcations, including 5-methylcytosine (m5C) modifcation, are closely related to the tumorigenesis of cancers. However, the mRNA profle of m5C modifcation in hepatocellular carcinoma (HCC) is unknown. Methods: Methylated RNA immunoprecipitation sequencing was performed to identify m5C peaks on mRNA of human HCC tissues and adjacent tissues, and diferences in m5C between the two groups were analyzed. In addition, we conducted a bioinformatics analysis to predict the function of specifc methylated transcripts. Results: We found that there was a noticeable diference in m5C between HCC and paired non-tumor tissues, sug- gesting that m5C could play a role in the pathogenesis of HCC. In addition, analyses of gene ontology and the Kyoto Encyclopedia of Genes and Genomes showed that the unique distribution pattern of mRNA m5C in HCC was associ- ated with a wide range of cellular functions. Conclusions: Our results revealed diferent distribution patterns of m5C in HCC and adjacent tissues and provided new insights into a novel function of m5C RNA methylation of mRNA in HCC progression. Keywords: mRNA, 5-methylcytosine, Hepatocellular carcinoma, RNA methylation, MeRIP-seq Background treatment, due to its late diagnosis, high metastasis, and Hepatocellular carcinoma (HCC) is one of the most high recurrence rate, the lethal rate of hepatocellular widespread cancers, and it has an extremely poor prog- carcinoma remains high [4–7]. -
Long Non-Coding RNA Lncshgl Recruits Hnrnpa1 to Suppress Hepatic Gluconeogenesis and Lipogenesis
Page 1 of 60 Diabetes Long non-coding RNA LncSHGL recruits hnRNPA1 to suppress hepatic gluconeogenesis and lipogenesis Junpei Wang1,2#, Weili Yang1,2#, Zhenzhen Chen1, Ji Chen1, Yuhong Meng1, Biaoqi Feng1, Libo Sun3, Lin Dou4, Jian Li4, Qinghua Cui2*, Jichun Yang1* 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine Peking University Health Science Center Beijing 100191, China 2Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine Peking University Health Science Center, Beijing 100191, China 3Beijing You An Hospital,Capital Medical University, Beijing 100069, China 4Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing 100730, China #These authors contributed equally to this work *Correspondence to: Jichun Yang, Ph.D. Department of Physiology and Pathophysiology, School of Basic Medical Sciences Peking University Health Science Center, Beijing 100191, China Email: [email protected]; Tel: (+86) 10-82801403 Or to: Qinghua Cui, Ph.D. Department of Biomedical Informatics, School of Basic Medical Sciences Peking University Health Science Center, Beijing 100191, China Email:[email protected]; Tel:(+86)10-82801585 1 Diabetes Publish Ahead of Print, published online January 30, 2018 Diabetes Page 2 of 60 Abstract Mammalian genomes encode a huge number of LncRNAs with unknown functions. This study determined the role and mechanism of a new LncRNA, LncRNA Suppressor of Hepatic Gluconeogenesis and Lipogenesis (LncSHGL), in regulating hepatic glucose/lipid metabolism. -
NSUN2 As the Methyltransferase and ALYREF As an M5c Reader
Cell Research (2017) 27:606-625. ORIGINAL ARTICLE www.nature.com/cr 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader Xin Yang1, 2, 3, *, Ying Yang2, *, Bao-Fa Sun2, *, Yu-Sheng Chen2, 3, *, Jia-Wei Xu1, 2, *, Wei-Yi Lai3, 4, *, Ang Li2, 3, Xing Wang2, 5, Devi Prasad Bhattarai2, 3, Wen Xiao2, Hui-Ying Sun2, Qin Zhu2, 3, Hai-Li Ma2, 3, Samir Adhikari2, Min Sun2, Ya-Juan Hao2, Bing Zhang2, Chun-Min Huang2, Niu Huang6, Gui-Bin Jiang4, Yong-Liang Zhao2, Hai-Lin Wang4, Ying-Pu Sun1, Yun-Gui Yang2, 3 1Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; 2Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; 3School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; 4State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 5Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; 6National Institute of Biological Sciences, Beijing 102206, China 5-methylcytosine (m5C) is a post-transcriptional RNA modification identified in both stable and highly abundant tRNAs and rRNAs, and in mRNAs. However, its regulatory role in mRNA metabolism is still largely unknown. Here, we reveal that m5C modification is enriched in CG-rich regions and in regions immediately downstream of trans- lation initiation sites and has conserved, tissue-specific and dynamic features across mammalian transcriptomes. -
44056 NSUN2 Antibody
Revision 1 C 0 2 - t NSUN2 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] 6 Support: 877-678-TECH (8324) 5 0 Web: [email protected] 4 www.cellsignal.com 4 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP H M R Mk Endogenous 100 Rabbit Q08J23 54888 Product Usage Information 2. Bohnsack, K.E. et al. (2019) Genes (Basel) 10, pii: E102. doi: 10.3390/genes10020102. Application Dilution 3. Bourgeois, G. et al. (2015) PLoS One 10, e0133321. 4. Brzezicha, B. et al. (2006) Nucleic Acids Res 34, 6034-43. Western Blotting 1:1000 5. Tuorto, F. et al. (2012) Nat Struct Mol Biol 19, 900-5. Immunoprecipitation 1:50 6. Tang, H. et al. (2015) Aging (Albany NY) 7, 1143-58. 7. Xing, J. et al. (2015) Mol Cell Biol 35, 4043-52. 8. Hussain, S. et al. (2013) Cell Rep 4, 255-61. Storage 9. Okamoto, M. et al. (2012) DNA Cell Biol 31, 660-71. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% 10. Sakita-Suto, S. et al. (2007) Mol Biol Cell 18, 1107-17. glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity NSUN2 Antibody recognizes endogenous levels of total NSUN2 protein. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Val690 of human NSUN2 protein. -
A Mouse Model for Intellectual Disability Caused by Mutations in the X-Linked 2′‑O‑Methyltransferase Ftsj1 Gene
Accepted Manuscript A mouse model for intellectual disability caused by mutations in the X-linked 2′'O'methyltransferase Ftsj1 gene Lars R. Jensen, Lillian Garrett, Sabine M. Hölter, Birgit Rathkolb, Ildikó Rácz, Thure Adler, Cornelia Prehn, Wolfgang Hans, Jan Rozman, Lore Becker, Juan Antonio Aguilar-Pimentel, Oliver Puk, Kristin Moreth, Monika Dopatka, Diego J. Walther, Viola von Bohlen und Halbach, Matthias Rath, Martin Delatycki, Bettina Bert, Heidrun Fink, Katharina Blümlein, Markus Ralser, Anke Van Dijck, Frank Kooy, Zornitza Stark, Sabine Müller, Harry Scherthan, Jozef Gecz, Wolfgang Wurst, Eckhard Wolf, Andreas Zimmer, Martin Klingenspor, Jochen Graw, Thomas Klopstock, Dirk Busch, Jerzy Adamski, Helmut Fuchs, Valérie Gailus-Durner, Martin Hrabě de Angelis, Oliver von Bohlen und Halbach, Hans-Hilger Ropers, Andreas W. Kuss PII: S0925-4439(18)30497-6 DOI: https://doi.org/10.1016/j.bbadis.2018.12.011 Reference: BBADIS 65360 To appear in: BBA - Molecular Basis of Disease Received date: 6 July 2018 Revised date: 6 December 2018 Accepted date: 10 December 2018 Please cite this article as: Lars R. Jensen, Lillian Garrett, Sabine M. Hölter, Birgit Rathkolb, Ildikó Rácz, Thure Adler, Cornelia Prehn, Wolfgang Hans, Jan Rozman, Lore Becker, Juan Antonio Aguilar-Pimentel, Oliver Puk, Kristin Moreth, Monika Dopatka, Diego J. Walther, Viola von Bohlen und Halbach, Matthias Rath, Martin Delatycki, Bettina Bert, Heidrun Fink, Katharina Blümlein, Markus Ralser, Anke Van Dijck, Frank Kooy, Zornitza Stark, Sabine Müller, Harry Scherthan, Jozef Gecz, Wolfgang Wurst, Eckhard Wolf, Andreas Zimmer, Martin Klingenspor, Jochen Graw, Thomas Klopstock, Dirk Busch, Jerzy Adamski, Helmut Fuchs, Valérie Gailus-Durner, Martin Hrabě de Angelis, Oliver von Bohlen und Halbach, Hans-Hilger Ropers, Andreas W. -
Coordination of Mrna and Trna Methylations by TRMT10A
Coordination of mRNA and tRNA methylations by TRMT10A R. Jordan Ontiverosa,b,1, Hui Shena,1, Julian Stoutea,b, Amber Yanasa,b, Yixiao Cuia, Yuyu Zhanga, and Kathy Fange Liua,b,2 aDepartment of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and bGraduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Edited by Lynne E. Maquat, University of Rochester School of Medicine and Dentistry, Rochester, NY, and approved February 25, 2020 (received for review August 21, 2019) The posttranscriptional modification of messenger RNA (mRNA) and by which deficiency of TRMT10A is linked to the disease transfer RNA (tRNA) provides an additional layer of regulatory phenotype remains enigmatic. complexity during gene expression. Here, we show that a tRNA Another major type of RNA, messenger RNA (mRNA), also methyltransferase, TRMT10A, interacts with an mRNA demethylase carries methylations. The most prevalent internal modification in FTO (ALKBH9), both in vitro and inside cells. TRMT10A installs N1- mRNA is N6-methyladenosine (m6A), which impacts nearly ev- methylguanosine (m1G) in tRNA, and FTO performs demethylation ery step of RNA processing, including reducing or extending 6 6 6 on N -methyladenosine (m A) and N ,2′-O-dimethyladenosine RNA half-life in cells (23–28). The methyltransferase heterodimer 6 6 (m Am) in mRNA. We show that TRMT10A ablation not only leads complex of METTL3 and METTL14 installs m AinmRNA(29– 1 6 to decreased m G in tRNA but also significantly increases m A levels 32).ALKBH5andFTO(alsoknownasALKBH9)aretheonly in mRNA. Cross-linking and immunoprecipitation, followed by high- known m6A demethylase enzymes (33, 34).