An Introduction to the Path Integral Approach to Quantum Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to the Path Integral Approach to Quantum Mechanics An Introduction to the Path Integral Approach to Quantum Mechanics Luke Bovard Department of Physics, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Dated: December 19, 2009) In 1948 Richard Feynman reformulated quantum mechanics using a sum-over-all paths approach. In this derivation he obtained a completely di®erent way of looking at quantum mechanics that demon- strates the close relationship between the classical action and the evolution of the wavefunction. In this paper I will give a short overview of the propagator and how it can be used to describe the system. Then I will discuss the results of the Feynman path integral formulation and its equivalence to the SchrÄodingerequation. Finally I will explain how this method can be used to solve a speci¯c potential and discuss applications to more advanced topics. HISTORY AND INTRODUCTION SchrÄodingerEquation[2]. Now we will show how to de- rive equation (1) following Shankar[3]. We ¯rst start with Werner Heisenberg, Max Born, and Pascual Jordan the SchrÄodingerequation originally developed matrix mechanics in 1925 and a year d later Erwin SchrÄodingercame up with the di®erential i¹h jª(t)i = Hjª(t)i dt equation wave function approach. That same year, Paul Dirac demonstrated that matrix mechanics is equivalent From this we can obtain the time independent to the wave function approach. These remained the stan- SchrÄodingerequation as HjÃni = EnjÃni. We now dard approaches to quantum mechanics until 1948 when use an important property of SchrÄodingerequation in Richard Feynman developed the path integral formula- that we can expand the original wavefunctionP out in tion based o® investigations by Eugene Wigner[1]. Feyn- terms of the eigenkets jÃni; jª(t)i = an(t)jÃni where man's formulation of quantum mechanics determines how an(t) = an(0) exp(¡iEt=¹h) are obtained from the sepa- the wavefunction evolves in time by ¯nding a propagator ration of variables and a0(0) = hÃnjª(0)i. Now substi- which describes how the system evolves in time and which tuting back into the expansion for jª(t)i we obtain is independent of the initial wavefunction. Feynman's key X ¡iEt=h¹ insight was to recognize the fact that this propagator is jª(t)i = jÃnihÃnjª(0)ie directly related to the sum of all possible paths a particle X ¡iEt=h¹ can take between two points. = jÃnihÃnje jª(0)i = U(t)jª(0)i OVERVIEW and hence we are able to obtain the expression for the propagator. We can now completely describe the system The Feynman path integral formulation depends upon since this propagator is independent of the initial position ¯nding the propagator for a given system. The propaga- of the wavefunction and can describe how the wavefunc- tor is a function that is independent of the initial con- tion evolves in time. We also note that this is entirely ditions and describes how a system evolves in time. In equivalent to another form of the propagator which we quantum mechanics the propagator is as follows write as U(t) = e¡iHt=h¹ and the curious reader may con- X sult [2] to ¯nd a di®erent derivation of (1). We also note ¡iEt=h¹ U(t) = jÃnihÃnje (1) that this derivation assumes discrete and non-degenerate energy levels but if we have a continuous spectrum, such where we can write the wavefunction in the di®erent as the free particle, we replace the sum with an integra- eigenstates evaluated in whatever basis happens to be tion over jÃni. If we have degeneracies we have to double convenient. To obtain this result we recall the following sum over the degeneracies. equation which describes how the wavefunction evolves in time. PATH INTEGRAL PROPAGATOR jª(t)i = U(t)jª(0)i As we have just seen above, if we are able to work out All this says is that given some initial wavefunction at the propagator we can completely describe the system at some time t0, chosen arbitrarily to be zero, the prop- any time. However there is a great di±culty in working agator, U(t), determines how the wavefunction evolves out these propagators due to the complicated nature of in time. Analysis of this equation can lead us to the the summations. Instead we turn to the path integral J. Phy334 4, 0014 (2009). JOURNAL OF PHYS 334 December 19, 2009 method due to Feynman to evaluate these propagators. Above the term 'moving towards the particles classical The actual derivation of the propagator is fairly involved path' was used, but what exactly do we mean by 'mov- and too long to be derived in this short introduction but ing towards'? How far away from the particle's classical can be read in either [3] or [4]. Instead I will discuss path must we go before we encounter destructive interfer- the consequences of the path integral formulation. The ence? E®ectively we can make an elementary guess that major result of the derivation is that between two points S[xcl(t)]=¹h ¼ ¼ or otherwise if the action is ¼¹h away from (x; t) ! (x0; t0) the classical path we have destructive interference. The X classical action of a macroscopic particle is on the order U(x; t; x0; t0) = A eiS[x(t)]=h¹ (2) of 1 erg sec ¼ 1027¹h[3] which is much greater then ¼¹h. In all paths this case we are well beyond the ¼¹h and hence the clas- sical path completely dominates the sum. However for where A is a normalisation factor and S[x(t)] is the clas- an electron, which has a very tiny mass, has an approxi- sical action corresponding to each path and is denoted mate action of ¹h=6[3] which is well within the ¼¹h needed by and thus we cannot think of the electron moving along Z it's classical path since many of the non-classical paths S = Ldt contribute to the summation. An alternate way to write this formulation to better ac- EQUIVALENCE TO THE SCHRODINGERÄ knowledge that there are an in¯nite number of paths is EQUATION Z x0 U(x; t; x0; t0) = eiS[x(t)]=h¹ D[x(t)] (3) Feynman has now told us the propagator is equiva- x lent to summing over the action of all the possible paths between two points. But does this give us the correct where it is implied by the D[x(t)] that we sum over all result as predicted by the SchrÄodingerequation? To 0 0 the paths connecting (x; t); (x ; t ). show the equivalence imagine a system evolving from An immediate consequence of this formula is that all (x ¡ »; t ¡ ²) ! (x; t)[5]. We know that the propaga- paths are equally weighted. Thus a question arises is as tor tells us exactly how this system evolves and we can to how the classical path is favoured in the classical limit approximate this as a straight line and constant velocity and by what mechanism is the classical path chosen over between the two points. Thus we are only summing over the other paths if they are equally weighted? a single path One way to think of the above formula is for each path Z 1 to represent a vector in the complex plane. Assume, with- ª(x; t) ¼ A d»eiS=h¹ ª(x ¡ »; t ¡ ²) out loss of generality, that each vector is of unit length. ¡1 Here the action determines the phase of the vector. As we where A is a normalisation constant and the action is move far away from the classical path there is destructive determined by S = [1=2m(»=²)2 ¡ V (x)]² which is the interference as all the di®erent non-classical paths tend action to the ¯rst order of epsilon. Now we have that Z to cancel each other out. As we move towards the classi- 1 2 im» ¡ i V (x)² cal path the picture changes. We know that Hamilton's ª(x; t) ¼ A d»e 2¹h² e h¹ ª(x ¡ »; t ¡ ²) principle is ¡1 Z with the intention of taking the limit ² ! 0. Now as ±S = ± Ldt = 0 the we take this limit the ¯rst exponential oscillates very rapidly unless the » is smaller then the ². Thus if we pick a small neighbourhood about » such that it is smaller which serves as the basis for analytical classical mechan- then ² we can expand out terms into Taylor Series about ics as both the Hamiltonian and Lagrangian formulation ²; » and hence follow from it. What it states is that the variation along Z 1 im»2 @ª i the classical path is at an extremum. Thus when we start ª(x; t) ¼ A d»e 2¹h² [ª ¡ ² ¡ V ª² + ¢ ¢ ¢ moving towards the particles classical path we start hav- ¡1 @t ¹h ing constructive interference because the variation in the @ª 1 @2ª ¡ » + »2 + ¢ ¢ ¢ ] path is zero and hence we are able to regain the classical @x 2 @x2 path. This means that the destructive interference e®ec- Now that we have expanded the terms, the ª is inde- tively cancels the contribution of all paths that are not pendent of » and hence all the integrals can easily be near the classical path and constructive interference near performed as they are all Gaussian integrals. the classical path allows us to regain the classical path. r · µ ¶ ¸ Thus despite all being equally weighted the classical path 2¼i¹h² @ª i i¹h @2ª ª(x; t) ¼ A ª + ¡ ¡ V ª + ² + ¢ ¢ ¢ is very important. m @t ¹h 2m @x2 2 J. Phy334 4, 0014 (2009).
Recommended publications
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • Dirac Notation Frank Rioux
    Elements of Dirac Notation Frank Rioux In the early days of quantum theory, P. A. M. (Paul Adrian Maurice) Dirac created a powerful and concise formalism for it which is now referred to as Dirac notation or bra-ket (bracket ) notation. Two major mathematical traditions emerged in quantum mechanics: Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics. These distinctly different computational approaches to quantum theory are formally equivalent, each with its particular strengths in certain applications. Heisenberg’s variation, as its name suggests, is based matrix and vector algebra, while Schrödinger’s approach requires integral and differential calculus. Dirac’s notation can be used in a first step in which the quantum mechanical calculation is described or set up. After this is done, one chooses either matrix or wave mechanics to complete the calculation, depending on which method is computationally the most expedient. Kets, Bras, and Bra-Ket Pairs In Dirac’s notation what is known is put in a ket, . So, for example, p expresses the fact that a particle has momentum p. It could also be more explicit: p = 2 , the particle has momentum equal to 2; x = 1.23 , the particle has position 1.23. Ψ represents a system in the state Q and is therefore called the state vector. The ket can also be interpreted as the initial state in some transition or event. The bra represents the final state or the language in which you wish to express the content of the ket . For example,x =Ψ.25 is the probability amplitude that a particle in state Q will be found at position x = .25.
    [Show full text]
  • What Is the Dirac Equation?
    What is the Dirac equation? M. Burak Erdo˘gan ∗ William R. Green y Ebru Toprak z July 15, 2021 at all times, and hence the model needs to be first or- der in time, [Tha92]. In addition, it should conserve In the early part of the 20th century huge advances the L2 norm of solutions. Dirac combined the quan- were made in theoretical physics that have led to tum mechanical notions of energy and momentum vast mathematical developments and exciting open operators E = i~@t, p = −i~rx with the relativis- 2 2 2 problems. Einstein's development of relativistic the- tic Pythagorean energy relation E = (cp) + (E0) 2 ory in the first decade was followed by Schr¨odinger's where E0 = mc is the rest energy. quantum mechanical theory in 1925. Einstein's the- Inserting the energy and momentum operators into ory could be used to describe bodies moving at great the energy relation leads to a Klein{Gordon equation speeds, while Schr¨odinger'stheory described the evo- 2 2 2 4 lution of very small particles. Both models break −~ tt = (−~ ∆x + m c ) : down when attempting to describe the evolution of The Klein{Gordon equation is second order, and does small particles moving at great speeds. In 1927, Paul not have an L2-conservation law. To remedy these Dirac sought to reconcile these theories and intro- shortcomings, Dirac sought to develop an operator1 duced the Dirac equation to describe relativitistic quantum mechanics. 2 Dm = −ic~α1@x1 − ic~α2@x2 − ic~α3@x3 + mc β Dirac's formulation of a hyperbolic system of par- tial differential equations has provided fundamental which could formally act as a square root of the Klein- 2 2 2 models and insights in a variety of fields from parti- Gordon operator, that is, satisfy Dm = −c ~ ∆ + 2 4 cle physics and quantum field theory to more recent m c .
    [Show full text]
  • Dirac Equation - Wikipedia
    Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics.
    [Show full text]
  • 5 the Dirac Equation and Spinors
    5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory.
    [Show full text]
  • 13 the Dirac Equation
    13 The Dirac Equation A two-component spinor a χ = b transforms under rotations as iθn J χ e− · χ; ! with the angular momentum operators, Ji given by: 1 Ji = σi; 2 where σ are the Pauli matrices, n is the unit vector along the axis of rotation and θ is the angle of rotation. For a relativistic description we must also describe Lorentz boosts generated by the operators Ki. Together Ji and Ki form the algebra (set of commutation relations) Ki;Kj = iεi jkJk − ε Ji;Kj = i i jkKk ε Ji;Jj = i i jkJk 1 For a spin- 2 particle Ki are represented as i Ki = σi; 2 giving us two inequivalent representations. 1 χ Starting with a spin- 2 particle at rest, described by a spinor (0), we can boost to give two possible spinors α=2n σ χR(p) = e · χ(0) = (cosh(α=2) + n σsinh(α=2))χ(0) · or α=2n σ χL(p) = e− · χ(0) = (cosh(α=2) n σsinh(α=2))χ(0) − · where p sinh(α) = j j m and Ep cosh(α) = m so that (Ep + m + σ p) χR(p) = · χ(0) 2m(Ep + m) σ (pEp + m p) χL(p) = − · χ(0) 2m(Ep + m) p 57 Under the parity operator the three-moment is reversed p p so that χL χR. Therefore if we 1 $ − $ require a Lorentz description of a spin- 2 particles to be a proper representation of parity, we must include both χL and χR in one spinor (note that for massive particles the transformation p p $ − can be achieved by a Lorentz boost).
    [Show full text]
  • Chapter 5 the Dirac Formalism and Hilbert Spaces
    Chapter 5 The Dirac Formalism and Hilbert Spaces In the last chapter we introduced quantum mechanics using wave functions defined in position space. We identified the Fourier transform of the wave function in position space as a wave function in the wave vector or momen­ tum space. Expectation values of operators that represent observables of the system can be computed using either representation of the wavefunc­ tion. Obviously, the physics must be independent whether represented in position or wave number space. P.A.M. Dirac was the first to introduce a representation-free notation for the quantum mechanical state of the system and operators representing physical observables. He realized that quantum mechanical expectation values could be rewritten. For example the expected value of the Hamiltonian can be expressed as ψ∗ (x) Hop ψ (x) dx = ψ Hop ψ , (5.1) h | | i Z = ψ ϕ , (5.2) h | i with ϕ = Hop ψ . (5.3) | i | i Here, ψ and ϕ are vectors in a Hilbert-Space, which is yet to be defined. For exampl| i e, c|omi plex functions of one variable, ψ(x), that are square inte­ 241 242 CHAPTER 5. THE DIRAC FORMALISM AND HILBERT SPACES grable, i.e. ψ∗ (x) ψ (x) dx < , (5.4) ∞ Z 2 formt heHilbert-Spaceofsquareintegrablefunctionsdenoteda s L. In Dirac notation this is ψ∗ (x) ψ (x) dx = ψ ψ . (5.5) h | i Z Orthogonality relations can be rewritten as ψ∗ (x) ψ (x) dx = ψ ψ = δmn. (5.6) m n h m| ni Z As see aboveexpressions look likeabrackethecalledthe vector ψn aket­ vector and ψ a bra-vector.
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • 1. Dirac Equation for Spin ½ Particles 2
    Advanced Particle Physics: III. QED III. QED for “pedestrians” 1. Dirac equation for spin ½ particles 2. Quantum-Electrodynamics and Feynman rules 3. Fermion-fermion scattering 4. Higher orders Literature: F. Halzen, A.D. Martin, “Quarks and Leptons” O. Nachtmann, “Elementarteilchenphysik” 1. Dirac Equation for spin ½ particles ∂ Idea: Linear ansatz to obtain E → i a relativistic wave equation w/ “ E = p + m ” ∂t r linear time derivatives (remove pr = −i ∇ negative energy solutions). Eψ = (αr ⋅ pr + β ⋅ m)ψ ∂ ⎛ ∂ ∂ ∂ ⎞ ⎜ ⎟ i ψ = −i⎜α1 ψ +α2 ψ +α3 ψ ⎟ + β mψ ∂t ⎝ ∂x1 ∂x2 ∂x3 ⎠ Solutions should also satisfy the relativistic energy momentum relation: E 2ψ = (pr 2 + m2 )ψ (Klein-Gordon Eq.) U. Uwer 1 Advanced Particle Physics: III. QED This is only the case if coefficients fulfill the relations: αiα j + α jαi = 2δij αi β + βα j = 0 β 2 = 1 Cannot be satisfied by scalar coefficients: Dirac proposed αi and β being 4×4 matrices working on 4 dim. vectors: ⎛ 0 σ ⎞ ⎛ 1 0 ⎞ σ are Pauli α = ⎜ i ⎟ and β = ⎜ ⎟ i 4×4 martices: i ⎜ ⎟ ⎜ ⎟ matrices ⎝σ i 0 ⎠ ⎝0 − 1⎠ ⎛ψ ⎞ ⎜ 1 ⎟ ⎜ψ ⎟ ψ = 2 ⎜ψ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ψ 4 ⎠ ⎛ ∂ r ⎞ i⎜ β ψ + βαr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ ⎛ 0 ∂ r ⎞ i⎜γ ψ + γr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ 0 i where γ = β and γ = βα i , i = 1,2,3 Dirac Equation: µ i γ ∂µψ − mψ = 0 ⎛ψ ⎞ ⎜ 1 ⎟ ⎜ψ 2 ⎟ Solutions ψ describe spin ½ (anti) particles: ψ = ⎜ψ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ψ 4 ⎠ Extremely 4 ⎛ µ ∂ ⎞ compressed j = 1...4 : ∑ ⎜∑ i ⋅ (γ ) jk µ − mδ jk ⎟ψ k description k =1⎝ µ ∂x ⎠ U.
    [Show full text]
  • On the Schott Term in the Lorentz-Abraham-Dirac Equation
    Article On the Schott Term in the Lorentz-Abraham-Dirac Equation Tatsufumi Nakamura Fukuoka Institute of Technology, Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan; t-nakamura@fit.ac.jp Received: 06 August 2020; Accepted: 25 September 2020; Published: 28 September 2020 Abstract: The equation of motion for a radiating charged particle is known as the Lorentz–Abraham–Dirac (LAD) equation. The radiation reaction force in the LAD equation contains a third time-derivative term, called the Schott term, which leads to a runaway solution and a pre-acceleration solution. Since the Schott energy is the field energy confined to an area close to the particle and reversibly exchanged between particle and fields, the question of how it affects particle motion is of interest. In here we have obtained solutions for the LAD equation with and without the Schott term, and have compared them quantitatively. We have shown that the relative difference between the two solutions is quite small in the classical radiation reaction dominated regime. Keywords: radiation reaction; Loretnz–Abraham–Dirac equation; schott term 1. Introduction The laser’s focused intensity has been increasing since its invention, and is going to reach 1024 W/cm2 and beyond in the very near future [1]. These intense fields open up new research in high energy-density physics, and researchers are searching for laser-driven quantum beams with unique features [2–4]. One of the important issues in the interactions of these intense fields with matter is the radiation reaction, which is a back reaction of the radiation emission on the charged particle which emits a form of radiation.
    [Show full text]
  • Dirac Equation
    Particle Physics Dr. Alexander Mitov µ+ µ+ e- e+ e- e+ µ- µ- µ+ µ+ e- e+ e- e+ µ- µ- Handout 2 : The Dirac Equation Dr. A. Mitov Particle Physics 45 Non-Relativistic QM (Revision) • For particle physics need a relativistic formulation of quantum mechanics. But first take a few moments to review the non-relativistic formulation QM • Take as the starting point non-relativistic energy: • In QM we identify the energy and momentum operators: which gives the time dependent Schrödinger equation (take V=0 for simplicity) (S1) with plane wave solutions: where •The SE is first order in the time derivatives and second order in spatial derivatives – and is manifestly not Lorentz invariant. •In what follows we will use probability density/current extensively. For the non-relativistic case these are derived as follows (S1)* (S2) Dr. A. Mitov Particle Physics 46 •Which by comparison with the continuity equation leads to the following expressions for probability density and current: •For a plane wave and «The number of particles per unit volume is « For particles per unit volume moving at velocity , have passing through a unit area per unit time (particle flux). Therefore is a vector in the particle’s direction with magnitude equal to the flux. Dr. A. Mitov Particle Physics 47 The Klein-Gordon Equation •Applying to the relativistic equation for energy: (KG1) gives the Klein-Gordon equation: (KG2) •Using KG can be expressed compactly as (KG3) •For plane wave solutions, , the KG equation gives: « Not surprisingly, the KG equation has negative energy solutions – this is just what we started with in eq.
    [Show full text]
  • Modeling Classical Dynamics and Quantum Effects In
    Modeling Classical Dynamics and Quantum Effects in Superconducting Circuit Systems by Peter Groszkowski A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2015 c Peter Groszkowski 2015 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In recent years, superconducting circuits have come to the forefront of certain areas of physics. They have shown to be particularly useful in research related to quantum computing and information, as well as fundamental physics. This is largely because they provide a very flexible way to implement complicated quantum systems that can be relatively easily manipulated and measured. In this thesis we look at three different applications where superconducting circuits play a central role, and explore their classical and quantum dynamics and behavior. The first part consists of studying the Casimir [20] and Casimir{Polder like [19] effects. These effects have been discovered in 1948 and show that under certain conditions, vacuum field fluctuations can mediate forces between neutral objects. In our work, we analyze analogous behavior in a superconducting system which consists of a stripline cavity with a DC{SQUID on one of its boundaries, as well as, in a Casimir{Polder case, a charge qubit coupled to the field of the cavity. Instead of a force, in the system considered here, we show that the Casimir and Casimir{ Polder like effects are mediated through a circulating current around the loop of the boundary DC{SQUID.
    [Show full text]