Power Management Consortium (PMC) Nuggets

Total Page:16

File Type:pdf, Size:1020Kb

Power Management Consortium (PMC) Nuggets CPES ANNUAL REPORT 2020 103 Power Management Consortium (PMC) Nuggets 104 Low Loss Integrated Inductor and Transformer Structure and Application 114 Design Optimization of an Unregulated LLC Converter with Integrated in Regulated LLC Converter for 48 V Bus Converter Magnetics for a Two-Stage, 48 V VRM 105 Magnetic Integration of Matrix Transformer with a Highly Controllable 115 Wide-Voltage Range, High-Efficiency Sigma Converter 48 V VRM with Leakage Inductance Integrated Magnetics 106 Control Technique for CRM-Based, High-Frequency, 116 Modeling and Control for a 48 V/1 V Sigma Converter for Very Fast Soft-Switching Three-Phase Inverter Under Grid Fault Condition Transient Response 107 Critical Conduction Mode-Based, High-Frequency, Single-Phase 117 A Two-Stage Rail Grade DC-DC Converter Based on a GaN Device Transformerless PV Inverter 118 Design-Oriented Equivalent Circuit Model for Resonant Converters 108 Transmitter Coil Design for Free-Positioning Omnidirectional Wireless 119 Critical-Conduction-Mode-Based Soft-Switching Modulation for Three- Power Transfer System Phase PV Inverters with Reactive Power Transfer Capability 109 Shielding Study of a 6.78 MHz Omnidirectional Wireless Power Transfer 120 Improved Three-Phase Critical-Mode-Based Soft-Switching Modulation System Technique with Low Leakage Current for PV Inverter Application 110 The LCCL-LC Resonant Converter and Its Soft Switching Realization for 121 Balance Technique for CM Noise Reduction in Critical-Mode-Based Three- Omnidirectional Wireless Power Transfer Systems Phase Soft Switching Bidirectional AC-DC Converters 111 Three-Phase Interleaved LLC Resonant Converter with Integrated Planar 122 PCB Winding Coupled Inductor Design for Critical-Mode-Based Three- Magnetics Phase Bidirectional AC-DC Converters with Balance Technique 112 A High-Efficiency, High-Density, Wide-Bandgap, Device-Based 123 High Frequency Transformer Design with High-Voltage Insulation for Bidirectional On-Board Charger Modular Power Conversion from Medium-Voltage AC to 400 V DC 113 Optimal Design of Planar Magnetic Components for a Two-Stage, GaN-Based DC-DC Converter 104 NUGGETS | PMC Low Loss Integrated Inductor and Transformer Structure and Application in Regulated LLC Converter for 48 V Bus Converter ntermediate bus architectures employing 48 V bus converters are widely used in telecom power supply applications. With the rapid Iincrease of demanded power by these loads, higher efficiency and power density are driving for better performance power manage- ment solutions. In this work, a single stage LLC converter with integrated mag- netics is proposed for 48 V/12 V-1 kW bus converters that can pro- vide both regulation and isolation. The current practice for dc-dc bus converters is to operate at low switching frequencies, 100-200 KHz, with power density below 400 W/in3. For higher power density, this converter will operate at a 10-times higher frequency than indus- try practice. The LLC converter is most suitable for high-frequency operation due to its soft switching properties for all devices so that higher efficiency and power density can be realized. For high output current and low voltage dc-dc converters, the matrix converter has proven to be a perfect candidate as it distributes the secondary cur- rent among different outputs to reduce the total conduction loss. In this work, two matrix transformers, each with two trans- former outputs, are used to deliver a 1 kW output power. The two transformers are connected in parallel from both primary and sec- ondary windings as shown in Fig. 1; the primary windings are ar- ranged in a way to integrate the parallel transformers with one core Fig. 1. Single stage LLC DC/DC converter with matrix transformer. structure. To achieve output voltage regulation, the resonant inductor needs to be designed to a specific value to have the required regula- tion capabilities. A novel magnetic structure is proposed where the transformer primary windings are extended with the addition of a magnetic core to achieve a controllable leakage inductance to achieve the regulation capabilities. The shared winding will result in lower losses of the resonant inductor. The proposed PCB winding arrange- ment is shown in Fig. 2. A prototype has been developed for the pro- posed converter, achieving a power density of 800 W/in3 with an es- timated efficiency > 97% higher than all available industry practices. Fig. 2. Integrate matrix transformer and inductor PCB winding arrangements. CPES ANNUAL REPORT 2020 105 Magnetic Integration of Matrix Transformer with a Highly Controllable Leakage Inductance he 48 V power architecture is attracting significant attention for the datacenter industry. The 48 V power architecture pro- Tvides high efficiecncy and is more suitable for high-power delivery as opposed to the legacy 12 V bus architicture. The power rating per server rack in a datacenter is increasing significantly to 24 kW or higher. A number of parallel 3 kW power supply modules are used. This paper focuses on the design of a 400 V/48 V 3 kW dc-dc converter with high efficiency and power density. A full bridge CLL circuit is used with a matrix of four transformers. This paper proposes a novel approach to integrate high con- trollable leakage inductance with a matrix of four transformers us- ing one magnetic core. The paper proposes a five-leg magnetic core where four legs are utilized for four transformers and a fifth leg (cen- ter leg) is placed at the center between the four transformer legs to create controllable leakage inductance without sacrificing the power Fig. 1. Proposed 5-leg core with proposed winding arrangement. density of the magnetic structure, as shown in Fig. 1. The secondary windings of the original matrix transformers are relocated to create leakage flux in the center leg. Different winding arrangements can also be used to create different leakage inductances on the secondary or primary sides. The leakage inductance can be controlled by vary- ing the cross-section area and air gap of the center leg. In Fig. 2, the secondary windings are relocated without making any change on the primary windings. The blue secondary windings are active for the first half cycle, and red secondary windings are active for the second half cycle. This will cause leakage flux to pass through the center leg. By relocating the secondary winding, the physical leakage induc- tance is found on the secondary side. This way, the proposed wind- ing structure can be used in a three-element CLL resonant circuit, as shown in Fig. 2. Different combinations of winding arrangements will result in different leakage inductance values in both primary and secondary sides. In summary, the paper proposes a novel magnetic structure with 5-leg core. The magnetic structure integrates a matrix of four trans- formers with high controllable leakage inductance in a condensed footprint. The integrated magnetics can be applied to a 400 V/48 V 3 kW CLL resonant converter to implement a high-efficiency and high power density dc-dc converter for a datacenter power supply. Fig. 2. Full-bridge CLL circuit with matrix transformer and integrated inductor. 106 NUGGETS | PMC Control Technique for CRM-Based, High-Frequency, Soft-Switching Three-Phase Inverter Under Grid Fault Condition o develop a high power density and efficiency inverter for a the voltage sag case where the grid voltage and the output current are grid-tied application, a critical conduction mode (CRM)-based imbalanced, an undesired phenomenon results. As shown in Fig. 1, Tsoft-switching modulation (DPWM + CRM + DCM) for a continuous conduction mode (CCM) operation occurs where dis- three-phase, two-level inverter was developed. In this modula- continuous conduction mode (DCM) is intended. It should be noted tion scheme, one phase is clamped to a dc rail so that the other two that turn-on loss is mostly concentrated in the CCM region, creat- phases operate at high frequencies as CRM and DCM. Although it ing an extremely high likelihood that hardware might fail. The rea- was proven that the modulation method is a reasonable solution for son for CCM operation is due to the inherent characteristics of the high-frequency operation with high efficiency, previous studies only soft-switching modulation. The turn-on instant of the DCM phase focused on ideal grid conditions such as balanced and rated voltage. is synchronized with the CRM phase to reduce the wide switching- For practicality, studies on non-ideal grid conditions (like fault con- frequency range. Under voltage sag conditions, because of the de- ditions) need to be conducted. pendency of the DCM phase on the CRM phase, the V-sec. balance Voltage sag is one of the most frequent grid faults. Under this at the DCM phase is violated in a specific region. condition, the magnitude of 3-phase voltage decreases, and imbal- In order to prevent CCM operation and reduce the turn-on loss, ance appears between each phase, resulting in positive and negative pulse skipping is introduced in the DCM phase. By comparing zero sequence voltage. To avoid a large voltage ripple at the dc-link ca- current detection (ZCD) signals of the CRM phase and the DCM pacitor, which may lead to over-voltage protection and stop inverter phase, decision making for pulse skipping is made. In this control operation, constant active power should be delivered to the grid. For technique, the DCM phase current has enough time to reach zero. constant active power delivery, the output current to the grid be- Consequently, the concentrated turn-on loss in the CCM operation comes imbalanced. region diminishes significantly. However, if the soft-switching modulation is directly applied to Fig. 1. Operation mode of soft-switching inverter and turn-on Fig. 2. Control strategy under grid fault condition: pulse skipping in DCM phase. loss distribution under Type B voltage sag.
Recommended publications
  • Mutual Inductance and Transformer Theory Questions: 1 Through 15 Lab Exercise: Transformer Voltage/Current Ratios (Question 61)
    ELTR 115 (AC 2), section 1 Recommended schedule Day 1 Topics: Mutual inductance and transformer theory Questions: 1 through 15 Lab Exercise: Transformer voltage/current ratios (question 61) Day 2 Topics: Transformer step ratio Questions: 16 through 30 Lab Exercise: Auto-transformers (question 62) Day 3 Topics: Maximum power transfer theorem and impedance matching with transformers Questions: 31 through 45 Lab Exercise: Auto-transformers (question 63) Day 4 Topics: Transformer applications, power ratings, and core effects Questions: 46 through 60 Lab Exercise: Differential voltage measurement using the oscilloscope (question 64) Day 5 Exam 1: includes Transformer voltage ratio performance assessment Lab Exercise: work on project Project: Initial project design checked by instructor and components selected (sensitive audio detector circuit recommended) Practice and challenge problems Questions: 66 through the end of the worksheet Impending deadlines Project due at end of ELTR115, Section 3 Question 65: Sample project grading criteria 1 ELTR 115 (AC 2), section 1 Project ideas AC power supply: (Strongly Recommended!) This is basically one-half of an AC/DC power supply circuit, consisting of a line power plug, on/off switch, fuse, indicator lamp, and a step-down transformer. The reason this project idea is strongly recommended is that it may serve as the basis for the recommended power supply project in the next course (ELTR120 – Semiconductors 1). If you build the AC section now, you will not have to re-build an enclosure or any of the line-power circuitry later! Note that the first lab (step-down transformer circuit) may serve as a prototype for this project with just a few additional components.
    [Show full text]
  • Fall 2011 Meeting Minutes Boston MA November 3,2011
    IEEE/PES Transformers Committee Fall 2011 Meeting Minutes Boston MA November 3,2011 Unapproved IEEE/PES Transformers Committee Meeting Fall 2011 Boston MA Committee Members and Guests Registered for the Spring 2011 Meeting Albers, Timothy: II Bertolini, Edward: AP - LM Campbell, James: II Allaway, Dave: II Berube, Jean-Noel: II Carlos, Arnaldo: AP Allaway, Marcene: SP Betancourt, Enrique: CM Caronia, Paul: II Allen, Jerry: AP Bhatia, Paramjit: II Caskey, John: AP Allen, Abbey: II Binder, Wallace: CM Caskey, Melissa: G Alton, Henry: II Bishop Jr, Wayne: II Castellanos, Juan: CM Amos, Richard: CM Bishop, Cherie: SP Castillo, Alonso: II Amos, Norann: SP Blackburn, Gene: CM Castillo, Karla: SP Anderson, Gregory: CM Blackburn, Martha: SP Chadderdon, Philip: II Anderson, Jeffrey: II Blackmon, Jr., James: AP Cheim, Luiz: AP Angell, Don: AP Blackmon, Donna: SP Cherry, Donald: CM Ansari, Tauhid: AP Blaydon, Daniel: CM Chiodo, Vincent: II Anthony, Stephen: II Boettger, William: CM Chisholm, Paul: AP Antosz, Stephen: CM Boettger, Pat: SP Chiu, Bill: CM Armstrong, James: AP Bolliger, Alain: AP Lu, Minnie: SP Arpino, Carlo: CM Bolliger, Dominique: SP Chmiel, Frank: AP Arpino, Tina: SP Boman, Paul: CM Choinski, Scott: AP Asano, Roberto: AP Borowitz, James: II Bartholomew, Kathy: SP Atef, Kahveh: II Botti, Michael: II Christodoulou, Larry: II Averitt, Ralph: II Botti, Nicole: SP Chrobak, John: II Ayers, Donald: CM Bozich, Bradford: II Chu, Donald: CM Bae, Yongbae: II Bradford, Ira: II Claiborne, C. Clair: CM Ballard, Jay: AP Brady, Ryan: II Cocchiarale,
    [Show full text]
  • Application Note AN-1024 Flyback Transformer Design for The
    Application Note AN-1024 Flyback Transformer Design for the IRIS40xx Series Table of Contents Page 1. Introduction to Flyback Transformer Design ...............................................1 2. Power Supply Design Criteria Required .......................................................2 3. Transformer Design Process.........................................................................2 4) Transformer Construction .............................................................................9 4.1) Transformer Materials..................................................................................10 4.2) Winding Styles.............................................................................................12 4.3) Winding Order..............................................................................................12 4.4) Multiple Outputs...........................................................................................12 4.5) Leakage Inductance ....................................................................................13 5) Transformer Core Types ..............................................................................14 6) Wire Table .....................................................................................................16 7) References ....................................................................................................17 8) Transformer Component Sources...............................................................17 One of the most important factors in the design of
    [Show full text]
  • Tesla's Coil. a Toy Or Useful Thing in the Life of Radio Engineering?
    УДК 537 Ільчук Д.Р. Tesla's coil. A toy or useful thing in the life of radio engineering? Вінницький національний технічний університет Аннотація. У цій статті, подан опис такого приладу як Котушка Тесли. Наведені її характеристики, принцип роботи, історія створення та значення в сучасному житті. Також описані процеси створення власноруч та розсуди про практичність даного виробу у реальному житті. Ключові слова: Котушка індуктивності, висока напруга, Нікола Тесла, радіотехніка, електрична дуга. Abstract. This article contains a description of the device as a Tesla coil. These characteristics of the principle of history and value creation in modern life. Also describes the process of creating his own judge and practicality of this product in real life. Keywords: Inductor, high voltage, Nikola Tesla, radio, electric arc. I.Introduction Perhaps in the life of every student comes a time when it begins to be interested in their field. In some it comes in the first year, someone on last. At the beginning of the 3rd year I finally decided to solder something with their hands. The choice immediately fell on Tesla coil. But is this thing so important, whether it is only a toy, which is impossible to do anything useful? Let us know about it. II. Summary The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla around 1891 as a power supply for his "System of Electric Lighting".It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits.
    [Show full text]
  • THE ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE the ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE
    THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE Mitch Tilbury New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-159589-9 The material in this eBook also appears in the print version of this title: 0-07-149737-4. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]
  • Power Processing, Part 1. Electric Machinery Analysis
    DOCONEIT MORE BD 179 391 SE 029 295,. a 'AUTHOR Hamilton, Howard B. :TITLE Power Processing, Part 1.Electic Machinery Analyiis. ) INSTITUTION Pittsburgh Onii., Pa. SPONS AGENCY National Science Foundation, Washingtcn, PUB DATE 70 GRANT NSF-GY-4138 NOTE 4913.; For related documents, see SE 029 296-298 n EDRS PRICE MF01/PC10 PusiPostage. DESCRIPTORS *College Science; Ciirriculum Develoiment; ElectricityrFlectrOmechanical lechnology: Electronics; *Fagineering.Education; Higher Education;,Instructional'Materials; *Science Courses; Science Curiiculum:.*Science Education; *Science Materials; SCientific Concepts ABSTRACT A This publication was developed as aportion of a two-semester sequence commeicing ateither the sixth cr'seventh term of,the undergraduate program inelectrical engineering at the University of Pittsburgh. The materials of thetwo courses, produced by a ional Science Foundation grant, are concernedwith power convrs systems comprising power electronicdevices, electrouthchanical energy converters, and associated,logic Configurations necessary to cause the system to behave in a prescribed fashion. The emphisis in this portionof the two course sequence (Part 1)is on electric machinery analysis. lechnigues app;icable'to electric machines under dynamicconditions are anallzed. This publication consists of sevenchapters which cW-al with: (1) basic principles: (2) elementary concept of torqueand geherated voltage; (3)tile generalized machine;(4i direct current (7) macrimes; (5) cross field machines;(6),synchronous machines; and polyphase
    [Show full text]
  • IEEE/PES Transformers Committee
    IEEE/PES Transformers Committee Meeting Minutes April 18, 2002 IEEE/PES TRANSFORMERS COMMITTEE MEETING April 18, 2002 Vancouver, British Columbia, Canada IEEE/PES TRANSFORMERS COMMITTEE MEETING Vancouver, British Columbia, Canada April 14-18, 2002 ATTENDANCE SUM MARY MEMBERS ATTENDING, AND PRESENT FOR MAIN MEETING (4/18) Aho, David Fyvie, Jim MacMillan, Donald Riffon, Pierre Allan, Dennis Ghafourian, Ali Marek, Rick Romano, Ken Anderson, Greg Girgis , Ramsis Matthews, John Rossetti, John Arteaga, Javier Graham, Richard McClure, Phil Schweiger, Ewald Ayers, Don Griesacker, Bill McNelly, Susan Shull, Stephen Barnard, Dave Grunert, Bob McQuin, Nigel Sim, Jin Bartley, Bill Haas, Michael McTaggart, Ross Singh, Prit Blackburn III, Gene Hager, Jr., Red Miller, Kent Smith, Jim Boettger, Bill Haggerty, N. Kent Mitelman, Mike Smith, Ed Borst, John Hanus, Ken Molden, Arthur Stahara, Ron Chiu, Bill Harlow, Jim Niemann, Carl Stiegemeier, Craig Colopy, Craig Hayes, Roger Papp, Klaus Thompson, James Corkran, Jerry Highton, Keith R. Patel, Bipin Tuli, Subhash Crouse, John Hopkinson, Phil Patton, Jesse Veitch, Bob Dohnal, Dieter James, Rowland Payne, Paulette Wagenaar, Loren Duckett, Don Johnson, Jr., Chuck Pekarek, Tom Ward, Barry Dudley, Richard Kelly, Joe Plaster, Leon Watson, Joe Elliott, Fred Kennedy, Sheldon Platts, Don Wilks, Alan Ellis , Keith Kim, Dong Preininger, Gustav Zhao, Peter Fallon, Don Lau, Mike Prevost, Tom Foldi, Joe Lowe, Don Puri, Jeewan MEMBERS ATTENDING, BUT NOT PRESENT FOR MAIN MEETING (4/18) Antosz, Stephen Galloway, Dudley Kline,
    [Show full text]
  • On Simplified Calculations of Leakage Inductances of Power Transformers
    energies Article On Simplified Calculations of Leakage Inductances of Power Transformers Tadeusz Sobczyk * and Marcin Jaraczewski * Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland * Correspondence: [email protected] (T.S.); [email protected] (M.J.); Tel.: +48-12-628-2658 (M.J.) Received: 1 August 2020; Accepted: 17 September 2020; Published: 21 September 2020 Abstract: This paper deals with the problem of the leakage inductance calculations in power transformers. Commonly, the leakage flux in the air zone is represented by short-circuit inductance, which determines the short-circuit voltage, which is a very important factor for power transformers. That inductance is a good representation of the typical power transformer windings, but it is insufficient for multi-winding ones. This paper presents simple formulae for self- and mutual leakage inductance calculations for an arbitrary pair of windings. It follows from a simple 1D approach to analyzing the stray field using a discrete differential operator, and it was verified by the finite element method (FEM) calculation results. Keywords: multi-winding transformers; 1D stray field analysis; discrete differential operator; energy-based approach; self- and mutual leakage inductances 1. Introduction Power transformers are rather well-recognized electromagnetic devices. During the almost 150 year history of their development, countless books and papers have been devoted to power transformers, examples of which are [1–4]. Theoretical, design and operation problems have been solved. Besides the classical single-phase and three-phase, new types of power transformers have been designed for special applications: power system control, power electronics units, or electrical traction.
    [Show full text]
  • Abstract Transformer Design for Dual Active Bridge
    ABSTRACT TRANSFORMER DESIGN FOR DUAL ACTIVE BRIDGE CONVERTER by Egor Iuravin Power transformers have a long history which takes root in 19th century when Michael Faraday introduced the definition of the electromagnetic induction. In the beginning of the 1960s, there was a tendency to increase the frequency of switch mode power supplies. This thesis provides the detailed summary of operating principles, design, simulation and experimental analysis of high frequency power transformers. The focus of this research is to find an optimal transform solution for the DAB converter operating at a power level of 2 kW. Furthermore, the investigation will be carried out to estimate and measure the contact loss of a transformer. TRANSFORMER DESIGN FOR DUAL ACTIVE BRIDGE CONVERTER A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science in Computational Science and Engineering by Egor Iuravin Miami University Oxford, Ohio 2018 Advisor: Dr. Mark J. Scott Reader: Dr. Haiwei Cai Reader: Dr. Dmitriy Garmatyuk ©2018 Egor Iuravin This Thesis titled TRANSFORMER DESIGN FOR DUAL ACTIVE BRIDGE CONVERTER by Egor Iuravin has been approved for publication by College of Engineering and Computing and Department of Electrical and Computer Engineering ____________________________________________________ Dr. Mark J Scott ______________________________________________________ Dr. Haiwei Cai _______________________________________________________ Dr. Dmitriy Garmatyuk Table of Contents 1. Introduction
    [Show full text]
  • Magnetic Coupling in Transmission Lines and Transformers Explore the Similarities of These Closely-Related Structures and Discard Some Widespread Misunderstandings
    Magnetic Coupling in Transmission Lines and Transformers Explore the similarities of these closely-related structures and discard some widespread misunderstandings. Gerrit Barrere, KJ7KV During my investigation of transformers • If two wires carrying differential current pass gram like Figure 1 follow the direction of and transmission lines and the marriage of through a core, the flux they produce can- the vector field, and the density of spacing the two, a number of questions arose that I cels, resulting in zero flux in the core. Yet between lines indicates the field magnitude. could not answer. For instance: the core has a significant effect on low- In general, the magnitude of the magnetic • If the characteristic impedance of a frequency behavior. How can this happen field along a given line is not constant; but in transmission line is the familiar with no flux? a symmetrical case like Figure 1, it is. I slowly pieced together explanations for Flux is a smooth and continuous phenom- ZLC0 = (square root of inductance per length over capacitance per length), those and other aspects of lines and transform- enon, like swirling water. The lines in vector field diagrams merely indicate the trends of why doesn’t this change when the line is ers, which I haven’t seen in the literature; surrounded by ferrite, which increases in- perhaps you will find them helpful too. ductance? Through most of this discussion I will be re- • One source stated that the electrical length ferring to transmission lines as two wires, but the same ideas apply to any form of line ex- of a line is increased by adding ferrite, cept coaxial cable, which is treated separately.
    [Show full text]
  • Coupled-Inductor Magnetics in Power Electronics
    COUPLED-INDUCTOR MAGNETICS IN POWER ELECTRONICS Thesis by Zhe Zhang In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1987 (Submitted October 7, 1986) 11 © 1986 Zhe Zhang All Rights Reserved 111 Acknowledgements I wish to express my deepest gratitude to my advisors, Professor S. Cuk and Professor R. D. Middlebrook, for their encouragement and advice during the five years I have studied at Caltech. I appreciate very much the financial support of the California Institute of Technology by the way of Graduate Teaching Assistantships. In addition, Graduate Re­ search Assistantships supported by the International Business Machines, GTE, Emerson Electric, General Dynamics Corporations, and National Aeronautics and Space Admin­ istration Lewis Research Center are gratefully acknowledged. Most importantly, I thank my wife Guo Zhan, son Zhang Pei, and my parents W. Y. Chang and C. S. Wang. Without their support and understanding my study at Caltech would never have been possible. In addition, I wish to thank Mr. Wang Senlin, my first teacher in electronics, and Mr. Xu Qinglu, my supervisor when I started my first job, for their training and support throughout the years. In the years with the Power Electronics Group, I have learned from the Group much more than I have contributed. I thank all my fellow members of the Power Elec­ tronics Group for all their help and support. lV v Abstract Leakages are inseparably associated with magnetic circuits and are always thought of in three different negative ways: either you have them and you don't want them (transformers), or you don't have them but want them (to limit transformer short circuit currents), or you have them and want them, but you don't have them in the right amount (coupled-inductor magnetic structures).
    [Show full text]
  • Solid State Tesla Coils Page 1 of 14
    Solid State Tesla Coils Page 1 of 14 Solid State Tesla Coils How to Make Them, How They Work! Last updated 7/5/2005 Table of Contents: Preliminary cautions, notes, warnings, etc. Theory - Low Impedance Primary Feed (a good way) Theory - High Impedance Primary Feed (usually not so good) Theory - End Feed Without a Primary (can be good!) Theory - Energy Storage in the Primary (probably so-so at best) Dipole Vs. Monopole Coils (mainly monopoles discussed in this file) Actual Circuits - Low Impedance Primary Feed Actual Circuits - End Feed Design Example (untested) - Energy Storage in the Primary Helpful hints for building solid state Tesla coils! My Tesla coil top page and links to the Tesla coil web ring Preliminary Cautions, Notes, Warnings, etc. 1. The subject matter in this file assumes you already have some electronic project knowledge and skills. You ought to have some skills in building things, as well as electronic knowledge to the point of knowing simple AC circuit analysis, series and parallel resonant circuits, some amplifier and oscillator theory, and a bit of radio stuff. I hope you know what Armstrong, Hartley and Colpitts oscilators are and how they work. If not, you may still be able to build the stuff mentioned below and burn your house down, but knowing how the stuff below works will help if you don't quite get things working. This is not the place to learn the basics of electronics - spend a week or two reading library books if you have to. 2. Things may not work right the first time.
    [Show full text]