Electrical Engineering Dictionary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SECTION 6 POSITION and MOTION SENSORS Walt Kester
POSITION AND MOTION SENSORS SECTION 6 POSITION AND MOTION SENSORS Walt Kester Modern linear and digital integrated circuit technology is used throughout the field of position and motion sensing. Fully integrated solutions which combine linear and digital functions have resulted in cost effective solutions to problems which in the past have been solved using expensive electro-mechanical techniques. These systems are used in many applications including robotics, computer-aided manufacturing, factory automation, avionics, and automotive. This section is an overview of linear and rotary position sensors and their associated conditioning circuits. An interesting application of mixed-signal IC integration is illustrated in the field of AC motor control. A discussion of micromachined accelerometers ends the section. POSITION AND MOTION SENSORS n Linear Position: Linear Variable Differential Transformers (LVDT) n Hall Effect Sensors u Proximity Detectors u Linear Output (Magnetic Field Strength) n Rotational Position: u Rotary Variable Differential Transformers (RVDT) u Optical Rotational Encoders u Synchros and Resolvers u Inductosyns (Linear and Rotational Position) u Motor Control Applications n Acceleration and Tilt: Accelerometers Figure 6.1 LINEAR VARIABLE DIFFERENTIAL TRANSFORMERS (LVDTS) The linear variable differential transformer (LVDT) is an accurate and reliable method for measuring linear distance. LVDTs find uses in modern machine-tool, robotics, avionics, and computerized manufacturing. By the end of World War II, the LVDT had gained acceptance as a sensor element in the process control industry largely as a result of its use in aircraft, torpedo, and weapons systems. The publication of The Linear Variable Differential Transformer by Herman Schaevitz in 6.1 POSITION AND MOTION SENSORS 1946 (Proceedings of the SASE, Volume IV, No. -
Synchrophasor Monitoring for Distribution Systems: Technical Foundations and Applications
NASPI-2018-TR-001 Synchrophasor Monitoring for Distribution Systems: Technical Foundations and Applications A White Paper by the NASPI Distribution Task Team January 2018 Editor: Alexandra von Meier - UC Berkeley Contributing Authors (in alphabetical order): Reza Arghandeh - Florida State University Kyle Brady - UC Berkeley Merwin Brown – UC Berkeley George R. Cotter – Isologic LLC Deepjyoti Deka – Los Alamos National Laboratory Hossein Hooshyar – Rennselaer Polytechnic Institute Mahdi Jamei – Arizona State University Harold Kirkham – Pacific Northwest National Laboratory Alex McEachern – Power Standards Lab Laura Mehrmanesh – UC Berkeley Tom Rizy – Oak Ridge National Laboratory Anna Scaglione – Arizona State University Jerry Schuman – PingThings, Inc. Younes Seyedi – Polytechnique Montreal Alireza Shahvasari – UC Riverside Alison Silverstein - NASPI Emma Stewart – Lawrence Livermore National Laboratory Luigi Vanfretti – Rensselaer Polytechnic Institute Alexandra von Meier - UC Berkeley Lingwei Zhan – Oak Ridge National Laboratory Junbo Zhao – Virginia Tech 2 Contents 1.0 Introduction ........................................................................................................................ 5 1.1 Premise of Distribution PMUs ........................................................................................ 6 1.2 What’s new? Synchrophasor technology ....................................................................... 7 1.3 Why bother? High-value uses for distribution monitoring ........................................... -
Vuspec Power Dist 2016
Notice of New Standard Products Title: IEEE Power, Distribution & Regulating Transformers Collection: VuSpec™ Summary (Abstract): IEEE Power, Distribution and Regulatory Transformer Collection: VuSpec™ contains the latest standards, guides, and recommended practices of the Institute of Electrical and Electronics Engineers, Inc. (IEEE) Transformers Committee. It also contains IEEE C57 series of standards. This collection represents the most complete resource available for professional engineers looking for best practices and techniques covering testing, repair, installation, operation, and maintenance of transformers, reactors, and associated components that are used within the electric utility and industrial power systems. These standards provide provides a crucial service to society's need for continuing development and maintenance of a reliable, safe, and efficient power system infrastructure. Table of Contents: Includes 104 active IEEE standards for Power Distribution & Regulating Transformers family. • IEEE Std 4-2012, IEEE Standard for High-Voltage Testing Techniques • IEEE Std 259™-1999 (R2010), IEEE Standard Test Procedure for Evaluation of Systems of Insulation for Dry-Type Specialty and General - Purpose Transformers • IEEE Std 638™-2013, IEEE Standard for Qualification of Class 1E Transformers for Nuclear Power Generating Stations • IEEE Std 1276™-1997 (R2006), IEEE Guide for the Application of High-Temperature Insulation Materials in Liquid- Immersed Power Transformers • IEEE Std 1277™-2010, IEEE Standard General Requirements -
Mutual Inductance and Transformer Theory Questions: 1 Through 15 Lab Exercise: Transformer Voltage/Current Ratios (Question 61)
ELTR 115 (AC 2), section 1 Recommended schedule Day 1 Topics: Mutual inductance and transformer theory Questions: 1 through 15 Lab Exercise: Transformer voltage/current ratios (question 61) Day 2 Topics: Transformer step ratio Questions: 16 through 30 Lab Exercise: Auto-transformers (question 62) Day 3 Topics: Maximum power transfer theorem and impedance matching with transformers Questions: 31 through 45 Lab Exercise: Auto-transformers (question 63) Day 4 Topics: Transformer applications, power ratings, and core effects Questions: 46 through 60 Lab Exercise: Differential voltage measurement using the oscilloscope (question 64) Day 5 Exam 1: includes Transformer voltage ratio performance assessment Lab Exercise: work on project Project: Initial project design checked by instructor and components selected (sensitive audio detector circuit recommended) Practice and challenge problems Questions: 66 through the end of the worksheet Impending deadlines Project due at end of ELTR115, Section 3 Question 65: Sample project grading criteria 1 ELTR 115 (AC 2), section 1 Project ideas AC power supply: (Strongly Recommended!) This is basically one-half of an AC/DC power supply circuit, consisting of a line power plug, on/off switch, fuse, indicator lamp, and a step-down transformer. The reason this project idea is strongly recommended is that it may serve as the basis for the recommended power supply project in the next course (ELTR120 – Semiconductors 1). If you build the AC section now, you will not have to re-build an enclosure or any of the line-power circuitry later! Note that the first lab (step-down transformer circuit) may serve as a prototype for this project with just a few additional components. -
Transformer Parameter Monitoring Using Gsm Module
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072 TRANSFORMER PARAMETER MONITORING USING GSM MODULE Rashmi Ashok Panherkar 1, Prajakta Vaidya 2 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper present transformer parameter logic by feeler and which is position in pointer to monitoring using GSM module. The main advantages of this microcontroller. The indication is monitor as of scheme is using through GSM module. The devious of commencement to finish GSM Module.[3] transformer is over and done with by way of high temperature detector.GSM & Microcontroller used in wireless revelation. The bringing mutually is appliance to intellect the casing The reading and result of transformer like voltage, current, is tone of transformer and commencement in sequence to not allowed by using microcontroller & send sms through GSM monitor.[1]Sheltered headset which is also a microcontroller module. unit. It create organization flank via locate rate and position value, but some wrong step occur next convey interested in KeyWords: Wireless control System, GSM Module, existing person it is give you an idea about on LCD.[4] Microcontroller, Temperature Sensor. Technological assistance broken connected to decision the an collection of scheme to organize situations of 1.INTRODUCTION transformer by means of form of information communiqué construction as a result of the line of assail of pointed on A transformer is a piece of equipment used either for rising communiqué services, reserve inspection & critique in print or lowers the voltage of an a.c. supply with equivalent joined to processor and to end support embellish are bring reduces or enlarge in current. -
Electricity Today Issue 4 Volume 17, 2005
ET_4_2005 6/3/05 10:41 AM Page 1 A look at the upcoming PES IEEE General Meeting see page 5 ISSUE 4 Volume 17, 2005 INFORMATION TECHNOLOGIES: Protection & Performance and Transformer Maintenance PUBLICATION MAIL AGREEMENT # 40051146 Electrical Buyer’s Guides, Forums, On-Line Magazines, Industry News, Job Postings, www.electricityforum.com Electrical Store, Industry Links ET_4_2005 6/3/05 10:41 AM Page 2 CONNECTINGCONNECTING ...PROTECTING...PROTECTING ® ® ® HTJC, Hi-Temperature Joint Compound With a unique synthetic compound for "gritted" and "non-gritted" specifications, the HTJC high temperature "AA" Oxidation Inhibitor improves thermal and electrical junction performance for all connections: • Compression Lugs and Splices for Distribution and Transmission • Tees, Taps and Stirrups on any conductor • Pad to Pad Underground, Substation and Overhead connections For oxidation protection of ACSS class and other connector surfaces in any environment (-40 oC to +250 oC), visit the Anderson ® / Fargo ® connectors catalogue section of our website www.HubbellPowerSystems.ca Anderson® and Fargo® offer the widest selection of high performance inhibitor compounds: Hubbell Canada LP, Power Systems TM ® ® 870 Brock Road South Inhibox , Fargolene , Versa-Seal Pickering, ON L1W 1Z8 Phone (905) 839-1138 • Fax: (905) 831-6353 www.HubbellPowerSystems.ca POWER SYSTEMS ET_4_2005 6/3/05 10:41 AM Page 3 in this issue Publisher/Executive Editor Randolph W. Hurst [email protected] SPECIAL PREVIEW Associate Publisher/Advertising Sales 5 IEEE PES General Meeting has -
C I L Q LC Circuit
Your Comments I am not feeling great about this midterm...some of this stuff is really confusing still and I don't know if I can shove everything into my brain in time, especially after spring break. Can you go over which topics will be on the exam Wednesday? This was a very confusing prelecture. Do you think you could go over thoroughly how the LC circuits work qualitatively? I may have missed something simple, but in question 1 during the prelecture why does the charge on the capacitor have to be 0 at t=0? I feel like that bit of knowledge will help me with the test wednesday I remember you mentioning several weeks ago that there was one equation you were going to add to the 2013 equation sheet... which formula was that? Thanks! Electricity & Magnetism Lecture 19, Slide 1 Some Exam Stuff Exam Wed. night (March 27th) at 7:00 Covers material in Lectures 9 – 18 Bring your ID: Rooms determined by discussion section (see link) Conflict exam at 5:15 Don’t forget: • Worked examples in homeworks (the optional questions) • Other old exams For most people, taking old exams is most beneficial Final Exam dates are now posted The Big Ideas L9-18 Kirchoff’s Rules Sum of voltages around a loop is zero Sum of currents into a node is zero Kirchoff’s rules with capacitors and inductors • In RC and RL circuits: charge and current involve exponential functions with time constant: “charging and discharging” Q dQ Q • E.g. IR R V C dt C Capacitors and inductors store energy Magnetic fields Generated by electric currents (no magnetic charges) Magnetic -
Power Management Consortium (PMC) Nuggets
CPES ANNUAL REPORT 2020 103 Power Management Consortium (PMC) Nuggets 104 Low Loss Integrated Inductor and Transformer Structure and Application 114 Design Optimization of an Unregulated LLC Converter with Integrated in Regulated LLC Converter for 48 V Bus Converter Magnetics for a Two-Stage, 48 V VRM 105 Magnetic Integration of Matrix Transformer with a Highly Controllable 115 Wide-Voltage Range, High-Efficiency Sigma Converter 48 V VRM with Leakage Inductance Integrated Magnetics 106 Control Technique for CRM-Based, High-Frequency, 116 Modeling and Control for a 48 V/1 V Sigma Converter for Very Fast Soft-Switching Three-Phase Inverter Under Grid Fault Condition Transient Response 107 Critical Conduction Mode-Based, High-Frequency, Single-Phase 117 A Two-Stage Rail Grade DC-DC Converter Based on a GaN Device Transformerless PV Inverter 118 Design-Oriented Equivalent Circuit Model for Resonant Converters 108 Transmitter Coil Design for Free-Positioning Omnidirectional Wireless 119 Critical-Conduction-Mode-Based Soft-Switching Modulation for Three- Power Transfer System Phase PV Inverters with Reactive Power Transfer Capability 109 Shielding Study of a 6.78 MHz Omnidirectional Wireless Power Transfer 120 Improved Three-Phase Critical-Mode-Based Soft-Switching Modulation System Technique with Low Leakage Current for PV Inverter Application 110 The LCCL-LC Resonant Converter and Its Soft Switching Realization for 121 Balance Technique for CM Noise Reduction in Critical-Mode-Based Three- Omnidirectional Wireless Power Transfer Systems Phase -
Fall 2011 Meeting Minutes Boston MA November 3,2011
IEEE/PES Transformers Committee Fall 2011 Meeting Minutes Boston MA November 3,2011 Unapproved IEEE/PES Transformers Committee Meeting Fall 2011 Boston MA Committee Members and Guests Registered for the Spring 2011 Meeting Albers, Timothy: II Bertolini, Edward: AP - LM Campbell, James: II Allaway, Dave: II Berube, Jean-Noel: II Carlos, Arnaldo: AP Allaway, Marcene: SP Betancourt, Enrique: CM Caronia, Paul: II Allen, Jerry: AP Bhatia, Paramjit: II Caskey, John: AP Allen, Abbey: II Binder, Wallace: CM Caskey, Melissa: G Alton, Henry: II Bishop Jr, Wayne: II Castellanos, Juan: CM Amos, Richard: CM Bishop, Cherie: SP Castillo, Alonso: II Amos, Norann: SP Blackburn, Gene: CM Castillo, Karla: SP Anderson, Gregory: CM Blackburn, Martha: SP Chadderdon, Philip: II Anderson, Jeffrey: II Blackmon, Jr., James: AP Cheim, Luiz: AP Angell, Don: AP Blackmon, Donna: SP Cherry, Donald: CM Ansari, Tauhid: AP Blaydon, Daniel: CM Chiodo, Vincent: II Anthony, Stephen: II Boettger, William: CM Chisholm, Paul: AP Antosz, Stephen: CM Boettger, Pat: SP Chiu, Bill: CM Armstrong, James: AP Bolliger, Alain: AP Lu, Minnie: SP Arpino, Carlo: CM Bolliger, Dominique: SP Chmiel, Frank: AP Arpino, Tina: SP Boman, Paul: CM Choinski, Scott: AP Asano, Roberto: AP Borowitz, James: II Bartholomew, Kathy: SP Atef, Kahveh: II Botti, Michael: II Christodoulou, Larry: II Averitt, Ralph: II Botti, Nicole: SP Chrobak, John: II Ayers, Donald: CM Bozich, Bradford: II Chu, Donald: CM Bae, Yongbae: II Bradford, Ira: II Claiborne, C. Clair: CM Ballard, Jay: AP Brady, Ryan: II Cocchiarale, -
LECTURE NOTES on Utilization of Electrical Energy & Traction
LECTURE NOTES ON Utilization of Electrical Energy & Traction Name of the course: Diploma in Electrical Engineering. (6th Semester) Notes Prepared by: HIMANSU BHUSAN BEHERA Designation : LECTURER IN ELECTRICAL College : UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA CHAPTER-1 ELECTROLYSIS Definition and Basic principle of Electro Deposition. Electro deposition is the process of coating a thin layer of one metal on top of different metal to modify its surface properties. It is done to achieve the desire electrical and corrosion resistance, reduce wear &friction, improve heat tolerance and for decoration. Electroplating Basics Fig-1. Electrochemical Plating Figure- 1, schematically illustrates a simple electrochemical plating system. The ―electro‖ part of the system includes the voltage/current source and the electrodes, anode and cathode, immersed in the ―chemical‖ part of the system, the electrolyte or plating bath, with the circuit being completed by the flow of ions from the plating bath to the electrodes. The metal to be deposited may be the anode and be ionized and go into solution in the electrolyte, or come from the composition of the plating bath. Copper, tin, silver and nickel metal usually comes from anodes, while gold salts are usually added to the plating bath in a controlled process to maintain the composition of the bath. The plating bath generally contains other ions to facilitate current flow between the electrodes. The deposition of metal takes place at the cathode. The overall plating process occurs in the following sequence: 1. Power supply pumps electrons into the cathode. 2. An electron from the cathode transfers to a positively charged metal ion in the solution and the reduced metal plates onto the cathode. -
Analysis of Magnetic Resonance in Metamaterial Structure
Analysis of magnetic resonance in Metamaterial structure Rajni#1, Anupma Marwaha#2 #1 Asstt. Prof. Shaheed Bhagat Singh College of Engg. And Technology,Ferozepur(Pb.)(India), #2 Assoc. Prof., Sant Longowal Institute of Engg. And Technology,Sangrur(Pb.)(India) [email protected] 2 [email protected] Abstract: ‘Metamaterials’ is one of the most 1. Introduction recent topics in several areas of science and technology due to its vast potential in various Metamaterials are artificial materials synthesized applications. These are artificially fabricated by embedding specific inclusions like periodic materials which exhibit negative permittivity structures in host media. These materials have and/or negative permeability. The unusual the unique property of negative permittivity electromagnetic properties of metamaterial and/or negative permeability not encountered in have opened more opportunities for better the nature. If materials have both parameters antenna design to surmount the limitations of negative at the same time, then they exhibit an conventional antennas. Metamaterials have effective negative index of refraction and are created many designs in a broad frequency referred to as Left-Handed Metamaterials spectrum from microwave to millimeter wave (LHM). This name is given to these materials to optical structures. The edifice building because the electric field, magnetic field and the blocks of metamaterials are synthetically wave vector form a left-handed system. These fabricated periodic structures of having materials offer a new dimension to the antenna lattice constants smaller than the wavelength applications. The phase velocity and group of the incident radiation. Thus metamaterial velocity in these materials are anti-parallel to properties can be controlled by the design of each other i.e. -
Power Source for High Voltage Column of Injector to Proton
THPSC018 Proceedings of RuPAC-2010, Protvino, Russia POWER SOURCE FOR HIGH-VOLTAGE COLUMN OF INJECTOR TO PROTON SYNCHROTRON WITH OUTPUT POWER UP TO 5KW Golubenko Yu.I., Medvedko A.S., Nemitov P.I., Pureskin D.N., Senkov D.V., BINP Novosibirsk Russia Abstract converter with insulated gate bipolar transistors (IGBT) as The presented report contains the description of power switches (part A) and the isolation transformer with source with output voltage of sinusoidal shape with synchronous rectifier (part B). The design of power amplitude up to 150V, frequency 400Hz and output converter consists of 3-phase diode rectifier VD1, power up to 5kW, operating on the primary coil of high electromagnetic (EMI) filter F1, switch SW1, rectifier’s voltage transformer - rectifier of precision 1.5MV filter L1 C1-C8, 20 kHz inverter with IGBT switches Q1- electrostatic accelerator – injector for proton synchrotron. Q4, isolation transformer T1, synchronous rectifier O5- The source consists of the input converter with IGBT Q8, output low-pass filter L2 C9 and three current switches, transformer and the synchronous rectifier with sensors: U1, U2 and U3. IGBT switches also. Converter works with a principle of pulse-width modulation (PWM) on programmed from 15 Harmonic PS High voltage to 25 kHz frequency. In addition, PWM signal is 400Hz 120V column modulated by sinusoidal 400Hz signal. The controller of 380V the source is developed with DSP and PLM, which allows 50Hz L1 Ls A 900uHn 230uHn optimizing operations of the source. For control of the Cp B 80uF out source serial CAN-interface is used. The efficiency of C1 1.5MV system is more than 80% at the nominal output power C 400uF 5kW.