Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a Quantum Computer

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a Quantum Computer PHYSICAL REVIEW RESEARCH 2, 023048 (2020) Efficient two-electron ansatz for benchmarking quantum chemistry on a quantum computer Scott E. Smart and David A. Mazziotti* Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA (Received 18 December 2019; accepted 16 March 2020; published 17 April 2020) Quantum chemistry provides key applications for near-term quantum computing, but these are greatly complicated by the presence of noise. In this work we present an efficient ansatz for the computation of two- electron atoms and molecules within a hybrid quantum-classical algorithm. The ansatz exploits the fundamental structure of the two-electron system, treating the nonlocal and local degrees of freedom on the quantum and classical computers, respectively. Here the nonlocal degrees of freedom scale linearly with respect to basis-set size, giving a linear ansatz with only O(1) circuit preparations required for reduced state tomography. We implement this benchmark with error mitigation on two publicly available quantum computers, calculating + accurate dissociation curves for four- and six-qubit calculations of H2 and H3 . DOI: 10.1103/PhysRevResearch.2.023048 I. INTRODUCTION separation between the nonlocal and local fermionic degrees of freedom in the system [17], scaling linearly and polynomi- Quantum computers possess a natural affinity for quantum ally, respectively, and can be leveraged in a variational hybrid simulation and can transform exponentially scaling problems quantum-classical algorithm. The entangled nonlocal degrees into polynomial ones [1–3]. Quantum supremacy, the ability are treated on the quantum computer while the local degrees of a quantum computer to surpass its classical counterpart are treated on the classical computer, leading to an efficient on a designated task with lower asymptotic scaling, is poten- simulation of the system. tially realizable for the simulation of quantum many-electron For a quantum algorithm to exhibit quantum supremacy, systems [4,5]. Work over the previous decade has been to- obtaining the solution classically will be impractical except wards this goal with a focus on calculating the energy of for cases that are close to the classical limits of feasibil- small molecules and exploring strategies to leverage emerging ity [4,5]. For some problems such as prime factorization, the quantum technologies, especially those designed to correct solution can be quickly verified, but for many-body quantum or mitigate quantum errors [6–8]. In this paper we introduce systems this is not the case [18–22]. Possessing “easy” classi- an efficient ansatz for a two-electron quantum-mechanical cally solvable problems to implement and verify will be cru- system that can be employed as a benchmark for assessing cial to evaluate the performance of quantum devices and error the capabilities and accuracy of quantum computers. The twin mitigation schemes [23]. Our proposed quantum-classical hy- goals of the work are (i) to present a quantum-computing brid algorithm targets only the necessary entanglement needed benchmark based on the correlated but polynomial scaling on the quantum computer, scales linearly with respect to basis two-electron problem, solvable on classical computers, that size, and has O(1) circuit preparations, making it an ideal can be used to assess the accuracy of quantum computers benchmark for molecular simulation. We highlight this by and (ii) to develop an efficient ansatz for solving the two- + evaluating this ansatz through the computation of H and H electron problem on quantum computers, based on an effec- 2 3 on two generations of publicly available quantum devices. tive partitioning of the computational work between classical and quantum computers that is applicable to more general N-electron molecular systems. II. THEORY The two-electron density matrix (2DM) of any two- Because the representation of the 2DM in terms of electron system can be expressed as a functional of its one- the 1RDM and phase factors has been well studied else- electron reduced density matrix (1RDM) and a set of phase where [11,24–26], we present in Sec. II A only the aspects factors. This representation of the 2DM has important con- of the theory that are relevant to the quantum-classical hybrid nections to natural-orbital functional theories and geminal- algorithm in Sec. II B. We also discuss the preparation of the based theories in quantum chemistry [9–16]. It offers a natural linear-scaling ansatz in Sec. II C and practical error mitigation techniques in Sec. II D that are employed in the benchmarks in Sec. III. *Corresponding author: [email protected] A. Structure of the two-electron system Published by the American Physical Society under the terms of the For a two-electron system the energy is given as the trace Creative Commons Attribution 4.0 International license. Further of the Hamiltonian and the density matrix distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. E = Tr(HD), (1) 2643-1564/2020/2(2)/023048(8) 023048-1 Published by the American Physical Society SCOTT E. SMART AND DAVID A. MAZZIOTTI PHYSICAL REVIEW RESEARCH 2, 023048 (2020) where H and D are 2r × 2r, with 2r being the rank of the is simply the parity of the term that can easily be measured one-electron basis set and on a quantum computer. That is, we need the phase ξii where Dij = g g∗ (2) kl ij kl √ g˜ii = niξii . (8) in which the wave-function expansion coefficients gij are elements of the coefficient matrix G. From the antisymmetric nature of fermions, G must be a skew-symmetric matrix, In general, the phases can be measured through tomography ˜ and from a theorem by Zumino [26], G must have a block- on the quantum computer of certain terms of D requiring diagonal form G˜ with 2 × 2 matrices G : only O(1) additional circuit preparations. The details of the i specific ansatz for the tomography are discussed in the next G˜ = diag(G0, G1,...,Gr ), (3) section. After convergence criteria in the optimization of D˜ on the 0˜gii 0˜gii quantum computer are satisfied through gradient-free opti- Gi = = . (4) g˜ii 0 −g˜ii 0 mization (see Appendix A), we optimize the energy on the classical computer through one-body unitary transformations The block-diagonal form of G in Zumino’s theorem defines of the Hamiltonian. Specifically, we optimize the orbitals an orbital basis set with a natural pairing of the orbitals where through a series of Givens rotations. These complementary we denote the indices of an orbital and its pair by i and i , quantum and classical optimizations are sequentially repeated respectively. until the energy and 2DM converge. The 2DM in Zumino’s basis has only nonzero elements of the form ˜ ii = ∗ . C. Preparation of the efficient quantum ansatz Dkk g˜ii g˜kk (5) To create a state of the form in Eq. (3) on the quantum The 1RDM, containing the one-body information, can be computer, we need to implement double excitations from obtained from the 2DM by contraction, orbitals ii to kk. If we consider an initial wave function ˜ i ik ii ∗ G0 from a standard Hartree-Fock calculation, the ansatz to 1 ˜ = ˜ = ˜ = = = , Di Dik Dii g˜ii g˜ii ni ni (6) generate a generic G˜ is k 1 ˜ i = , r−1 D j 0 (7) ˜ = ¯i¯i ˜ , G exp tii G0 (9) where all 2DM elements in the contraction vanish except i=1 when k = i. Because the 1RDM is diagonal in Zumino’s basis set, we find that Zumino’s basis set is identically the ¯ = + ¯i¯i where i i 1 and tii is an anti-Hermitian, antisymmetric natural-orbital basis set and that the occupations ni are the two-body matrix with nonzero elements corresponding to an natural-orbital occupations. The paired orbitals i and i ,we excitation between i, i and (i + 1), (i + 1). The operators observe, have equal occupations ni and ni . For a system of acting on G˜ can be easily expressed in second quantiza- = 0 two electrons with Sz 0, these paired orbitals share the same tion as shown in the Appendixes. The ansatz is a subset of spatial component with different spin components, denoted by the unitary coupled cluster [32] or anti-Hermitian contracted α β convention by and . This decomposition can be viewed Schrödinger equation ansatz [33]. From there we perform a = as a particular case (N 2) of a more general result derived Jordan-Wigner transformation (though others may be utilized) by Schmidt [27] and later by Carlson and Keller [28]. The which yields an exponential of Pauli strings that are imple- importance of this decomposition as a quantum-computing mentable on a quantum device as strings of controlled-NOT ansatz for two electrons will be manifest below. (CNOT) gates [34]. Additionally, the implementation naturally requires only a nearest-neighbor connectivity among qubits. B. Variational hybrid algorithm Finally, the tomography of the state involves only the Hybrid quantum-classical algorithms with a variational measurement of the orbital occupations for a given qubit in the computational basis as well as the sign. Because there eigenvalue solver are among the most promising algorithms − for near-term applications [6,29–31]. For our approach we are only r 1 phase terms since the last phase is equivalent to a global phase, we only require the tomography of a utilize a variational eigensolver on the quantum device but jj linear number of sequential terms in D˜ of the form D˜ , apply it only to the optimization of the 2DM in the natural- ii = + ˜ jj ˜ ( j+2)(j+2) orbital basis set. Optimization of the natural orbitals by or- with j i 1.
Recommended publications
  • Qiskit Backend Specifications for Openqasm and Openpulse
    Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments David C. McKay1,∗ Thomas Alexander1, Luciano Bello1, Michael J. Biercuk2, Lev Bishop1, Jiayin Chen2, Jerry M. Chow1, Antonio D. C´orcoles1, Daniel Egger1, Stefan Filipp1, Juan Gomez1, Michael Hush2, Ali Javadi-Abhari1, Diego Moreda1, Paul Nation1, Brent Paulovicks1, Erick Winston1, Christopher J. Wood1, James Wootton1 and Jay M. Gambetta1 1IBM Research 2Q-CTRL Pty Ltd, Sydney NSW Australia September 11, 2018 Abstract As interest in quantum computing grows, there is a pressing need for standardized API's so that algorithm designers, circuit designers, and physicists can be provided a common reference frame for designing, executing, and optimizing experiments. There is also a need for a language specification that goes beyond gates and allows users to specify the time dynamics of a quantum experiment and recover the time dynamics of the output. In this document we provide a specification for a common interface to backends (simulators and experiments) and a standarized data structure (Qobj | quantum object) for sending experiments to those backends via Qiskit. We also introduce OpenPulse, a language for specifying pulse level control (i.e. control of the continuous time dynamics) of a general quantum device independent of the specific arXiv:1809.03452v1 [quant-ph] 10 Sep 2018 hardware implementation. ∗[email protected] 1 Contents 1 Introduction3 1.1 Intended Audience . .4 1.2 Outline of Document . .4 1.3 Outside of the Scope . .5 1.4 Interface Language and Schemas . .5 2 Qiskit API5 2.1 General Overview of a Qiskit Experiment . .7 2.2 Provider . .8 2.3 Backend .
    [Show full text]
  • Dirac Notation Frank Rioux
    Elements of Dirac Notation Frank Rioux In the early days of quantum theory, P. A. M. (Paul Adrian Maurice) Dirac created a powerful and concise formalism for it which is now referred to as Dirac notation or bra-ket (bracket ) notation. Two major mathematical traditions emerged in quantum mechanics: Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics. These distinctly different computational approaches to quantum theory are formally equivalent, each with its particular strengths in certain applications. Heisenberg’s variation, as its name suggests, is based matrix and vector algebra, while Schrödinger’s approach requires integral and differential calculus. Dirac’s notation can be used in a first step in which the quantum mechanical calculation is described or set up. After this is done, one chooses either matrix or wave mechanics to complete the calculation, depending on which method is computationally the most expedient. Kets, Bras, and Bra-Ket Pairs In Dirac’s notation what is known is put in a ket, . So, for example, p expresses the fact that a particle has momentum p. It could also be more explicit: p = 2 , the particle has momentum equal to 2; x = 1.23 , the particle has position 1.23. Ψ represents a system in the state Q and is therefore called the state vector. The ket can also be interpreted as the initial state in some transition or event. The bra represents the final state or the language in which you wish to express the content of the ket . For example,x =Ψ.25 is the probability amplitude that a particle in state Q will be found at position x = .25.
    [Show full text]
  • Dirac Equation - Wikipedia
    Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics.
    [Show full text]
  • Qubit Coupled Cluster Singles and Doubles Variational Quantum Eigensolver Ansatz for Electronic Structure Calculations
    Quantum Science and Technology PAPER Qubit coupled cluster singles and doubles variational quantum eigensolver ansatz for electronic structure calculations To cite this article: Rongxin Xia and Sabre Kais 2020 Quantum Sci. Technol. 6 015001 View the article online for updates and enhancements. This content was downloaded from IP address 128.210.107.25 on 20/10/2020 at 12:02 Quantum Sci. Technol. 6 (2021) 015001 https://doi.org/10.1088/2058-9565/abbc74 PAPER Qubit coupled cluster singles and doubles variational quantum RECEIVED 27 July 2020 eigensolver ansatz for electronic structure calculations REVISED 14 September 2020 Rongxin Xia and Sabre Kais∗ ACCEPTED FOR PUBLICATION Department of Chemistry, Department of Physics and Astronomy, and Purdue Quantum Science and Engineering Institute, Purdue 29 September 2020 University, West Lafayette, United States of America ∗ PUBLISHED Author to whom any correspondence should be addressed. 20 October 2020 E-mail: [email protected] Keywords: variational quantum eigensolver, electronic structure calculations, unitary coupled cluster singles and doubles excitations Abstract Variational quantum eigensolver (VQE) for electronic structure calculations is believed to be one major potential application of near term quantum computing. Among all proposed VQE algorithms, the unitary coupled cluster singles and doubles excitations (UCCSD) VQE ansatz has achieved high accuracy and received a lot of research interest. However, the UCCSD VQE based on fermionic excitations needs extra terms for the parity when using Jordan–Wigner transformation. Here we introduce a new VQE ansatz based on the particle preserving exchange gate to achieve qubit excitations. The proposed VQE ansatz has gate complexity up-bounded to O(n4)for all-to-all connectivity where n is the number of qubits of the Hamiltonian.
    [Show full text]
  • Arxiv:1812.09167V1 [Quant-Ph] 21 Dec 2018 It with the Tex Typesetting System Being a Prime Example
    Open source software in quantum computing Mark Fingerhutha,1, 2 Tomáš Babej,1 and Peter Wittek3, 4, 5, 6 1ProteinQure Inc., Toronto, Canada 2University of KwaZulu-Natal, Durban, South Africa 3Rotman School of Management, University of Toronto, Toronto, Canada 4Creative Destruction Lab, Toronto, Canada 5Vector Institute for Artificial Intelligence, Toronto, Canada 6Perimeter Institute for Theoretical Physics, Waterloo, Canada Open source software is becoming crucial in the design and testing of quantum algorithms. Many of the tools are backed by major commercial vendors with the goal to make it easier to develop quantum software: this mirrors how well-funded open machine learning frameworks enabled the development of complex models and their execution on equally complex hardware. We review a wide range of open source software for quantum computing, covering all stages of the quantum toolchain from quantum hardware interfaces through quantum compilers to implementations of quantum algorithms, as well as all quantum computing paradigms, including quantum annealing, and discrete and continuous-variable gate-model quantum computing. The evaluation of each project covers characteristics such as documentation, licence, the choice of programming language, compliance with norms of software engineering, and the culture of the project. We find that while the diversity of projects is mesmerizing, only a few attract external developers and even many commercially backed frameworks have shortcomings in software engineering. Based on these observations, we highlight the best practices that could foster a more active community around quantum computing software that welcomes newcomers to the field, but also ensures high-quality, well-documented code. INTRODUCTION Source code has been developed and shared among enthusiasts since the early 1950s.
    [Show full text]
  • Building Your Quantum Capability
    Building your quantum capability The case for joining an “ecosystem” IBM Institute for Business Value 2 Building your quantum capability A quantum collaboration Quantum computing has the potential to solve difficult business problems that classical computers cannot. Within five years, analysts estimate that 20 percent of organizations will be budgeting for quantum computing projects and, within a decade, quantum computing may be a USD15 billion industry.1,2 To place your organization in the vanguard of change, you may need to consider joining a quantum computing ecosystem now. The reality is that quantum computing ecosystems are already taking shape, with members focused on how to solve targeted scientific and business problems. Joining the right quantum ecosystem today could give your organization a competitive advantage tomorrow. Building your quantum capability 3 The quantum landscape Quantum computing is gathering momentum. By joining a burgeoning quantum computing Today, major tech companies are backing ecosystem, your organization can get a head What is quantum computing? sizeable R&D programs, venture capital funding start today. Unlike “classical” computers, has grown to at least $300 million, dozens of quantum computers can represent a superposition of multiple states at startups have been founded, quantum A quantum ecosystem brings together business the same time. This characteristic is conferences and research papers are climbing, experts with specialists from industry, expected to provide more efficient research, academia, engineering, physics and students from 1,500 schools have used quantum solutions for certain complex business software development/coding across the computing online, and governments, including and scientific problems, such as drug China and the European Union, have announced quantum stack to develop quantum solutions and materials development, logistics billion-dollar investment programs.3,4,5 that solve business and science problems that and artificial intelligence.
    [Show full text]
  • Student User Experience with the IBM Qiskit Quantum Computing Interface
    Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 4th, 2018 Student User Experience with the IBM QISKit Quantum Computing Interface Stephan Barabasi, James Barrera, Prashant Bhalani, Preeti Dalvi, Ryan Kimiecik, Avery Leider, John Mondrosch, Karl Peterson, Nimish Sawant, and Charles C. Tappert Seidenberg School of CSIS, Pace University, Pleasantville, New York Abstract - The field of quantum computing is rapidly Schrödinger [11]. Quantum mechanics states that the position expanding. As manufacturers and researchers grapple with the of a particle cannot be predicted with precision as it can be in limitations of classical silicon central processing units (CPUs), Newtonian mechanics. The only thing an observer could quantum computing sheds these limitations and promises a know about the position of a particle is the probability that it boom in computational power and efficiency. The quantum age will be at a certain position at a given time [11]. By the 1980’s will require many skilled engineers, mathematicians, physicists, developers, and technicians with an understanding of quantum several researchers including Feynman, Yuri Manin, and Paul principles and theory. There is currently a shortage of Benioff had begun researching computers that operate using professionals with a deep knowledge of computing and physics this concept. able to meet the demands of companies developing and The quantum bit or qubit is the basic unit of quantum researching quantum technology. This study provides a brief information. Classical computers operate on bits using history of quantum computing, an in-depth review of recent complex configurations of simple logic gates. A bit of literature and technologies, an overview of IBM’s QISKit for information has two states, on or off, and is represented with implementing quantum computing programs, and two a 0 or a 1.
    [Show full text]
  • Chapter 5 the Dirac Formalism and Hilbert Spaces
    Chapter 5 The Dirac Formalism and Hilbert Spaces In the last chapter we introduced quantum mechanics using wave functions defined in position space. We identified the Fourier transform of the wave function in position space as a wave function in the wave vector or momen­ tum space. Expectation values of operators that represent observables of the system can be computed using either representation of the wavefunc­ tion. Obviously, the physics must be independent whether represented in position or wave number space. P.A.M. Dirac was the first to introduce a representation-free notation for the quantum mechanical state of the system and operators representing physical observables. He realized that quantum mechanical expectation values could be rewritten. For example the expected value of the Hamiltonian can be expressed as ψ∗ (x) Hop ψ (x) dx = ψ Hop ψ , (5.1) h | | i Z = ψ ϕ , (5.2) h | i with ϕ = Hop ψ . (5.3) | i | i Here, ψ and ϕ are vectors in a Hilbert-Space, which is yet to be defined. For exampl| i e, c|omi plex functions of one variable, ψ(x), that are square inte­ 241 242 CHAPTER 5. THE DIRAC FORMALISM AND HILBERT SPACES grable, i.e. ψ∗ (x) ψ (x) dx < , (5.4) ∞ Z 2 formt heHilbert-Spaceofsquareintegrablefunctionsdenoteda s L. In Dirac notation this is ψ∗ (x) ψ (x) dx = ψ ψ . (5.5) h | i Z Orthogonality relations can be rewritten as ψ∗ (x) ψ (x) dx = ψ ψ = δmn. (5.6) m n h m| ni Z As see aboveexpressions look likeabrackethecalledthe vector ψn aket­ vector and ψ a bra-vector.
    [Show full text]
  • Resource-Efficient Quantum Computing By
    Resource-Efficient Quantum Computing by Breaking Abstractions Fred Chong Seymour Goodman Professor Department of Computer Science University of Chicago Lead PI, the EPiQC Project, an NSF Expedition in Computing NSF 1730449/1730082/1729369/1832377/1730088 NSF Phy-1818914/OMA-2016136 DOE DE-SC0020289/0020331/QNEXT With Ken Brown, Ike Chuang, Diana Franklin, Danielle Harlow, Aram Harrow, Andrew Houck, John Reppy, David Schuster, Peter Shor Why Quantum Computing? n Fundamentally change what is computable q The only means to potentially scale computation exponentially with the number of devices n Solve currently intractable problems in chemistry, simulation, and optimization q Could lead to new nanoscale materials, better photovoltaics, better nitrogen fixation, and more n A new industry and scaling curve to accelerate key applications q Not a full replacement for Moore’s Law, but perhaps helps in key domains n Lead to more insights in classical computing q Previous insights in chemistry, physics and cryptography q Challenge classical algorithms to compete w/ quantum algorithms 2 NISQ Now is a privileged time in the history of science and technology, as we are witnessing the opening of the NISQ era (where NISQ = noisy intermediate-scale quantum). – John Preskill, Caltech IBM IonQ Google 53 superconductor qubits 79 atomic ion qubits 53 supercond qubits (11 controllable) Quantum computing is at the cusp of a revolution Every qubit doubles computational power Exponential growth in qubits … led to quantum supremacy with 53 qubits vs. Seconds Days Double exponential growth! 4 The Gap between Algorithms and Hardware The Gap between Algorithms and Hardware The Gap between Algorithms and Hardware The EPiQC Goal Develop algorithms, software, and hardware in concert to close the gap between algorithms and devices by 100-1000X, accelerating QC by 10-20 years.
    [Show full text]
  • High Energy Physics Quantum Information Science Awards Abstracts
    High Energy Physics Quantum Information Science Awards Abstracts Towards Directional Detection of WIMP Dark Matter using Spectroscopy of Quantum Defects in Diamond Ronald Walsworth, David Phillips, and Alexander Sushkov Challenges and Opportunities in Noise‐Aware Implementations of Quantum Field Theories on Near‐Term Quantum Computing Hardware Raphael Pooser, Patrick Dreher, and Lex Kemper Quantum Sensors for Wide Band Axion Dark Matter Detection Peter S Barry, Andrew Sonnenschein, Clarence Chang, Jiansong Gao, Steve Kuhlmann, Noah Kurinsky, and Joel Ullom The Dark Matter Radio‐: A Quantum‐Enhanced Dark Matter Search Kent Irwin and Peter Graham Quantum Sensors for Light-field Dark Matter Searches Kent Irwin, Peter Graham, Alexander Sushkov, Dmitry Budke, and Derek Kimball The Geometry and Flow of Quantum Information: From Quantum Gravity to Quantum Technology Raphael Bousso1, Ehud Altman1, Ning Bao1, Patrick Hayden, Christopher Monroe, Yasunori Nomura1, Xiao‐Liang Qi, Monika Schleier‐Smith, Brian Swingle3, Norman Yao1, and Michael Zaletel Algebraic Approach Towards Quantum Information in Quantum Field Theory and Holography Daniel Harlow, Aram Harrow and Hong Liu Interplay of Quantum Information, Thermodynamics, and Gravity in the Early Universe Nishant Agarwal, Adolfo del Campo, Archana Kamal, and Sarah Shandera Quantum Computing for Neutrino‐nucleus Dynamics Joseph Carlson, Rajan Gupta, Andy C.N. Li, Gabriel Perdue, and Alessandro Roggero Quantum‐Enhanced Metrology with Trapped Ions for Fundamental Physics Salman Habib, Kaifeng Cui1,
    [Show full text]
  • Modeling Classical Dynamics and Quantum Effects In
    Modeling Classical Dynamics and Quantum Effects in Superconducting Circuit Systems by Peter Groszkowski A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2015 c Peter Groszkowski 2015 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In recent years, superconducting circuits have come to the forefront of certain areas of physics. They have shown to be particularly useful in research related to quantum computing and information, as well as fundamental physics. This is largely because they provide a very flexible way to implement complicated quantum systems that can be relatively easily manipulated and measured. In this thesis we look at three different applications where superconducting circuits play a central role, and explore their classical and quantum dynamics and behavior. The first part consists of studying the Casimir [20] and Casimir{Polder like [19] effects. These effects have been discovered in 1948 and show that under certain conditions, vacuum field fluctuations can mediate forces between neutral objects. In our work, we analyze analogous behavior in a superconducting system which consists of a stripline cavity with a DC{SQUID on one of its boundaries, as well as, in a Casimir{Polder case, a charge qubit coupled to the field of the cavity. Instead of a force, in the system considered here, we show that the Casimir and Casimir{ Polder like effects are mediated through a circulating current around the loop of the boundary DC{SQUID.
    [Show full text]
  • Quantum Computing with the IBM Quantum Experience with the Quantum Information Software Toolkit (Qiskit) Nick Bronn Research Staff Member IBM T.J
    Quantum Computing with the IBM Quantum Experience with the Quantum Information Software Toolkit (QISKit) Nick Bronn Research Staff Member IBM T.J. Watson Research Center ACM Poughkeepsie Monthly Meeting, January 2018 1 ©2017 IBM Corporation 25 January 2018 Overview Part 1: Quantum Computing § What, why, how § Quantum gates and circuits Part 2: Superconducting Qubits § Device properties § Control and performance Part 3: IBM Quantum Experience § Website: GUI, user guides, community § QISKit: API, SDK, Tutorials 2 ©2017 IBM Corporation 25 January 2018 Quantum computing: what, why, how 3 ©2017 IBM Corporation 25 January 2018 “Nature isn’t classical . if you want to make a simula6on of nature, you’d be:er make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.” – Richard Feynman, 1981 1st Conference on Physics and Computation, MIT 4 ©2017 IBM Corporation 25 January 2018 Computing with Quantum Mechanics: Features Superposion: a system’s state can be any linear combinaon of classical states …un#l it is measured, at which point it collapses to one of the classical states Example: Schrodinger’s Cat “Classical” states Quantum Normalizaon wavefuncon Entanglement: par0cles in superposi0on 1 ⎛ ⎞ ψ = ⎜ + ⎟ can develop correlaons such that 2 ⎜ ⎟ measuring just one affects them all ⎝ ⎠ Example: EPR Paradox (Einstein: “spooky Linear combinaon ac0on at a distance”) 5 ©2017 IBM Corporation 25 January 2018 Computing with Quantum Mechanics: Drawbacks 1 Decoherence: a system is gradually measured by residual interac0on with its environment, killing quantum behavior Qubit State Consequence: quantum effects observed only 0 Time in well-isolated systems (so not cats… yet) Uncertainty principle: measuring one variable (e.g.
    [Show full text]