A Review of Quantum Mechanics
A Review of Quantum Mechanics Chun Wa Wong Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547∗ (Dated: September 21, 2006) Review notes prepared for students of an undergraduate course in quantum mechanics at UCLA, Fall, 2005 – Spring, 2006. Copyright c 2006 Chun Wa Wong 2 2 I. The Rise of Quantum Mechanics (eG = e /4πǫ0 in Gaussian units). Hence U 1.1 Physics & quantum physics: E = T + U = = T. (5) 2 − Physics = objective description of recurrent physi- cal phenomena Bohr’s two quantum postulates (L quantization and Quantum physics = “quantized” systems with both quantum jump on photon emission): wave and particle properties L = mva = n~, n =1, 2, ..., − 1.2 Scientific discoveries: hν = Eni Enf . (6) Facts Theory/Postulates Facts → → For ground state: 1.3 Planck’s black body radiation: U e2 E = 1 = G = 13.6 eV Failure of classical physics: 1 2 − 2a − ~2 1 = T1 = 2 , Emissivity = uc, λmaxT = const, − −2ma 4 ~2 ˚ energy density = u = ρν E , a = 2 =0.53A (Bohr radius), (7) h i meG E exp = kBT, (1) h i 6 For excited states: (ρ = density of states in frequency space). ν E r = n2a, E = 1 . (8) Planck hypothesis of energy quantization (En = n n n2 nhν) explains observation: 1.6 Compton scattering: nx hν ∞ ne hν E = n=0 − = , (2) Energy-momentum conservation for a photon of lab h i ∞ e nx ehν/kB T 1 Pn=0 − − energy E = hc/λ scattered from an electron (of mass m) initially at rest in the lab (before=LHS, P where x = hν/(kBT ).
[Show full text]