Polynomials Afg from Wikipedia, the Free Encyclopedia Contents

Total Page:16

File Type:pdf, Size:1020Kb

Polynomials Afg from Wikipedia, the Free Encyclopedia Contents Polynomials afg From Wikipedia, the free encyclopedia Contents 1 Abel polynomials 1 1.1 Examples ............................................... 1 1.2 References ............................................... 1 1.3 External links ............................................. 2 2 Abel–Ruffini theorem 3 2.1 Interpretation ............................................. 3 2.2 Lower-degree polynomials ....................................... 3 2.3 Quintics and higher .......................................... 4 2.4 Proof ................................................. 4 2.5 History ................................................ 5 2.6 See also ................................................ 6 2.7 Notes ................................................. 6 2.8 References .............................................. 6 2.9 Further reading ............................................ 6 2.10 External links ............................................. 6 3 Actuarial polynomials 7 3.1 See also ................................................ 7 3.2 References ............................................... 7 4 Additive polynomial 8 4.1 Definition ............................................... 8 4.2 Examples ............................................... 8 4.3 The ring of additive polynomials ................................... 9 4.4 The fundamental theorem of additive polynomials .......................... 9 4.5 See also ................................................ 9 4.6 References ............................................... 9 4.7 External links ............................................. 9 5 Alexander polynomial 10 5.1 Definition ............................................... 10 5.2 Computing the polynomial ...................................... 10 5.3 Basic properties of the polynomial .................................. 11 i ii CONTENTS 5.4 Geometric significance of the polynomial ............................... 11 5.5 Relations to satellite operations .................................... 12 5.6 Alexander–Conway polynomial .................................... 12 5.7 Relation to Khovanov homology ................................... 13 5.8 Notes ................................................. 13 5.9 References ............................................... 13 5.10 External links ............................................. 13 6 Algebraic equation 14 6.1 History ................................................ 14 6.2 Areas of study ............................................ 15 6.3 See also ................................................ 15 6.4 References ............................................... 16 7 Algebraic variety 17 7.1 Introduction and definitions ...................................... 18 7.1.1 Affine varieties ........................................ 18 7.1.2 Projective varieties and quasi-projective varieties ....................... 19 7.1.3 Abstract varieties ....................................... 19 7.2 Examples ............................................... 19 7.2.1 Subvariety ........................................... 20 7.2.2 Affine variety ......................................... 20 7.2.3 Projective variety ....................................... 21 7.3 Basic results .............................................. 22 7.4 Isomorphism of algebraic varieties .................................. 22 7.5 Discussion and generalizations ..................................... 22 7.6 Algebraic manifolds .......................................... 23 7.7 See also ................................................ 23 7.8 Footnotes ............................................... 24 7.9 References ............................................... 24 8 All one polynomial 25 8.1 Definition ............................................... 25 8.2 Properties ............................................... 25 8.3 References ............................................... 26 8.4 External links ............................................. 26 9 Almost linear hash function 27 9.1 References .............................................. 28 10 Alternating polynomial 29 10.1 Relation to symmetric polynomials .................................. 29 10.2 Vandermonde polynomial ....................................... 29 CONTENTS iii 10.2.1 Ring structure ......................................... 30 10.3 Representation theory ......................................... 30 10.4 Unstable ................................................ 31 10.5 See also ................................................ 31 10.6 Notes ................................................. 31 10.7 References ............................................... 31 11 Angelescu polynomials 32 11.1 See also ................................................ 32 11.2 References ............................................... 32 12 Appell sequence 33 12.1 Equivalent characterizations of Appell sequences ........................... 33 12.2 Recursion formula ........................................... 34 12.3 Subgroup of the Sheffer polynomials ................................. 34 12.4 Different convention .......................................... 35 12.5 See also ................................................ 35 12.6 References ............................................... 35 12.7 External links ............................................. 36 13 Bell polynomials 37 13.1 Complete Bell polynomials ...................................... 37 13.2 Combinatorial meaning ........................................ 38 13.2.1 Examples ........................................... 38 13.3 Properties ............................................... 38 13.3.1 Stirling numbers and Bell numbers .............................. 39 13.3.2 Touchard polynomials ..................................... 39 13.3.3 Convolution identity ..................................... 39 13.4 Applications of Bell polynomials ................................... 40 13.4.1 Faà di Bruno’s formula .................................... 40 13.4.2 Moments and cumulants ................................... 40 13.4.3 Representation of polynomial sequences of binomial type .................. 40 13.5 Software ................................................ 41 13.6 See also ................................................ 41 13.7 References ............................................... 41 14 Bernoulli polynomials 43 14.1 Representations ............................................ 44 14.1.1 Explicit formula ........................................ 44 14.1.2 Generating functions ..................................... 44 14.1.3 Representation by a differential operator ........................... 44 14.1.4 Representation by an integral operator ............................ 44 14.2 Another explicit formula ........................................ 45 iv CONTENTS 14.3 Sums of pth powers .......................................... 46 14.4 The Bernoulli and Euler numbers ................................... 46 14.5 Explicit expressions for low degrees .................................. 46 14.6 Maximum and minimum ....................................... 47 14.7 Differences and derivatives ...................................... 47 14.7.1 Translations .......................................... 48 14.7.2 Symmetries .......................................... 48 14.8 Fourier series ............................................. 48 14.9 Inversion ................................................ 49 14.10Relation to falling factorial ...................................... 50 14.11Multiplication theorems ........................................ 50 14.12Integrals ................................................ 50 14.13Periodic Bernoulli polynomials .................................... 51 14.14See also ................................................ 51 14.15References ............................................... 51 15 Bernstein polynomial 53 15.1 Definition ............................................... 54 15.2 Example ................................................ 54 15.3 Properties ............................................... 54 15.4 Approximating continuous functions ................................. 55 15.4.1 Proof ............................................. 56 15.5 See also ................................................ 56 15.6 Notes ................................................. 57 15.7 References ............................................... 57 15.8 External links ............................................. 57 16 Bernstein–Sato polynomial 58 16.1 Definition and properties ....................................... 58 16.2 Examples ............................................... 58 16.3 Applications .............................................. 59 16.4 References .............................................. 60 17 Binomial 61 17.1 Definition ............................................... 61 17.2 Operations on simple binomials .................................... 61 17.3 See also ................................................ 62 17.4 Notes ................................................. 62 17.5 References ............................................... 62 18 Boas–Buck polynomials 63 18.1 References ............................................... 63 CONTENTS v 19 Bollobás–Riordan polynomial 64 19.1 History ................................................. 64 19.2 Formal definition ........................................... 64 19.3 See also ................................................ 64 19.4 References ..............................................
Recommended publications
  • Asymptotic Properties of Biorthogonal Polynomials Systems Related to Hermite and Laguerre Polynomials
    Asymptotic properties of biorthogonal polynomials systems related to Hermite and Laguerre polynomials Yan Xu School of Mathematics and Quantitative Economics, Center for Econometric analysis and Forecasting, Dongbei University of Finance and Economics, Liaoning, 116025, PR China Abstract In this paper, the structures to a family of biorthogonal polynomials that ap- proximate to the Hermite and Generalized Laguerre polynomials are discussed respectively. Therefore, the asymptotic relation between several orthogonal polynomials and combinatorial polynomials are derived from the systems, which in turn verify the Askey scheme of hypergeometric orthogonal polynomials. As the applications of these properties, the asymptotic representations of the gen- eralized Buchholz, Laguerre, Ultraspherical (Gegenbauer), Bernoulli, Euler, Meixner and Meixner-Pllaczekare polynomials are derived from the theorems di- rectly. The relationship between Bernoulli and Euler polynomials are shown as a special case of the characterization theorem of the Appell sequence generated by α scaling functions. Keywords: Hermite Polynomial, Laguerre Polynomial, Appell sequence, Askey Scheme, B-splines, Bernoulli Polynomial, Euler polynomials. 2010 MSC: 42C05, 33C45, 41A15, 11B68 arXiv:1503.05387v1 [math.CA] 3 Feb 2015 ✩This work is supported by the Natural Science Foundation of China (11301060), China Postdoctoral Science Foundation (2013M541234, 2014T70258) and Outstanding Scientific In- novation Talents Program of DUFE (DUFE2014R20). ∗Email: yan [email protected] Preprint submitted to Constructive Approximation June 2, 2021 1. Introduction The Hermite polynomials follow from the generating function 2 xz z ∞ Hm(x) m e − 2 = z , z C, x R (1.1) m! ∈ ∈ m=0 X which gives the Cauchy-type integral 2 m! xz z (m+1) H (x)= e − 2 z− dz.
    [Show full text]
  • Noncommutative Counterparts of Celebrated Conjectures
    NONCOMMUTATIVE COUNTERPARTS OF CELEBRATED CONJECTURES GONC¸ALO TABUADA Abstract. In this survey, written for the proceedings of the conference K- theory in algebra, analysis and topology, Buenos Aires, Argentina (satellite event of the ICM 2018), we give a rigorous overview of the noncommuta- tive counterparts of some celebrated conjectures of Grothendieck, Voevodsky, Beilinson, Weil, Tate, Parshin, Kimura, Schur, and others. Contents Introduction1 1. Celebrated conjectures1 2. Noncommutative counterparts5 3. Applications to commutative geometry 10 4. Applications to noncommutative geometry 17 References 21 Introduction Some celebrated conjectures of Grothendieck, Voevodsky, Beilinson, Weil, Tate, Parshin, Kimura, Schur, and others, were recently extended from the realm of alge- braic geometry to the broad noncommutative setting of differential graded (=dg) categories. This noncommutative viewpoint led to a proof of these celebrated con- jectures in several new cases. Moreover, it enabled a proof of the noncommutative counterparts of the celebrated conjectures in many interesting cases. The purpose of this survey, written for a broad mathematical audience, is to give a rigorous overview of these recent developments. Notations. Given a perfect base field k of characteristic p > 0, we will write W (k) for its ring of p-typical Witt vectors and K := W (k)1=p for the fraction field of W (k). For example, when k = Fp, we have W (k) = Zp and K = Qp. 1. Celebrated conjectures In this section, we briefly recall some celebrated conjectures of Grothendieck, Voevodsky, Beilinson, Weil, Tate, Parshin, and Kimura (concerning smooth proper schemes), as well as a conjecture of Schur (concerning smooth schemes). Date: January 14, 2019.
    [Show full text]
  • 1. Make Sense of Problems and Persevere in Solving Them. Mathematically Proficient Students Start by Explaining to Themselves T
    1. Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 2. Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize —to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize , to pause as needed during the manipulation process in order to probe into the referents for the symbols involved.
    [Show full text]
  • Solving Solvable Quintics
    mathematics of computation volume 57,number 195 july 1991, pages 387-401 SOLVINGSOLVABLE QUINTICS D. S. DUMMIT Abstract. Let f{x) = x 5 +px 3 +qx 2 +rx + s be an irreducible polynomial of degree 5 with rational coefficients. An explicit resolvent sextic is constructed which has a rational root if and only if f(x) is solvable by radicals (i.e., when its Galois group is contained in the Frobenius group F20 of order 20 in the symmetric group S5). When f(x) is solvable by radicals, formulas for the roots are given in terms of p, q, r, s which produce the roots in a cyclic order. 1. Introduction It is well known that an irreducible quintic with coefficients in the rational numbers Q is solvable by radicals if and only if its Galois group is contained in the Frobenius group F20 of order 20, i.e., if and only if the Galois group is isomorphic to F20 , to the dihedral group DXQof order 10, or to the cyclic group Z/5Z. (More generally, for any prime p, it is easy to see that a solvable subgroup of the symmetric group S whose order is divisible by p is contained in the normalizer of a Sylow p-subgroup of S , cf. [1].) The purpose here is to give a criterion for the solvability of such a general quintic in terms of the existence of a rational root of an explicit associated resolvent sextic polynomial, and when this is the case, to give formulas for the roots analogous to Cardano's formulas for the general cubic and quartic polynomials (cf.
    [Show full text]
  • Higher Mathematics
    ; HIGHER MATHEMATICS Chapter I. THE SOLUTION OF EQUATIONS. By Mansfield Merriman, Professor of Civil Engineering in Lehigh University. Art. 1. Introduction. In this Chapter will be presented a brief outline of methods, not commonly found in text-books, for the solution of an equation containing one unknown quantity. Graphic, numeric, and algebraic solutions will be given by which the real roots of both algebraic and transcendental equations may be ob- tained, together with historical information and theoretic discussions. An algebraic equation is one that involves only the opera- tions of arithmetic. It is to be first freed from radicals so as to make the exponents of the unknown quantity all integers the degree of the equation is then indicated by the highest ex- ponent of the unknown quantity. The algebraic solution of an algebraic equation is the expression of its roots in terms of literal is the coefficients ; this possible, in general, only for linear, quadratic, cubic, and quartic equations, that is, for equations of the first, second, third, and fourth degrees. A numerical equation is an algebraic equation having all its coefficients real numbers, either positive or negative. For the four degrees 2 THE SOLUTION OF EQUATIONS. [CHAP. I. above mentioned the roots of numerical equations may be computed from the formulas for the algebraic solutions, unless they fall under the so-called irreducible case wherein real quantities are expressed in imaginary forms. An algebraic equation of the n th degree may be written with all its terms transposed to the first member, thus: n- 1 2 x" a x a,x"- .
    [Show full text]
  • Deterministic Brownian Motion: the Effects of Perturbing a Dynamical
    1 Deterministic Brownian Motion: The Effects of Perturbing a Dynamical System by a Chaotic Semi-Dynamical System Michael C. Mackey∗and Marta Tyran-Kami´nska † October 26, 2018 Abstract Here we review and extend central limit theorems for highly chaotic but deterministic semi- dynamical discrete time systems. We then apply these results show how Brownian motion-like results are recovered, and how an Ornstein-Uhlenbeck process results within a totally determin- istic framework. These results illustrate that the contamination of experimental data by “noise” may, under certain circumstances, be alternately interpreted as the signature of an underlying chaotic process. Contents 1 Introduction 2 2 Semi-dynamical systems 5 2.1 Density evolution operators . ......... 5 2.2 Probabilistic and ergodic properties of density evolution ................ 12 2.3 Brownian motion from deterministic perturbations . ............... 16 2.3.1 Centrallimittheorems. ..... 16 2.3.2 FCLTfornoninvertiblemaps . ..... 20 2.4 Weak convergence criteria . ........ 31 3 Analysis 33 3.1 Weak convergence of v(tn) and vn. ............................ 35 3.2 Thelinearcaseinonedimension . ........ 36 3.2.1 Behaviour of the velocity variable . ......... 36 3.2.2 Behaviour of the position variable . ........ 38 4 Identifying the Limiting Velocity Distribution 41 4.1 Dyadicmap....................................... 42 arXiv:cond-mat/0408330v1 [cond-mat.stat-mech] 13 Aug 2004 4.2 Graphical illustration of the velocity density evolution with dyadic map perturbations 45 4.3 r-dyadicmap ..................................... 45 ∗e-mail: [email protected], Departments of Physiology, Physics & Mathematics and Centre for Nonlinear Dynamics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, CANADA, H3G 1Y6 †Corresponding author, email: [email protected], Institute of Mathematics, Silesian University, ul.
    [Show full text]
  • Casus Irreducibilis and Maple
    48 Casus irreducibilis and Maple Rudolf V´yborn´y Abstract We give a proof that there is no formula which uses only addition, multiplication and extraction of real roots on the coefficients of an irreducible cubic equation with three real roots that would provide a solution. 1 Introduction The Cardano formulae for the roots of a cubic equation with real coefficients and three real roots give the solution in a rather complicated form involving complex numbers. Any effort to simplify it is doomed to failure; trying to get rid of complex numbers leads back to the original equation. For this reason, this case of a cubic is called casus irreducibilis: the irreducible case. The usual proof uses the Galois theory [3]. Here we give a fairly simple proof which perhaps is not quite elementary but should be accessible to undergraduates. It is well known that a convenient solution for a cubic with real roots is in terms of trigono- metric functions. In the last section we handle the irreducible case in Maple and obtain the trigonometric solution. 2 Prerequisites By N, Q, R and C we denote the natural numbers, the rationals, the reals and the com- plex numbers, respectively. If F is a field then F [X] denotes the ring of polynomials with coefficients in F . If F ⊂ C is a field, a ∈ C but a∈ / F then there exists a smallest field of complex numbers which contains both F and a, we denote it by F (a). Obviously it is the intersection of all fields which contain F as well as a.
    [Show full text]
  • Cycle Classes in Overconvergent Rigid Cohomology and a Semistable
    CYCLE CLASSES IN OVERCONVERGENT RIGID COHOMOLOGY AND A SEMISTABLE LEFSCHETZ (1, 1) THEOREM CHRISTOPHER LAZDA AND AMBRUS PAL´ ABSTRACT. In this article we prove a semistable version of the variational Tate conjecture for divisors in crystalline cohomology, showing that for k a perfect field of characteristic p, a rational (logarithmic) line bundle on the special fibre of a semistable scheme over kJtK lifts to the total space if and only if its first Chern class does. The proof is elementary, using standard properties of the logarithmic de Rham–Witt complex. As a corollary, we deduce similar algebraicity lifting results for cohomology classes on varieties over global function fields. Finally, we give a counter example to show that the variational Tate conjecture for divisors cannot hold with Qp-coefficients. CONTENTS Introduction 1 1. Cycle class maps in overconvergentrigid cohomology 3 2. Preliminaries on the de Rham–Witt complex 4 3. Morrow’s variational Tate conjecture for divisors 9 4. A semistable variational Tate conjecture for divisors 12 5. Global results 15 6. A counter-example 16 References 19 INTRODUCTION Many of the deepest conjectures in arithmetic and algebraic geometry concern the existence of algebraic cycles on varieties with certain properties. For example, the Hodge and Tate conjectures state, roughly speaking, that on smooth and projective varieties over C (Hodge) or finitely generated fields (Tate) every cohomologyclass which ‘looks like’ the class of a cycle is indeed so. One can also pose variationalforms of arXiv:1701.05017v2 [math.AG] 25 Feb 2019 these conjectures, giving conditions for extending algebraic classes from one fibre of a smooth, projective morphism f : X → S to the whole space.
    [Show full text]
  • General Bivariate Appell Polynomials Via Matrix Calculus and Related Interpolation Hints
    mathematics Article General Bivariate Appell Polynomials via Matrix Calculus and Related Interpolation Hints Francesco Aldo Costabile, Maria Italia Gualtieri and Anna Napoli * Department of Mathematics and Computer Science, University of Calabria, 87036 Rende (CS), Italy; [email protected] (F.A.C.); [email protected] (M.I.G.) * Correspondence: [email protected] Abstract: An approach to general bivariate Appell polynomials based on matrix calculus is proposed. Known and new basic results are given, such as recurrence relations, determinant forms, differential equations and other properties. Some applications to linear functional and linear interpolation are sketched. New and known examples of bivariate Appell polynomial sequences are given. Keywords: Polynomial sequences; Appell polynomials; bivariate Appell sequence 1. Introduction Appell polynomials have many applications in various disciplines: probability the- ory [1–5], number theory [6], linear recurrence [7], general linear interpolation [8–12], operators approximation theory [13–17]. In [18], P. Appell introduced a class of polynomi- als by the following equivalent conditions: fAngn2IN is an Appell sequence (An being a Citation: Costabile, F.A.; polynomial of degree n) if either Gualtieri, M.I.; Napoli, A. General 8 Bivariate Appell Polynomials via d An(x) > = nA − (x), n ≥ 1, Matrix Calculus and Related > n 1 <> dx Interpolation Hints. Mathematics 2021, A (0) = a , a 6= 0, a 2 IR, n ≥ 0, 9, 964. https://doi.org/ > n n 0 n > 10.3390/math9090964 :> A0(x) = 1, Academic Editor: Clemente Cesarano or ¥ n xt t A(t)e = ∑ An(x) , Received: 13 March 2021 n=0 n! Accepted: 23 April 2021 ¥ tk Published: 25 April 2021 where A(t) = ∑ ak , a0 6= 0, ak 2 IR, k ≥ 0.
    [Show full text]
  • A Pseudo Random Numbers Generator Based on Chaotic Iterations
    A Pseudo Random Numbers Generator Based on Chaotic Iterations. Application to Watermarking Christophe Guyeux, Qianxue Wang, Jacques Bahi To cite this version: Christophe Guyeux, Qianxue Wang, Jacques Bahi. A Pseudo Random Numbers Generator Based on Chaotic Iterations. Application to Watermarking. WISM 2010, Int. Conf. on Web Information Systems and Mining, 2010, China. pp.202–211. hal-00563317 HAL Id: hal-00563317 https://hal.archives-ouvertes.fr/hal-00563317 Submitted on 4 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Pseudo Random Numbers Generator Based on Chaotic Iterations. Application to Watermarking Christophe Guyeux, Qianxue Wang, and Jacques M. Bahi University of Franche-Comte, Computer Science Laboratory LIFC, 25030 Besanc¸on Cedex, France {christophe.guyeux,qianxue.wang, jacques.bahi}@univ-fcomte.fr Abstract. In this paper, a new chaotic pseudo-random number generator (PRNG) is proposed. It combines the well-known ISAAC and XORshift generators with chaotic iterations. This PRNG possesses important properties of topological chaos and can successfully pass NIST and TestU01 batteries of tests. This makes our generator suitable for information security applications like cryptography. As an illustrative example, an application in the field of watermarking is presented.
    [Show full text]
  • Coefficients of the Solid Angle and Ehrhart Quasi-Polynomials
    COEFFICIENTS OF THE SOLID ANGLE AND EHRHART QUASI-POLYNOMIALS FABR´ICIO CALUZA MACHADO AND SINAI ROBINS Abstract. Macdonald studied a discrete volume measure for a rational poly- tope P , called solid angle sum, that gives a natural discrete volume for P . We give a local formula for the codimension two quasi-coefficient of the solid angle sum of P . We also show how to recover the classical Ehrhart quasi-polynomial from the solid angle sum and in particular we find a similar local formula for the codimension one and codimension two quasi-coefficients. These local formulas are naturally valid for all positive real dilates of P . An interesting open question is to determine necessary and sufficient con- ditions on a polytope P for which the discrete volume of P given by the solid d angle sum equals its continuous volume: AP (t) = vol(P )t . We prove that d a sufficient condition is that P tiles R by translations, together with the Hyperoctahedral group. Contents 1. Introduction1 2. Main results4 3. Preliminaries9 4. Lattice sums 12 5. Proofs of Theorem 5.2 and Corollary 5.3 15 6. Obtaining the Ehrhart quasi-coefficients ed−1(t) and ed−2(t) 21 7. Two examples in three dimensions 26 8. Concrete polytopes and further remarks 31 References 34 Appendix A. Obtaining the solid angle quasi-coefficients from the Ehrhart quasi-coefficients 35 Appendix B. Comments about local formulas and SI-interpolators 38 1. Introduction d arXiv:1912.08017v2 [math.CO] 26 Jun 2020 Given a polytope P ⊆ R , the number of integer points within P can be regarded as a discrete analog of the volume of the body.
    [Show full text]
  • Integration of Jacobi and Weighted Bernstein Polynomials Using Bases Transformations
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol.7(2007), No.3, pp.221–226 °c 2007 Institute of Mathematics of the National Academy of Sciences of Belarus INTEGRATION OF JACOBI AND WEIGHTED BERNSTEIN POLYNOMIALS USING BASES TRANSFORMATIONS ABEDALLAH RABABAH1 Abstract — This paper presents methods to compute integrals of the Jacobi poly- nomials by the representation in terms of the Bernstein — B´ezierbasis. We do this because the integration of the Bernstein — B´ezierform simply corresponds to applying the de Casteljau algorithm in an easy way. Formulas for the definite integral of the weighted Bernstein polynomials are also presented. Bases transformations are used. In this paper, the methods of integration enable us to gain from the properties of the Jacobi and Bernstein bases. 2000 Mathematics Subject Classification: 33C45, 41A58, 41A10. Keywords: Bernstein polynomials, Jacobi polynomials, basis transformation, integra- tion. 1. Introduction The Bernstein polynomials are symmetric, and the Bernstein basis form is known to be optimally stable. These properties and others make the Bernstein polynomials important for the development of B´eziercurves and surfaces in Computer-Aided Geometric Design. The Bernstein — B´eziercurves and surfaces have become the standard in the Computer-Aided Geometric Design context. They enjoy elegant geometric properties. For more, (see [3,5]). The Jacobi polynomials present excellent properties in the theory of approximation of functions. Thus they are usually used in several fields of mathematics, applied science, and engineering. And, consequently, formulas for their integrals are needed. Thus we need to get the integrals of the Jacobi polynomials in terms of the Bernstein — B´ezierform and vice versa.
    [Show full text]