Galois Groups of Enumerative Problems

Total Page:16

File Type:pdf, Size:1020Kb

Galois Groups of Enumerative Problems Galois groups of enumerative problems Yongquan Zhang Advisor: Prof. Joe Harris Minor thesis Department of Mathematics Harvard University January 2019 Contents 1 Introduction 2 2 Preliminaries 3 3 Galois groups of flexes of plane curves 11 4 Galois groups of bitangents of plane curves 15 5 Galois group of 27 lines on a cubic surface 19 6 Galois group of the problem of five conics 26 7 Resolvent degree 30 References 33 1 1 Introduction In this report, we discuss the solvability of some enumerative problems following [Har1]. To illustrate the type of problems at hand, take the famous example of 27 lines on a cubic surface 3 3 in P . Let S ⊂ P be a cubic surface given as the locus of a degree 3 homogenous polynomial P I 3 F (X) = #I=3 aI X in some homogenous coordinate X = [X0 : X1 : X2 : X3] on P . A line 3 in P is given by the span of two linearly independent vectors, say A = (a0; a1; a2; a3) and B = (b0; b1; b2; b3); for a generic cubic surface, we may even assume a0 = 0 = b1; a1 = 1 = b0. 1 Then the line lies on F (X) if and only if F (sA + tB) = 0 for all [s : t] 2 P . This gives 4 degree 3 (nonhomogenous) polynomials in a2; a3; b2; b3, with coefficients as polynomials in aI 's. Hence we do expect finitely many lines lying on the cubic surface. The question is then how many, and given coefficients aI , whether we can solve for these lines algebraically. To interpret solvability in terms of Galois theory, note that the solutions to a system of polynomial equations have algebraic coordinates over the base field, which is, in our case above, the field of rational functions C(aI ) in the coefficients aI . In particular, one may ask about the solvability of the Galois group of the algebraic extension obtained by adjoining the coordinates of all the solutions to C(aI ). More generally, one may ask about the solvability of this algebraic extension over C(aI ) adjoining the coordinates of some of the solutions, which in our case is equivalent to ask if we can solve for the remaining lines given the coordinates of some of them. Note that C(aI ) is essentially the function field of the complete linear system of cubic 3 surfaces in P . Consider the incidence correspondence in the space of pairs of a cubic surface and a line, cut out by the condition that the line lies on the cubic surface. Clearly the algebraic extension mentioned in the previous paragraph gives, in essence, the function field of this algebraic variety. There is also a natural projection from the incidence correspondence to the complete linear system. This projection is of finite degree (27 in this case), and hence we can define the associated monodromy group (for details, see Section 2.6). The key observation is that the Galois group and the monodromy group coincide, and hence we may study the Galois group by looking at the monodromy group and the rich geometry there. The Galois group then reveals information about the solutions; in particular, determining the solvability when the coordinates of some of the lines are given is the same as determining the solvability of the corresponding subgroup. This approach enables us to study this type of problems systematically. Instead of look- ing at solutions to find additional structures, we look at the group directly. This is in direct contrast to more classical explorations of these problems, where one obtain solvability by study the structure of the solutions, and then determine the Galois group from the informa- tion. For example, the Galois group acts on the 27 lines on the cubic surface preserving the intersection configuration, and hence cannot be the full symmetry group. We will comment on this classical approach when we can, drawing from references such as [Jor]. The structure of this report is as follows: some preliminary facts are reviewed in Section 2, many of which come from a basic course in algebraic geometry, mostly about plane curves, and are included for the benefit of the author, whose knowledge in the subject has been somewhat 2 rusty. The remaining sections are then each devoted to a different enumerative problem. Our focus will be the problems of flexes and bitangents on plane curves. In order to solve the problem of bitangents on quartics completely, we also need the solution to the problem of 27 lines on a cubic surface. After that, we include a short exposition on the problem of five conics to showcase the variety of problems that may be settled using this approach. Finally, we give an account of resolvent degree, including some more recent related research. 2 Preliminaries Some references for this section include [Har2, Ful, GH]. 2.1 Flexes and bitangents of plane curves A plane curve of degree d is the vanishing locus of a homogeneous polynomial F (X0;X1;X2) 2 of degree d in P . The (arithmetic) genus of a plane curve is given by g = (d − 1)(d − 2)=2 by the genus-degree formula. 2 Fix some homogenous coordinate [X0 : X1 : X2] on P , and corresponding dual coordinate 2∗ 2 2 [Y0 : Y1 : Y2] on P , the projective space of lines in P . That is, a point [X0 : X1 : X2] on P P lies on a line corresponding to [Y0 : Y1 : Y2] if and only if i XiYi = 0. Given a smooth plane 2∗ curve C of degree d, we can define a map f : C ! P by sending p 2 C to the tangent line of C at p. This map is algebraic: indeed, it is the restriction of the map " # @F @F @F p = [X0 : X1 : X2] 7! : : @X0 p @X1 p @X2 p to the curve C. Thus the image of C is also a curve, called the dual curve and denoted by C∗. Moreover the map f is generically one-to-one, as easily verified from its expression given above. The degree d∗ of C∗ is readily determined: it is the number of intersection of a generic 2∗ ∗ 2∗ 2 line in P with C . A line in P corresponds to a point in P , and thus the degree is also 2 the number of tangent lines to C passing through a generic point in P . Given a point q, assume none of the lines passing through q is multiply tangent to C. Consider the projection of C from q onto a generic line. This is a map of degree d, ramified at points of tangency. By Riemann-Hurwitz, the number of branch points is given by 2g − 2 + 2d = (d − 1)(d − 2) − 2 + 2d = d(d − 1): P This is as expected, as these tangent points are solutions of F (X) = i ai@F=@Xi = 0 where ∗ ∗ [a0 : a1 : a2] are the coordinate of q. Hence the degree d of the curve C is d(d − 1). The discrepancy in degree of C and C∗ is accounted for by the fact that C∗ is not smooth even if C is. We now try to determine the singularities of C∗. Let p 2 C be a point such that 3 the tangent line to C at p has contact order m ≥ 2. For simplicity, we choose homogeneous 2 coordinates on P and (holomorphic) local coordinate t on C, so that p = [1 : 0 : 0] and C is parametrically given locally (in an analytic small neighborhood) as t 7! [1 : t : X2(t)] m where X2(t) vanishes at t = 0 to degree m. Write X2(t) = t v(t) for some nonzero holomor- phic function v in a neighborhood of zero. Then one can calculate, locally, the expression of f: 0 0 m m+1 0 m−1 m 0 f(t) = [tX2(t)−X2(t): −X2(t) : 1] = (m − 1)t v(t) + t v (t): −mt v(t) − t v (t) : 1 m m−1 Therefore, in some local coordinate et, f is given as t~ 7! [t~ u(t~): t~ : 1] for some nonzero holomorphic function u in a neighborhood of zero. In particular, we see that C∗ has a cuspidal singularity of multiplicity m − 1 at f(p) and the map f is smooth at p if and only if m = 2. Moreover, from the expression for f, which gives a parametrization of C∗ locally, we see that at point f(p) of C∗, the tangent line to C∗ corresponds to p. As we have discussed, the map f is generically one-to-one over a point l 2 C∗, unless the ∗ corresponding line l is tangent to C at several points p1; : : : ; pe. For each branch of C at l, ∗ the tangents are distinct, as these tangents correspond to points pi respectively. Hence C has a e-fold ordinary singularity at l. We will always assume there are only two types of singularity at a point l 2 C∗: ordinary double point and cusps of degree 2. In particular, these correspond to lines tangent to C at two distinct points, each with contact order 2, and lines tangent to C at a unique point with contact order 3. The former will be referred to as bitangents, and the latter ordinary flexes (or simply flexes when no confusion arises; in general, a flex is a point at which the tangent line has contact order at least 3). This assumption holds for generic curves of degree 2 d. Indeed, let Wd be the complete linear system of plane curves of degree d in P .
Recommended publications
  • Cubic Surfaces and Their Invariants: Some Memories of Raymond Stora
    Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 912 (2016) 374–425 www.elsevier.com/locate/nuclphysb Cubic surfaces and their invariants: Some memories of Raymond Stora Michel Bauer Service de Physique Theorique, Bat. 774, Gif-sur-Yvette Cedex, France Received 27 May 2016; accepted 28 May 2016 Available online 7 June 2016 Editor: Hubert Saleur Abstract Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I’m very much indebted. Each smooth cubic surface has a rich geometric structure, which I review briefly, with emphasis on the 27 lines and the combinatorics of their intersections. Only elementary methods are used, relying on first order perturbation/deformation theory. I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4(C) splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric) invariant theory. Ireview briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. Ishow how to retrieve this description via counting/generating functions and character formulae. © 2016 The Author. Published by Elsevier B.V.
    [Show full text]
  • Classifying Smooth Cubic Surfaces up to Projective Linear Transformation
    Classifying Smooth Cubic Surfaces up to Projective Linear Transformation Noah Giansiracusa June 2006 Introduction We would like to study the space of smooth cubic surfaces in P3 when each surface is considered only up to projective linear transformation. Brundu and Logar ([1], [2]) de¯ne an action of the automorphism group of the 27 lines of a smooth cubic on a certain space of cubic surfaces parametrized by P4 in such a way that the orbits of this action correspond bijectively to the orbits of the projective linear group PGL4 acting on the space of all smooth cubic surfaces in the natural way. They prove several other results in their papers, but in this paper (the author's senior thesis at the University of Washington) we focus exclusively on presenting a reasonably self-contained and coherent exposition of this particular result. In doing so, we chose to slightly modify the action and ensuing proof, more aesthetically than substantially, in order to better reveal the intricate relation between combinatorics and geometry that underlies this problem. We would like to thank Professors Chuck Doran and Jim Morrow for much guidance and support. The Space of Cubic Surfaces Before proceeding, we need to de¯ne terms such as \the space of smooth cubic surfaces". Let W be a 4-dimensional vector-space over an algebraically closed ¯eld k of characteristic zero whose projectivization P(W ) = P3 is the ambient space in which the cubic surfaces we consider live. Choose a basis (x; y; z; w) for the dual vector-space W ¤. Then an arbitrary cubic surface is given by the zero locus V (F ) of an element F 2 S3W ¤ ½ k[x; y; z; w], where SnV denotes the nth symmetric power of a vector space V | which in this case simply means the set of degree three homogeneous polynomials.
    [Show full text]
  • Arxiv:1712.01167V2 [Math.AG] 12 Oct 2018 12
    AUTOMORPHISMS OF CUBIC SURFACES IN POSITIVE CHARACTERISTIC IGOR DOLGACHEV AND ALEXANDER DUNCAN Abstract. We classify all possible automorphism groups of smooth cu- bic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quar- tic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automor- phism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive char- acteristic, together with a group action, can be lifted to characteristic zero. Contents 1. Introduction2 Acknowledgements8 2. Preliminaries8 3. Del Pezzo surfaces of degree 4 12 4. Differential structure in special characteristics 19 5. The Fermat cubic surface 24 6. General forms 28 7. Rationality of the moduli space 33 8. Conjugacy classes of automorphisms 36 9. Involutions 38 10. Automorphisms of order 3 46 11. Automorphisms of order 4 59 arXiv:1712.01167v2 [math.AG] 12 Oct 2018 12. Automorphisms of higher order 64 13. Collections of Eckardt points 69 14. Proof of the Main Theorem 72 15. Lifting to characteristic zero 73 Appendix 78 References 82 The second author was partially supported by National Security Agency grant H98230- 16-1-0309. 1 2 IGOR DOLGACHEV AND ALEXANDER DUNCAN 1. Introduction 3 Let X be a smooth cubic surface in P defined over an algebraically closed field | of arbitrary characteristic p. The primary purpose of this paper is to classify the possible automorphism groups of X.
    [Show full text]
  • UNIVERSAL TORSORS and COX RINGS Brendan Hassett and Yuri
    UNIVERSAL TORSORS AND COX RINGS by Brendan Hassett and Yuri Tschinkel Abstract. — We study the equations of universal torsors on rational surfaces. Contents Introduction . 1 1. Generalities on the Cox ring . 4 2. Generalities on toric varieties . 7 3. The E6 cubic surface . 12 4. D4 cubic surface . 23 References . 26 Introduction The study of surfaces over nonclosed fields k leads naturally to certain auxiliary varieties, called universal torsors. The proofs of the Hasse principle and weak approximation for certain Del Pezzo surfaces required a very detailed knowledge of the projective geometry, in fact, explicit equations, for these torsors [7], [9], [8], [22], [23], [24]. More recently, Salberger proposed using universal torsors to count rational points of The first author was partially supported by the Sloan Foundation and by NSF Grants 0196187 and 0134259. The second author was partially supported by NSF Grant 0100277. 2 BRENDAN HASSETT and YURI TSCHINKEL bounded height, obtaining the first sharp upper bounds on split Del Pezzo surfaces of degree 5 and asymptotics on split toric varieties over Q [21]. This approach was further developed in the work of Peyre, de la Bret`eche, and Heath-Brown [19], [20], [3], [14]. Colliot-Th´el`eneand Sansuc have given a general formalism for writing down equations for these torsors. We briefly sketch their method: Let X be a smooth projective variety and {Dj}j∈J a finite set of irreducible divisors on X such that U := X \ ∪j∈J Dj has trivial Picard group. In practice, one usually chooses generators of the effective cone of X, e.g., the lines on the Del Pezzo surface.
    [Show full text]
  • Shadow of a Cubic Surface
    Faculteit B`etawetenschappen Shadow of a cubic surface Bachelor Thesis Rein Janssen Groesbeek Wiskunde en Natuurkunde Supervisors: Dr. Martijn Kool Departement Wiskunde Dr. Thomas Grimm ITF June 2020 Abstract 3 For a smooth cubic surface S in P we can cast a shadow from a point P 2 S that does not lie on one of the 27 lines of S onto a hyperplane H. The closure of this shadow is a smooth quartic curve. Conversely, from every smooth quartic curve we can reconstruct a smooth cubic surface whose closure of the shadow is this quartic curve. We will also present an algorithm to reconstruct the cubic surface from the bitangents of a quartic curve. The 27 lines of S together with the tangent space TP S at P are in correspondence with the 28 bitangents or hyperflexes of the smooth quartic shadow curve. Then a short discussion on F-theory is given to relate this geometry to physics. Acknowledgements I would like to thank Martijn Kool for suggesting the topic of the shadow of a cubic surface to me and for the discussions on this topic. Also I would like to thank Thomas Grimm for the suggestions on the applications in physics of these cubic surfaces. Finally I would like to thank the developers of Singular, Sagemath and PovRay for making their software available for free. i Contents 1 Introduction 1 2 The shadow of a smooth cubic surface 1 2.1 Projection of the first polar . .1 2.2 Reconstructing a cubic from the shadow . .5 3 The 27 lines and the 28 bitangents 9 3.1 Theorem of the apparent boundary .
    [Show full text]
  • A Mathematical Background to Cubic and Quartic Schilling Models
    Utrecht University A Mathematical Background to Cubic and Quartic Schilling Models Author: I.F.M.M.Nelen A thesis presented for the degree Master of Science Supervisor: Prof. Dr. F. Beukers Second Reader: Prof. Dr. C.F. Faber Masters Programme: Mathematical Sciences Department: Departement of Mathematics University: Utrecht University Abstract At the end of the twentieth century plaster models of algebraic surface were constructed by the company of Schilling. Many universities have some series of these models but a rigorous mathematical background to the theory is most often not given. In this thesis a mathematical background is given for the cubic surfaces and quartic ruled surfaces on which two series of Schilling models are based, series VII and XIII. The background consists of the classification of all complex cubic surface through the number and type of singularities lying on the surface. The real cubic sur- faces are classified by which of the singularities are real and the number and configuration of the lines lying on the cubic surface. The ruled cubic and quartic surfaces all have a singular curve lying on them and they are classified by the degree of this curve. Acknowledgements Multiple people have made a contribution to this thesis and I want to extend my graditute here. First of all I want to thank Prof. Dr. Frits Beukers for being my super- visor, giving me an interesting subject to write about and helping me get the answers needed to finish this thesis. By his comments he gave me a broader un- derstanding of the topic and all the information I needed to complete this thesis.
    [Show full text]
  • Moduli Spaces and Invariant Theory
    MODULI SPACES AND INVARIANT THEORY JENIA TEVELEV CONTENTS §1. Syllabus 3 §1.1. Prerequisites 3 §1.2. Course description 3 §1.3. Course grading and expectations 4 §1.4. Tentative topics 4 §1.5. Textbooks 4 References 4 §2. Geometry of lines 5 §2.1. Grassmannian as a complex manifold. 5 §2.2. Moduli space or a parameter space? 7 §2.3. Stiefel coordinates. 8 §2.4. Complete system of (semi-)invariants. 8 §2.5. Plücker coordinates. 9 §2.6. First Fundamental Theorem 10 §2.7. Equations of the Grassmannian 11 §2.8. Homogeneous ideal 13 §2.9. Hilbert polynomial 15 §2.10. Enumerative geometry 17 §2.11. Transversality. 19 §2.12. Homework 1 21 §3. Fine moduli spaces 23 §3.1. Categories 23 §3.2. Functors 25 §3.3. Equivalence of Categories 26 §3.4. Representable Functors 28 §3.5. Natural Transformations 28 §3.6. Yoneda’s Lemma 29 §3.7. Grassmannian as a fine moduli space 31 §4. Algebraic curves and Riemann surfaces 37 §4.1. Elliptic and Abelian integrals 37 §4.2. Finitely generated fields of transcendence degree 1 38 §4.3. Analytic approach 40 §4.4. Genus and meromorphic forms 41 §4.5. Divisors and linear equivalence 42 §4.6. Branched covers and Riemann–Hurwitz formula 43 §4.7. Riemann–Roch formula 45 §4.8. Linear systems 45 §5. Moduli of elliptic curves 47 1 2 JENIA TEVELEV §5.1. Curves of genus 1. 47 §5.2. J-invariant 50 §5.3. Monstrous Moonshine 52 §5.4. Families of elliptic curves 53 §5.5. The j-line is a coarse moduli space 54 §5.6.
    [Show full text]
  • Polynomial Curves and Surfaces
    Polynomial Curves and Surfaces Chandrajit Bajaj and Andrew Gillette September 8, 2010 Contents 1 What is an Algebraic Curve or Surface? 2 1.1 Algebraic Curves . .3 1.2 Algebraic Surfaces . .3 2 Singularities and Extreme Points 4 2.1 Singularities and Genus . .4 2.2 Parameterizing with a Pencil of Lines . .6 2.3 Parameterizing with a Pencil of Curves . .7 2.4 Algebraic Space Curves . .8 2.5 Faithful Parameterizations . .9 3 Triangulation and Display 10 4 Polynomial and Power Basis 10 5 Power Series and Puiseux Expansions 11 5.1 Weierstrass Factorization . 11 5.2 Hensel Lifting . 11 6 Derivatives, Tangents, Curvatures 12 6.1 Curvature Computations . 12 6.1.1 Curvature Formulas . 12 6.1.2 Derivation . 13 7 Converting Between Implicit and Parametric Forms 20 7.1 Parameterization of Curves . 21 7.1.1 Parameterizing with lines . 24 7.1.2 Parameterizing with Higher Degree Curves . 26 7.1.3 Parameterization of conic, cubic plane curves . 30 7.2 Parameterization of Algebraic Space Curves . 30 7.3 Automatic Parametrization of Degree 2 Curves and Surfaces . 33 7.3.1 Conics . 34 7.3.2 Rational Fields . 36 7.4 Automatic Parametrization of Degree 3 Curves and Surfaces . 37 7.4.1 Cubics . 38 7.4.2 Cubicoids . 40 7.5 Parameterizations of Real Cubic Surfaces . 42 7.5.1 Real and Rational Points on Cubic Surfaces . 44 7.5.2 Algebraic Reduction . 45 1 7.5.3 Parameterizations without Real Skew Lines . 49 7.5.4 Classification and Straight Lines from Parametric Equations . 52 7.5.5 Parameterization of general algebraic plane curves by A-splines .
    [Show full text]
  • Universal Unramified Cohomology of Cubic Fourfolds Containing a Plane
    UNIVERSAL UNRAMIFIED COHOMOLOGY OF CUBIC FOURFOLDS CONTAINING A PLANE ASHER AUEL, JEAN-LOUIS COLLIOT-THEL´ ENE,` R. PARIMALA Abstract. We prove the universal triviality of the third unramified cohomology group of a very general complex cubic fourfold containing a plane. The proof uses results on the unramified cohomology of quadrics due to Kahn, Rost, and Sujatha. Introduction 5 Let X be a smooth cubic fourfold, i.e., a smooth cubic hypersurface in P .A well-known problem in algebraic geometry concerns the rationality of X over C. Expectation. The very general cubic fourfold over C is irrational. Here, \very general" is usually taken to mean \in the complement of a countable union of Zariski closed subsets" in the moduli space of cubic fourfolds. At present, however, not a single cubic fourfold is provably irrational, though many families of rational cubic fourfolds are known. 5 If X contains a plane P (i.e., a linear two dimensional subvariety of P ), then X 2 is birational to the total space of a quadric surface bundle Xe ! P by projecting 2 from P . Its discriminant divisor D ⊂ P is a sextic curve. The rationality of a cubic fourfold containing a plane over C is also a well-known problem. Expectation. The very general cubic fourfold containing a plane over C is irra- tional. Assuming that the discriminant divisor D is smooth, the discriminant double 2 cover S ! P branched along D is then a K3 surface of degree 2 and the even Clifford 2 algebra of the quadric fibration Xe ! P gives rise to a Brauer class β 2 Br(S), called the Clifford invariant of X.
    [Show full text]
  • The Galois Group of the 27 Lines on a Rational Cubic Surface
    The Galois group of the 27 lines on a rational cubic surface Arav Karighattam Mentor – Yongyi Chen May 18, 2019 MIT-PRIMES Conference Cubic surfaces and lines A cubic surface is the set of all points (x, y, z) satisfying a cubic polynomial equation. In this talk we will be considering smooth cubic surfaces. Example. The Fermat cubic is the set of all points (x, y, z) with + + = 1. 3 3 3 − Cubic surfaces and lines The lines in the Fermat cubic + + = 1 are: 3 3 3 (-ζ, t, -ωt),− (-ζt, t, -ω), (-ζt, -ω, t), where t varies over , and ζ and ω are cube roots of 1. Notice that there areℂ 27 lines on this cubic surface. Theorem. (Cayley, 1849) Every smooth cubic surface contains exactly 27 lines. Cubic surfaces and lines This is an example of a cubic surface. Source: 27 Lines on a Cubic Surface by Greg Egan http://www.gregegan.net/ Projective space Define n-dimensional projective space as the space of nonzero (n + 1)-tuples of complex numbers … up to scaling. We may embed n-dimensional space ℙ into projective space by setting one of the 0 ∶ 1 ∶ 2 ∶ ∶ projective coordinates to 1. Projective space can be considered as ℂ with points at infinity. A line in is a linear embedding . We can parametrize a general line in ℂ as [s : t : as3 + bt : cs + dt] for some fixed1 complex3 numbers a, b, c, and d. 3 For the restℙ of the talk, we will be consideringℙ ↪ ℙ cubic surfaces in projective space. ℙ The blow-up of at six points 2 ℙ The blow-up of at the origin is \ {0} with a line at 0, with each point on the line corresponding to a2 tangent direction at2 the point.
    [Show full text]
  • Introduction to Complex Analysis Michael Taylor
    Introduction to Complex Analysis Michael Taylor 1 2 Contents Chapter 1. Basic calculus in the complex domain 0. Complex numbers, power series, and exponentials 1. Holomorphic functions, derivatives, and path integrals 2. Holomorphic functions defined by power series 3. Exponential and trigonometric functions: Euler's formula 4. Square roots, logs, and other inverse functions I. π2 is irrational Chapter 2. Going deeper { the Cauchy integral theorem and consequences 5. The Cauchy integral theorem and the Cauchy integral formula 6. The maximum principle, Liouville's theorem, and the fundamental theorem of al- gebra 7. Harmonic functions on planar regions 8. Morera's theorem, the Schwarz reflection principle, and Goursat's theorem 9. Infinite products 10. Uniqueness and analytic continuation 11. Singularities 12. Laurent series C. Green's theorem F. The fundamental theorem of algebra (elementary proof) L. Absolutely convergent series Chapter 3. Fourier analysis and complex function theory 13. Fourier series and the Poisson integral 14. Fourier transforms 15. Laplace transforms and Mellin transforms H. Inner product spaces N. The matrix exponential G. The Weierstrass and Runge approximation theorems Chapter 4. Residue calculus, the argument principle, and two very special functions 16. Residue calculus 17. The argument principle 18. The Gamma function 19. The Riemann zeta function and the prime number theorem J. Euler's constant S. Hadamard's factorization theorem 3 Chapter 5. Conformal maps and geometrical aspects of complex function the- ory 20. Conformal maps 21. Normal families 22. The Riemann sphere (and other Riemann surfaces) 23. The Riemann mapping theorem 24. Boundary behavior of conformal maps 25. Covering maps 26.
    [Show full text]
  • On Algebraic Functions
    On Algebraic Functions N.D. Bagis Stenimahou 5 Edessa Pella 58200, Greece [email protected] Abstract In this article we consider functions with Moebius-periodic rational coefficients. These functions under some conditions take algebraic values and can be recovered by theta functions and the Dedekind eta function. Special cases are the elliptic singular moduli, the Rogers- Ramanujan continued fraction, Eisenstein series and functions asso- ciated with Jacobi symbol coefficients. Keywords: Theta functions; Algebraic functions; Special functions; Peri- odicity; 1 Known Results on Algebraic Functions The elliptic singular moduli kr is the solution x of the equation 1 1 2 2F1 , ;1;1 x 2 2 − = √r (1) 1 1 2 2F1 2 , 2 ; 1; x where 1 2 π/2 ∞ 1 1 2 2 n 2n 2 2 dφ 2F1 , ; 1; x = 2 x = K(x)= (2) 2 2 (n!) π π 2 n=0 Z0 1 x2 sin (φ) X − q The 5th degree modular equation which connects k25r and kr is (see [13]): 5/3 1/3 krk25r + kr′ k25′ r +2 (krk25rkr′ k25′ r) = 1 (3) arXiv:1305.1591v3 [math.GM] 27 Mar 2014 The problem of solving (3) and find k25r reduces to that solving the depressed equation after named by Hermite (see [3]): u6 v6 +5u2v2(u2 v2)+4uv(1 u4v4) = 0 (4) − − − 1/4 1/4 where u = kr and v = k25r . The function kr is also connected to theta functions from the relations 2 θ (q) ∞ 2 ∞ 2 k = 2 , where θ (q)= θ = q(n+1/2) and θ (q)= θ = qn r θ2(q) 2 2 3 3 3 n= n= X−∞ X−∞ (5) 1 π√r q = e− .
    [Show full text]