On Generalized Integrals and Ramanujan-Jacobi Special Functions

Total Page:16

File Type:pdf, Size:1020Kb

On Generalized Integrals and Ramanujan-Jacobi Special Functions On Generalized Integrals and Ramanujan-Jacobi Special Functions N.D.Bagis Department of Informatics, Aristotele University Thessaloniki, Greece [email protected] Keywords: Elliptic Functions; Ramanujan; Special Functions; Continued Fractions; Generalization; Evaluations Abstract In this article we consider new generalized functions for evaluating integrals and roots of functions. The construction of these general- ized functions is based on Rogers-Ramanujan continued fraction, the Ramanujan-Dedekind eta, the elliptic singular modulus and other similar functions. We also provide modular equations of these new generalized functions and remark some interesting properties. 1 Introduction Let ∞ η(τ)= eπiτ/12 (1 e2πinτ ) (1) − n=1 Y denotes the Dedekind eta function which is defined in the upper half complex plane. It not defined for real τ. Let for q < 1 the Ramanujan eta function be | | ∞ arXiv:1309.7247v3 [math.GM] 15 Nov 2015 f( q)= (1 qn). (2) − − n=1 Y The following evaluation holds (see [12]): 1/3 1/2 1/24 1/12 1/3 1/2 f( q)=2 π− q− k k∗ K(k) (3) − 2 where k = kr is the elliptic singular modulus, k∗ = √1 k and K(x) is the complete elliptic integral of the first kind. − The Rogers-Ramanujan continued fraction is (see [8],[9],[14]): q1/5 q1 q2 q3 R(q) := ... (4) 1+ 1+ 1+ 1+ 1 which have first derivative (see [5]): 1 5/6 4 6 5 5 R′(q)=5− q− f( q) R(q) R(q) 11 R(q) (5) − − − − and also we can write p dR(q) 1 1/3 2/3 6 5 5 =5− 2 (kk∗)− R(q) R(q) 11 R(q) . (6) dk · − − − p Ramanujan have proven that 6 5 5 f( q) R(q)− 11 R(q) = − (7) − − qf( q5)6 − Also holds the following interesting identity 2 2 dk 2k(k∗) K(k) = − (8) dq qπ2 which is a result of Ramanujan (see [7] and [8]) for the first derivative of k = kr π√r with respect to q = e− , r> 0. 2 Propositions Definition 1. For any smooth function G, we define mG(A) to be such that + ∞ 4 πt A = π η (it/2) G R e− dt (9) Z√mG(A) Theorem 1. If y G(t) 5 dt = A (10) 6 5 5 0 t√t 11 t Z − − − then π√mG(A) y = R e− (11) Proof. From [5] it is known that if a,b (0, 1) then ∈ a R(a) 4 5/6 G(x) f( q) q− G(R(q))dq =5 dx. (12) 6 5 5 b − R(b) x√x 11 x Z Z − − − which is equivalent to write πa 1 a1 R(e− ) tπ 4 tπ/6 πt G(x) π f e− e− G R e− dt =5 dx. πb 6 5 5 − − 1 x√x 11 x Zb1 ZR(e− ) − − − 2 Setting b1 =+ , a1 = mG(A) and then using Definition 1 and the Dedekind eta expansion (1)∞ we get the result. p Also differentiating (8) one can get ( 1) 4 dmG− (r) πη (i√r/2) G(R(q)) π√r = , q = e− , r> 0 (13) dr − 2√r and if 2√r φ(r) := 4 (14) − i√r πη 2 G (R (q)) then Proposition 1. If A> 0, then d m (A)= φ (m (A)) (15) dA G G π√mG Derivating (10) with respect to qmG = e− we get 5G(R(q )) dR(q ) dA 1 mG mG = 6 5 5 dqmG R(qmG ) R(qmG )− 11 R(qmG ) dqmG dkmG − − dkmG p or the equivalent, using (8),(5) and (3): Theorem 2. dA G (y(A)) √3 = 2 2/3 (16) dkmG kmG km∗ G Also with integration of (16) we have A 3 1 1 7 2 1 3 2kmG 2F1 , ; ; kmG = dt (17) · 6 3 6 π√mG(t) 0 G R e− p Z Hence Definition 2. We define the function h as h(x) dt h(x) dt x = = (18) π√mG(t) G (y(t)) Z0 G R e− Z0 3 Theorem 3. Set mG(A)= r, then 1 1 7 A = h 3 3 2k F , ; ; k2 , (19) r · 2 1 6 3 6 r p or beter ( 1) 3 1 1 7 2 m − (r)= h 3 2k F , ; ; k . (20) G r · 2 1 6 3 6 r p From relation (10) differentiating we have G(y(A))y (A) 5 ′ =1 y(A) 6 y(A) 5 11 y(A)5 − − − hence p y(A) dt A dt 5 = = bmG (21) 6 5 5 0 t√t 11 t 0 G(y(t)) Z − − − Z where 1 1 7 b =3 3 2k F , ; ; k2 . (22) r r · 2 1 6 3 6 r p Also if m(x) is the function defined as (see [13]) + ∞ π η(it/2)4dt = r (23) Z√m(r) then ( 1) br− = m(r) (24) Hence π√mG y(A)= R e− = F1 (bmG ) (25) where we have define F1 by F1(x) dt x =5 . (26) 6 5 5 0 t√t 11 t Z − − − Theorem 4. A G(t)dt A dt 5 = h 5 (27) 6 5 5 6 5 5 0 t√t− 11 t 0 t√t− 11 t ! Z − − Z − − Proof. From relations (21) and (19) and (10) we have y(A) dt y(A) G(t)dt h 5 = h(bmG )= A =5 (28) 6 5 5 6 5 5 0 t√t− 11 t ! 0 t√t− 11 t Z − − Z − − 4 which by inversion of y(A) we get the desired result. Also from relation (20) is ( 1) mG− (A)= h(bA). (29) Hence knowing the function h we know almost everything. For this, for a given function P (x) we can set 1 6 5 5 G(x)=5− xP ′(x) x 11 x (30) − − − then p ( 1) π√A mG− (A)= P R e− = h(bA) (31) ( 1) Hence inverting bA we get the function h. Note also that P (A)= y − (A) and mG(A)= vi(y(A)) (32) π√x where vi(x) is the inverse function of R(e− ). Remarks. ( 1) 1) Note by definition that when we know G the mG− (A) is a closed form for- mula and mG(A) is not (it needs inversion). ( 1) 2) Continuing from relation (30) and y(x)= P − (x) we have 1 ( 1) ( 1) 6 ( 1) 5 ( 1) 5 G(y(x))=5− P − (x)P ′ P − (x) P (x) − 11 P (x) − − − − q From equation (28) we get also Corollary 1. y(A) ( 1) dt h − (A)=5 (33) 6 5 5 0 t√t 11 t Z − − − Corollary 2. 1 6 5 5 y′(A)=5− h′ (A)y(A) y(A) 11 y(A) (34) i − − − with p ( 1) h (A)= h − (A)= b = (b m ) (A) (35) i mG(A) ◦ G and also dy(A) 2/3 1 1/3 − 6 5 5 =5− 2 kmG km∗ G y(A) y(A)− 11 y(A) (36) dkmG · − − p Using the above one can show with differentiation the following 5 Theorem 5. y(A) ∞ 4 dt hi(A)= π η (it/2) dt = b G =5 (37) m (A) 6 5 5 √mG(A) 0 t√t− 11 t Z Z − − Also another interesting theorem arises from the definition of h(x). By setting ( 1) 1 − h (t) := (t), (38) 1 h (x) i′ then Theorem 6. Gi(x) dt x h (t) 5 = 1′ dt. (39) 6 5 5 0 t√t 11 t c t Z − − − Z Proof. From relation (18) we have 1 G (y(t)) = hi′ (t) hence inverting yi (Gi(t)) = h1(t). Taking the derivatives in both parts we get G (t) h (t) 5 i′ = 1′ . G (t) 6 G (t) 5 11 G (t)5 t i i − − − i Lastly integrating the abovep relation in both parts we get the result. Equation (39) can also written in the next form using (26) x h (t) G (x)= F 1′ dt (40) i 1 t Zc Suppose the n-th order modular equation of y(A) is ( 1) P (A)= y n y − (A) . (41) n · Then we can find Pn(x) by solving Pn(A) G(t) A G(t) dt = n dt (42) 6 5 5 6 5 5 0 t√t 11 t 0 t√t 11 t Z − − − Z − − − 6 with respect to Pn(A). Setting Qn(A) to be 2 ( 1) Q (A) := m n m − (A) (43) n G · G the n-nth degree modular equation of mG(A) and using (15) we have A ( 1) dt m − (A)= (44) G φ(t) Z0 and Qn(A) dt A dt = n . φ(t) φ(t) Z0 Z0 Also ( 1) Qn− (A)= Q1/n (A) and Qnm(A) dt Qm(A) dt A dt = n = nm φ(t) φ(t) φ(t) Z0 Z0 Z0 and Qn(Qm(A)) dt Qm(A) dt A dt = n = nm φ(t) φ(t) φ(t) Z0 Z0 Z0 Hence Qn(Qm(A)) dt Qnm(A) dt = φ(t) φ(t) Z0 Z0 and consequently Qn (Qm (A)) = Qm (Qn (A)) = Qnm(A), (45) a1 a2 as Q1(A)= A and if n = p1 p2 ...ps Q (x) = (Q ... Q ) (Q ... Q ) ... (Q ... Q ) (46) n p1 ◦ ◦ p1 ◦ p2 ◦ ◦ p2 ◦ ◦ ps ◦ ◦ ps respectively iterated a1,a2,...,as times. Hence ( 1) ( 1) ( 1) π m − Qn mG mG(A) y m − m − Q m m (A) = R e− G ◦ ◦ ◦ = G ◦ G ◦ n ◦ G ◦ G p πn√mG(A) = R e− =Ωn (y(A)) But ( 1) ( 1) ( 1) 2 m − m − Q m m (A)= m − n m (A) = Q∗ (A) (47) G ◦ G ◦ n ◦ G ◦ G G · G n By this we lead to the following 7 Theorem 7.
Recommended publications
  • Introduction to Complex Analysis Michael Taylor
    Introduction to Complex Analysis Michael Taylor 1 2 Contents Chapter 1. Basic calculus in the complex domain 0. Complex numbers, power series, and exponentials 1. Holomorphic functions, derivatives, and path integrals 2. Holomorphic functions defined by power series 3. Exponential and trigonometric functions: Euler's formula 4. Square roots, logs, and other inverse functions I. π2 is irrational Chapter 2. Going deeper { the Cauchy integral theorem and consequences 5. The Cauchy integral theorem and the Cauchy integral formula 6. The maximum principle, Liouville's theorem, and the fundamental theorem of al- gebra 7. Harmonic functions on planar regions 8. Morera's theorem, the Schwarz reflection principle, and Goursat's theorem 9. Infinite products 10. Uniqueness and analytic continuation 11. Singularities 12. Laurent series C. Green's theorem F. The fundamental theorem of algebra (elementary proof) L. Absolutely convergent series Chapter 3. Fourier analysis and complex function theory 13. Fourier series and the Poisson integral 14. Fourier transforms 15. Laplace transforms and Mellin transforms H. Inner product spaces N. The matrix exponential G. The Weierstrass and Runge approximation theorems Chapter 4. Residue calculus, the argument principle, and two very special functions 16. Residue calculus 17. The argument principle 18. The Gamma function 19. The Riemann zeta function and the prime number theorem J. Euler's constant S. Hadamard's factorization theorem 3 Chapter 5. Conformal maps and geometrical aspects of complex function the- ory 20. Conformal maps 21. Normal families 22. The Riemann sphere (and other Riemann surfaces) 23. The Riemann mapping theorem 24. Boundary behavior of conformal maps 25. Covering maps 26.
    [Show full text]
  • On Algebraic Functions
    On Algebraic Functions N.D. Bagis Stenimahou 5 Edessa Pella 58200, Greece [email protected] Abstract In this article we consider functions with Moebius-periodic rational coefficients. These functions under some conditions take algebraic values and can be recovered by theta functions and the Dedekind eta function. Special cases are the elliptic singular moduli, the Rogers- Ramanujan continued fraction, Eisenstein series and functions asso- ciated with Jacobi symbol coefficients. Keywords: Theta functions; Algebraic functions; Special functions; Peri- odicity; 1 Known Results on Algebraic Functions The elliptic singular moduli kr is the solution x of the equation 1 1 2 2F1 , ;1;1 x 2 2 − = √r (1) 1 1 2 2F1 2 , 2 ; 1; x where 1 2 π/2 ∞ 1 1 2 2 n 2n 2 2 dφ 2F1 , ; 1; x = 2 x = K(x)= (2) 2 2 (n!) π π 2 n=0 Z0 1 x2 sin (φ) X − q The 5th degree modular equation which connects k25r and kr is (see [13]): 5/3 1/3 krk25r + kr′ k25′ r +2 (krk25rkr′ k25′ r) = 1 (3) arXiv:1305.1591v3 [math.GM] 27 Mar 2014 The problem of solving (3) and find k25r reduces to that solving the depressed equation after named by Hermite (see [3]): u6 v6 +5u2v2(u2 v2)+4uv(1 u4v4) = 0 (4) − − − 1/4 1/4 where u = kr and v = k25r . The function kr is also connected to theta functions from the relations 2 θ (q) ∞ 2 ∞ 2 k = 2 , where θ (q)= θ = q(n+1/2) and θ (q)= θ = qn r θ2(q) 2 2 3 3 3 n= n= X−∞ X−∞ (5) 1 π√r q = e− .
    [Show full text]
  • Symmetries and Polynomials
    Symmetries and Polynomials Aaron Landesman and Apurva Nakade June 30, 2018 Introduction In this class we’ll learn how to solve a cubic. We’ll also sketch how to solve a quartic. We’ll explore the connections between these solutions and group theory. Towards the end, we’ll hint towards the deep connection between polynomials and groups via Galois Theory. This connection allows one to convert the classical question of whether a general quintic can be solved by radicals to a group theory problem, which can be relatively easily answered. The 5 day outline is as follows: 1. The first two days are dedicated to studying polynomials. On the first day, we’ll study a simple invariant associated to every polynomial, the discriminant. 2. On the second day, we’ll solve the cubic equation by a method motivated by Galois theory. 3. Days 3 and 4 are a “practical” introduction to group theory. On day 3 we’ll learn about groups as symmetries of geometric objects. 4. On day 4, we’ll learn about the commutator subgroup of a group. 5. Finally, on the last day we’ll connect the two theories and explain the Galois corre- spondence for the cubic and the quartic. There are plenty of optional problems along the way for those who wish to explore more. Tricky optional problems are marked with ∗, and especially tricky optional problems are marked with ∗∗. 1 1 The Discriminant Today we’ll introduce the discriminant of a polynomial. The discriminant of a polynomial P is another polynomial Q which tells you whether P has any repeated roots over C.
    [Show full text]
  • Notes for a Talk on Resolvent Degree
    Roots of topology Tobias Shin Abstract These are notes for a talk in the Graduate Student Seminar at Stony Brook. We discuss polynomials, covering spaces, and Galois theory, and how they all relate through the unifying concept of \resolvent degree", following Farb and Wolfson[1]. We will also see how this concept relates Hilbert's 13th problem (among others) to classical enumerative problems in algebraic geometry, such as 27 lines on a smooth cubic, 28 bitangents on a planar quartic, etc. Algebraic functions and roots of topology First, a historial note: the motivation for the concept of the fundamental group comes from studying differential equations on the complex plane (i.e., the theory of Riemann surfaces); namely, in the study of the monodromy of multi-valued complex functions. Consider for example, the path integral R 1=z around the punctured plane. This is nonzero and in fact, its value changes by multiples of 2πi based on how many times you wind around the puncture. This behavior arises since the path integral of this particular function is multivalued; it is only well defined as a function up to branch p cuts. In a similar spirit, we can consider the function z which, as we go around the punctured plane once, sends a specified value to its negative. More specifically, suppose we have a branched covering space π : Y ! X, i.e., a map and a pair of spaces such that away from a nowhere dense subset of X, called the branched locus of X, we have that π is a covering map.
    [Show full text]
  • Homeomorphism of S^ 1 and Factorization
    HOMEOMORPHISMS OF S1 AND FACTORIZATION MARK DALTHORP AND DOUG PICKRELL Abstract. For each n> 0 there is a one complex parameter family of home- omorphisms of the circle consisting of linear fractional transformations ‘con- jugated by z → zn’. We show that these families are free of relations, which determines the structure of ‘the group of homeomorphisms of finite type’. We next consider factorization for more robust groups of homeomorphisms. We refer to this as root subgroup factorization (because the factors correspond to root subgroups). We are especially interested in how root subgroup fac- torization is related to triangular factorization (i.e. conformal welding), and correspondences between smoothness properties of the homeomorphisms and decay properties of the root subgroup parameters. This leads to interesting comparisons with Fourier series and the theory of Verblunsky coefficients. 0. Introduction In this paper we consider the question of whether it is possible to factor an orientation preserving homeomorphism of the circle, belonging to a given group, as a composition of ‘linear fractional transformations conjugated by z zn’. What we mean by factorization depends on the group of homeomorphisms we→are considering. In the introduction we will start with the simplest classes of homeomorphisms and build up. For algebraic homeomorphisms, factorization is to be understood in terms of generators and relations. For less regular homeomorphisms factorization involves limits and ordering, and in particular is highly asymmetric with respect to inversion. 0.1. Diffeomorphisms of Finite Type. Given a positive integer n and wn ∆ := w C : w < 1 , define a function φ : S1 S1 by ∈ { ∈ | | } n → n 1/n (1+w ¯nz− ) (0.1) φn(wn; z) := z n 1/n , z =1 (1 + wnz ) | | arXiv:1408.5402v4 [math.GT] 22 Jun 2019 1 It is straightforward to check that φn Diff(S ), the group of orientation pre- 1 1∈ serving diffeomorphisms of S , and φ− (z) = φ ( w ; z).
    [Show full text]
  • Differential Algebra and Liouville's Theorem
    Math 4010/5530 Elementary Functions and Liouville's Theorem April 2016 Definition: Let R be a commutative ring with 1. We call a map @ : R ! R a derivation if @(a+b) = @(a)+@(b) and @(ab) = @(a)b + a@(b) for all a; b 2 R. A ring equipped with a particular derivative is called a differential ring. For convenience, we write @(a) = a0 (just like in calculus). If R is a differential ring and an integral domain, it is a differential integral domain. If R is a differential ring and a field, it is a differential field. Let R be a differential ring. • 10 = (1·1)0 = 10 ·1+1·10 so 10 = 10 +10 and so 0 = 10. Notice that @ is a group homomorphism (consider R as an abelian group under addition), so @(na) = n@(a) for all a 2 R and n 2 Z. Therefore, @(n1) = n@(1) = n0 = 0. Thus everything in the prime subring is a constant (i.e. has derivative zero). • Given a 2 R, notice that (a2)0 = (a · a)0 = a0a + aa0 = 2aa0. In fact, we can prove (using induction), that n n−1 0 a = na a for any n 2 Z≥0 (The power rule) • Let a 2 R× (a is a unit). Then 0 = 10 = (aa−1)0 = a0a−1 + a(a−1)0 so a(a−1)0 = −a−1a0. Dividing by a, we get that (a−1)0 = −a−2a0. Again, using induction, we have that an = nan−1 for all n 2 Z (if a−1 exists).
    [Show full text]
  • Abel‒Ruffini Theorem
    AbelRuffini theorem 1 Abel–Ruffini theorem In algebra, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no general algebraic solution—that is, solution in radicals— to polynomial equations of degree five or higher.[1] Interpretation The content of this theorem is frequently misunderstood. It does not assert that higher-degree polynomial equations are unsolvable. In fact, the opposite is true: every non-constant polynomial equation in one unknown, with real or complex coefficients, has at least one complex number as solution; this is the fundamental theorem of algebra. Although the solutions cannot always be expressed exactly with radicals, they can be computed to any desired degree of accuracy using numerical methods such as the Newton–Raphson method or Laguerre method, and in this way they are no different from solutions to polynomial equations of the second, third, or fourth degrees. The theorem only concerns the form that such a solution must take. The theorem says that not all solutions of higher-degree equations can be obtained by starting with the equation's coefficients and rational constants, and repeatedly forming sums, differences, products, quotients, and radicals (n-th roots, for some integer n) of previously obtained numbers. This clearly excludes the possibility of having any formula that expresses the solutions of an arbitrary equation of degree 5 or higher in terms of its coefficients, using only those operations, or even of having different formulas for different roots or for different classes of polynomials, in such a way as to cover all cases. (In principle one could imagine formulas using irrational numbers as constants, but even if a finite number of those were admitted at the start, not all roots of higher-degree equations could be obtained.) However some polynomial equations, of arbitrarily high degree, are solvable with such operations.
    [Show full text]
  • Solution of Polynomial Equations with Nested Radicals
    Solution of Polynomial Equations with Nested Radicals Nikos Bagis Stenimahou 5 Edessa Pellas 58200, Greece [email protected] Abstract In this article we present solutions of certain polynomial equations in periodic nested radicals. Keywords: Nested Radicals; Bring Radicals; Iterations; Quintic; Sextic; Equations; Polynomials; Solutions; Higher functions; 1 Introduction In (1758) Lambert considered the trinomial equation xm + q = x (1) and solve it giving x as a series of q. Euler, write the same equation into, the more consistent and symmetrical form xa xb = (a b)νxa+b, (2) − − using the transformation x x−b and setting m = ab, q = (a b)ν in (1). Euler gave his solution as → − 1 1 xn =1+ nν + n(n + a + b)µ2 + n(n + a +2b)(n +2a + b)+ 2 6 1 + n(n + a +3b)(n +2a +2b)(n +3a + b)ν4+ 24 arXiv:1406.1948v4 [math.GM] 17 Dec 2020 1 + n(n + a +4b)(n +2a +3b)(n +3a +2b)(n +4a + b)ν5 + ... (3) 120 The equation of Lambert and Euler can formulated in the next (see [4] pg.306- 307): Theorem 1. The equation aqxp + xq = 1 (4) 1 admits root x such that ∞ n Γ( n + pk /q)( qa)k xn = { } − , n =1, 2, 3,... (5) q Γ( n + pk /q k + 1)k! =0 Xk { } − where Γ(x) is Euler’s the Gamma function. d 1/d Moreover if someone defines √x := x , where d Q+ 0 , then the solution x of (4) can given in nested radicals: ∈ −{ } q q/p x = 1 aq 1 aq q/p 1 aq q/p√1 .
    [Show full text]
  • MM6005 the Impossibility of Solving a Quintic Equation
    Independent Project in Mathematics - MM6005 Institution of Mathematics, Stockholm University The impossibility of solving a quintic equation by Emma Aho 2020 - No K47 INSTITUTION OF MATHEMATICS, STOCKHOLM UNIVERSITY, 106 91 STOCKHOLM The impossibility of solving a quintic equation Emma Aho Independent Work in Mathematics 15 credits, Basic Level Tutor: Torbjorn¨ Tambour 2020 The impossibility of solving a quintic equation Emma Aho Tutor: Torbjorn¨ Tambour Stockholm University MM6005 HT 2020 Abstract One of the main purposes of algebra is to study algebraic equations and their solutions. This paper will show how it is impossible to solve the general quintic equation by the use of radicals, but also how a soluble quintic equation must have either one real and four complex conjugate roots or five real roots. The paper also gives an account of the history that lead to the solving of the general quadratic, cubic and quartic equations and provides methods for solving those. In those methods it is also shown how in order to solve an equation of degree n, an auxiliary equation of degree n − 1 needs to be solved as well. Contents 1 Introduction 1 2 Concepts and denotations 2 2.1 Polynomials, equations and roots . 2 2.2 Functions, number fields and groups . 6 3 History of equations and how to solve them 9 3.1 The founders . 9 3.2 The quadratic equation . 11 3.3 The cubic equation . 13 3.3.1 The depressed cubic . 13 3.3.2 Primitive cube roots of unity . 13 3.3.3 Solving the depressed cubic . 14 3.4 The quartic equation .
    [Show full text]
  • The General Quintic Equation, Its Solution by Factorization Into Cubic
    Research & Reviews: Journal of Applied Science and Innovations The General Quintic Equation, its Solution by Factorization into Cubic and Quadratic Factors Samuel Bonaya Buya* Mathematics/Physics teacher at Ngao girls, Secondary School, Kenya Research Article Received date: 13/05/2017 ABSTRACT Accepted date: 05/10/2017 I present a method of solving the general quintic equation by factorizing Published date: 06/10/2017 into auxiliary quadratic and cubic equations. The aim of this research is to contribute further to the knowledge of quintic equations. The quest for a *For Correspondence formula for the quintic equation has preoccupied mathematicians for many centuries. Samuel BB, Mathematics/Physics teacher The monic general equation has six parameters. The objectives of this at Ngao girls, Secondary School, Kenya presentation is to, one, seek a factorized form of the general quintic equation with two exogenous and four indigenous parameters, two, to express the two E-mail: [email protected] exogenous parameters of factorization as a function of the original parameters of the general quintic equation. Keywords: Radical or algebraic solution of the general quintic equation; Algebraic In the process of factorization two solvable simultaneous polynomial solution of the general sextic and septic equations containing two exogenous and four original parameters are formed. equations Each of the exogenous parameters is related to the coefficients of the general quintic equation before proceeding to solve the auxiliary quadratic and cubic factors. The success in obtaining a general solution by the proposed method implies that the Tschirnhausen transformation is not needed in the search for radical solution of higher degree general polynomial equations.
    [Show full text]
  • A Finite Algorithm for the Solution to an Algebraic Equation
    International Journal of Algebra, Vol. 3, 2009, no. 10, 449 - 460 A Finite Algorithm for the Solution to an Algebraic Equation Simon Davis Research Foundation of Southern California 8837 Villa La Jolla Drive #13595 La Jolla, CA 92039, USA [email protected] Abstract. A finite algorithm is developed for the solution of algebraic equations with integer exponents. It is established, by transformation to a matrix equation that a root of the algebraic equation can be determined in O(nγ(n)) steps, where n is the degree. Mathematics Subject Classification: 12D10; 65H17 Keywords: algorithm, matrix methods, algebraic number, field extension 1. Introduction It is possible to map the language of algebraic symbols to another logical system consisting of a propositional calculus and axioms. The solutions to algebraic equations over Q therefore should be determined by an algorithm consisting of entirely algebraic operations in a finite number of steps, provided that the raising of numbers to rational powers has an image in the system. Otherwise the roots would be transcendental, which can be identified with numbers that can be equated only to the limit point of an infinite sequence of terms defined by rational quantities. The problem of the existence of solutions to algebraic equations with solutions that might have this property shall be discussed in the second section. The extension of this statement to equations over Q(α), where α is an al- gebraic number, only requires the evaluation of expressions containing α. The Cauchy completion of Q into R provides a convergent sequence of solutions to algebraic equations over R.
    [Show full text]
  • Arxiv:2101.05610V1 [Math.GM] 12 Jan 2021 Accurate Algebraic Formula
    Accurate algebraic formula for the quintic & Solution by iteration of radicals Abdel Missa, Chrif Youssfi January 15, 2021 arXiv:2101.05610v1 [math.GM] 12 Jan 2021 1 Contents 1 Introduction 3 2 Reduced Forms 4 3 Iteration of radicals algorithm to solve equations in Form 3 5 3.1 Algorithm ............................. 5 3.2 Unique root near the positive real axis . 7 3.3 Absoluteerrortheorem. .. .. 8 3.3.1 Starting point properties . 9 3.3.2 Proofofabsoluteerrortheorem . 11 3.4 Relativeerrortheorem . 20 3.5 Speedofconvergence . 21 4 Solving equations in Form 2 24 5 Solving equations in Form 1 25 5.1 Challenge with iterative radicals . 25 5.2 Proposedalgorithm........................ 26 6 Trigonometric algorithm 30 7 Examples 31 7.1 Example 1: x5 + x + 0.01 = 0 .................. 32 7.1.1 Trigonometric algorithm . 32 7.1.2 Iteration of radicals algorithm . 33 7.2 Example 2: x5 + x +(3.08 + 1.68i)= 0 ............ 33 7.2.1 Trigonometric algorithm . 33 7.2.2 Iteration of radicals algorithm . 34 8 Future direction of work 35 2 Abstract According to the Abel-Ruffini theorem [1] and Galois theory [2], there is no solution in finite radicals to the general quintic equation. This article takes a different approach and proposes a new method to solve the quintic by it- eration of radicals. But, the most intriguing result is an accurate algebraic formula for absolute and relative root approximation: 3 2 formula- root < 4.32 10− and formula/root -1 < 2.51 10− . We then | | × | | × expand some of the geometric properties discussed to construct a trigono- metric algorithm that derives all roots.
    [Show full text]