(12) Patent Application Publication (10) Pub. No.: US 2015/0135371 A1 Leveau Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2015/0135371 A1 Leveau Et Al US 2015O135371 A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0135371 A1 LeVeau et al. (43) Pub. Date: May 14, 2015 (54) SYNERGY-BASED BIOCONTROL OF PLANT Related U.S. Application Data PATHOGENS (60) Provisional application No. 61/902,046, filed on Nov. (71) Applicant: The Regents of the University of 8, 2013. California, Oakland, CA (US) Publication Classification (72) Inventors: Johannes Henricus Josephus LeVeau, (51) Int. Cl. Davis, CA (US); Hung Kim Doan, AOIN 63/00 (2006.01) Davis, CA (US) (52) U.S. Cl. CPC ...................................... A0IN 63/00 (2013.01) (21) Appl. No.: 14/537,620 (57) ABSTRACT Methods and compositions are provided for control of patho 22) Filed1C Nov.OV. 10,U, 2014 genicen1C fungalTungal Or OOmVCetOuSy 1infecti nect1On. Patent Application Publication May 14, 2015 Sheet 1 of 5 US 2015/O135371 A1 FIG. 1 Patent Application Publication May 14, 2015 Sheet 2 of 5 US 2015/O135371 A1 FIG 2 Patent Application Publication May 14, 2015 Sheet 3 of 5 US 2015/O135371 A1 Ca33 at Serenades Ca35 and o: - - - --- Ca35 and Seenace & Serenade , * Cat35 and Serenade : Cat35 and Serenade re FIG 3 Patent Application Publication May 14, 2015 Sheet 4 of 5 US 2015/O135371 A1 8. Ca35 and Serenade -> 8 ::::::::::::::::::::: F.G. 4 Patent Application Publication May 14, 2015 Sheet 5 of 5 US 2015/O135371 A1 FIG. 5 US 2015/O 135371 A1 May 14, 2015 SYNERGYBASED BOCONTROL OF PLANT the part of said plant contacted with bacteria of the genus PATHOGENS Collimonas or a product thereof is the seed of said plant. In Some embodiments, the part of said plant contacted with CROSS-REFERENCES TO RELATED bacteria of the genus Bacillus or a product thereof is the seed APPLICATIONS of said plant. In some embodiments, the part of said plant 0001. This application claims priority to U.S. Provisional contacted with bacteria of the genus Collimonas or a product Application 61/902,046, filed Nov. 8, 2013, the contents of thereof is the foliage of said plant. In some embodiments, the which are hereby incorporated in their entirety for all pur part of said plant contacted with bacteria of the genus Bacillus poses. or a product thereof is the foliage of said plant. 0007. In some embodiments, the contacting of a) com BACKGROUND OF THE INVENTION prises contacting the plant with bacteria of the genus Colli monas and a product thereof. In some embodiments, the 0002 Fungal and oomycetous pathogens can cause sig contacting ofb) comprises contacting the plant with bacteria nificant damage to a wide variety of commercially important of the genus Bacillus and a product thereof. In some embodi plant varieties including crops and ornamental plants. Such ments, the contacting of a) comprises contacting the plant pathogens can kill plants, reduce yield, reduce plant strength with bacteria of the genus Collimonas and a product thereof, (e.g., decrease resistance to lodging), cause symptoms of and the contacting ofb) comprises contacting the plant with mineral deficiency, and predispose plants to infection by other pathogens. As such, there is great interest in developing bacteria of the genus Bacillus and a product thereof. compositions and methods for control of fungal and oomyc 0008. In some embodiments, the fungal or oomycetous etous pathogens. infection comprises an infection by a fungal pathogen from a 0003) Fungal and oomycetous pathogens are typically class selected from the group consisting of Plasmodiophoro controlled by use of synthetic chemicals (e.g., fungicides). mycetes, Oomycetes, Chytridiomycetes, Zygomycetes, However, effective synthetic chemicals can be dangerous, Ascomycetes, Basidiomycetes, Deuteromycetes, Sordari toxic, and expensive. In some countries, certain fungicides or omycetes, and combinations thereof. In some cases, the fun anti-Oomycetous chemicals have been restricted or banned gal or oomycetous pathogen is from the class Oomycetes. In for these and other reasons. Therefore, there is great interest Some embodiments, said fungal or oomycetous infection in developing fungal control methods and compositions that comprises infection by a fungal pathogen from a genus do not rely on synthetic chemical fungicides or anti-Oomyc selected from the group consisting of Fusarium, Geotrichum, etous compounds, or reduce the use of Such chemicals. Aspergillus, Alternaria, Botryosphaeria, Colletotrichum, 0004 Biocontrol agents are a promising candidate for Magnaporthe, Verticillium, Cryphonectria, Botrytis, reducing or eliminating the need for Such chemicals. Biocon Monilinia, Sclerotium, Rhizoctonia, and combinations trol agents are typically microorganisms, such as bacteria, or thereof. In some embodiments, said fungal or oomycetous one or more products thereof, that are applied to a plant or a infection comprises infection by an Oomycete from a genus plant propagation material (e.g., Soil) to control a pathogen. selected from the group consisting of Pythium, Phytophthora, However, there are a limited number of commercially avail and combinations thereof. able biocontrol agents. For these and other reasons, there 0009. In some embodiments, said bacteria of the genus remains a need to further develop methods and compositions Bacillus comprise Bacillus subtilis. In some embodiments, containing biocontrol agents for the control of pathogenic said bacteria of the genus Bacillus comprise Bacillus subtilis fungi and Oomycetes. var. amyloliquefaciens. In some embodiments, said bacteria of the genus Bacillus comprise Bacillus subtilis QST 713. In BRIEF SUMMARY OF THE INVENTION Some embodiments, said bacteria of genus Collimonas com prise a species selected from the group consisting of Colli 0005. In a first aspect, the present invention provides a monas arenae, Collimonas fingivorans, and Collimonas method of cultivating a plant resistant to a fungal or oomyc pratensis. In some embodiments, said bacteria of genus Col etous infection comprising the steps of: a) contacting said limonas comprise C. arenae Cal35. In some embodiments, plant with bacteria of the genus Collimonas, or a product said bacteria of genus Collimonas comprise C. arenae Cal35 thereof, and b) contacting said plant with bacteria of the genus and said bacteria of the genus Bacillus comprise Bacillus Bacillus, or a product thereof, wherein said plant shows a greater resistance to the infection or exhibits reduced symp subtilis QST 713. toms of fungal or oomycetous infection relative to a non 0010. In some embodiments, said bacteria of the genus contacted plant. In some embodiments, the plant is cultivated Collimonas or a product thereof are in the form of a liquid in Soil or other planting media that does not otherwise contain Suspension. In some embodiments, said bacteria of the genus bacteria of the genus Collimonas. In some embodiments, said Collimonas are in a liquid Suspension at a concentration of plant is a plant selected from the group consisting of tomato, approximately 1x10° cells per milliliter. In some embodi potato, Sweet potato, cassava, beets, ginger, horseradish, rad ments, said bacteria of the genus Bacillus or a product thereof ish, ginseng, turnip, any root or tuber crop, pepper, eggplant, are in the form of a liquid Suspension. In some embodiments, ground cherry, tomatillo, okra, other fruiting vegetables, said bacteria of the genus Bacillus are in a liquid Suspension cucumber cantaloupe, melon, muskmelon, squash, water with a concentration of approximately 1x10 or 1x10 colony melon and other cucurbit plants. forming units per gram. 0006. In some embodiments, the part of said plant con 0011. In some embodiments, said contacting of a) or b) tacted with bacteria of the genus Collimonas or a product comprises a root dip. In some embodiments, said contacting thereof is a root of said plant. In some embodiments, the part of a) or b) comprises a soil drench. In some embodiments, of said plant contacted with bacteria of the genus Bacillus or said contacting of a) and b) comprises a root dip. In some a product thereof is a root of said plant. In some embodiments, embodiments, said contacting of a) and b) comprises a soil US 2015/O 135371 A1 May 14, 2015 drench. In some embodiments, said contacting of a) and b) are endosperm, and seed coat) and fruit (the mature ovary), plant independently selected from the group consisting of root dip, tissue (e.g. vascular tissue, ground tissue, and the like) and soil drench, and spray. cells (e.g. guard cells, egg cells, trichomes and the like), and 0012. In a second aspect, the present invention provides a progeny of same. The class of plants that can be used in the plant cultivated by any of the foregoing methods. In some method of the invention is generally as broad as the class of embodiments, the present invention provides a plant in con higher and lower plants amenable to cultivation, including tact with bacteria from the genus Bacillus or a product angiosperms (monocotyledonous and dicotyledonous thereof, and bacteria from the genus Collimonas, or a product plants), gymnosperms, and ferns. It includes plants of a vari thereof. In some embodiments, the plant is cultivated in soil ety of ploidy levels, including aneuploid, polyploid, diploid, that does not otherwise contain bacteria of the genus Colli haploid and hemizygous. Specific embodiments of plants FiOS useful for the methods and compositions of the present inven 0013. In a third aspect, the present invention provides a tion include but are not limited to commercial food crops, and composition of matter comprising: a) bacteria of the genus energy crops. Collimonas or a product thereof, and b) bacteria of the genus 0019. The invention has use over broad range of plants, Bacillus or a product thereof. In some embodiments, the including species from the genera Anacardium, Arabidopsis, composition comprises bacteria of the genus Collimonas and Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrul a product thereof. In some embodiments, the composition lus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucur comprises bacteria of the genus Bacillus and a product bita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helian thereof.
Recommended publications
  • Protection Against Fungi in the Marketing of Grains and Byproducts
    Protection against fungi in the marketing of grains and byproducts Ing. Agr. Juan M. Hernandez Vieyra ARGENT EXPORT S.A. May 2nd 2011 OBJECTIVE: To supply tools to eliminate fungus and bacteria contamination in maize and soybeans: Particularly: Stenocarpella maydis Cercospora sojina 2 • Powerfull Disinfectant of great efficacy in fungus, bacteria and virus • Produced by ICA Laboratories, South Africa. • aka SPOREKILL, VIRUKILL • Registered in more than 20 countries: USA, Australia, New Zeland, Brazil, Philipines, Israel • Product scientifically and field proven, with more than 15 years in the international market. • Registered at SENASA • Certifications: ISO 9001, GMP. 3 Properties of Sportek: – Based on a novel and patented quaternary amonio compound sintesis : didecil dimetil amonium chloride. – Excellent biodegradability thus, low environmental impact. – Really non corrosive and non oxidative. – Non toxic at recommended dosis . – Minimum inhibition concentration has a very low toxicity, LD 50>4000mg/Kg., lower than table salt. – High content of surfactants with excellent wetting capacity and penetration. – High efficacy in presence of organic matter, also with hard waters and heavy soils. – Non dependent of pH and is effective under a wide range of temperatures. 4 What is Sportek used for: To disinfect a wide spectrum of surfaces and feeds against: • Virus, • Bacteria, • Mycoplasma, • yeast, • Algae, • Fungus. 5 Where Sportek has been proven: VIRUKILL ES EFECTIVO CONTRA LOS VIRUS DE AVICULTURA, BACTERIAS HONGOS Y GRUPOS DE FAMILIA DE MICOPLASMA Hongos, levadura y EJEMPLOS DE VIRUS EJEMPLOS DE BACTERIAS ejemplos de Grupos de familia Ejemplos de Acinetobacter Ornithobacterium micoplasma patógenos anitratus rhinotracheale Birnaviridae Gumboro (IBD) Bacillus subtilis Pasteurella spores multocida Caliciviridae Feline calicivirus Bacilillus subtilis Pasteurella Aspergillus Níger vegetative volantium Coronaviridae Infectious bronchitis Bordatella spp.
    [Show full text]
  • Generic Names in Magnaporthales Ning Zhang, Jing Luo, Amy Y
    Generic names in Magnaporthales Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, Pedro W. Crous, Ralph Dean, Ronald P. de Vries, Nicole Donofrio, Kevin D. Hyde, et al. To cite this version: Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, et al.. Generic names in Magnaporthales. IMA Fungus, 2016, 7 (1), pp.155-159. 10.5598/imafungus.2016.07.01.09. hal- 01608608 HAL Id: hal-01608608 https://hal.archives-ouvertes.fr/hal-01608608 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License IMA FUNGUS · 7(1): 155–159 (2016) doi:10.5598/imafungus.2016.07.01.09 ARTICLE Generic names in Magnaporthales Ning Zhang1, Jing Luo1, Amy Y. Rossman2, Takayuki Aoki3, Izumi Chuma4, Pedro W. Crous5, Ralph Dean6, Ronald P. de Vries5,7, Nicole Donofrio8, Kevin D. Hyde9, Marc-Henri Lebrun10, Nicholas J. Talbot11, Didier Tharreau12, Yukio Tosa4, Barbara Valent13, Zonghua Wang14, and Jin-Rong Xu15 1Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA; corresponding author e-mail: zhang@aesop.
    [Show full text]
  • “Estudio De La Sensibilidad a Fungicidas De Aislados De Cercospora Sojina Hara, Agente Causal De La Mancha Ojo De Rana En El Cultivo De Soja”
    “Estudio de la sensibilidad a fungicidas de aislados de Cercospora sojina Hara, agente causal de la mancha ojo de rana en el cultivo de soja” Tesis presentada para optar al título de Magister de la Universidad de Buenos Aires. Área Producción Vegetal, orientación en Protección Vegetal María Belén Bravo Ingeniera Agrónoma, Universidad Nacional de San Luis – 2011 Especialista en Protección Vegetal, Universidad Católica de Córdoba - 2015 INTA Estación Experimental Agropecuaria, San Luis Fecha de defensa: 5 de abril de 2019 Escuela para Graduados Ing. Agr. Alberto Soriano Facultad de Agronomía – Universidad de Buenos Aires COMITÉ CONSEJERO Director de tesis Marcelo Aníbal Carmona Ingeniero Agrónomo (Universidad de Buenos Aires) Magister Scientiae en Producción Vegetal (Universidad de Buenos Aires) Doctor en Ciencias Agropecuarias (Universidad Nacional de La Plata) Co-director Alicia Luque Bioquímica (Universidad Nacional de Rosario) Profesora de Enseñanza Superior (Universidad de Concepción del Uruguay) Doctora (Universidad Nacional de Rosario) Consejero de Estudios Diego Martínez Alvarez Ingeniero Agrónomo (Universidad Nacional de San Luis) Magister en Ciencias Agropecuarias. Mención en Producción Vegetal (Universidad Nacional de Río Cuarto) JURADO EVALUADOR Dr. Leonardo Daniel Ploper Dra. Cecilia Inés Mónaco Ing. Agr. MSci. Olga Susana Correa iii DEDICATORIA A mi compañero de caminos Juan Pablo Odetti A Leti, mi amiga guerrera… iv AGRADECIMIENTOS Al sistema de becas de INTA y la EEA INTA San Luis por permitirme capacitarme y realizar mis estudios de posgrado. A los proyectos PRET SUR, PRET NO y sus coordinadores Hugo Bernasconi y Jorge Mercau por la ayuda recibida en todo momento. Al director de tesis Marcelo Carmona, co directora Alicia Luque y consejero de estudios Diego Martínez Alvarez, por las enseñanzas recibidas.
    [Show full text]
  • Powdery Mildew Species on Papaya – a Story of Confusion and Hidden Diversity
    Mycosphere 8(9): 1403–1423 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/9/7 Copyright © Guizhou Academy of Agricultural Sciences Powdery mildew species on papaya – a story of confusion and hidden diversity Braun U1, Meeboon J2, Takamatsu S2, Blomquist C3, Fernández Pavía SP4, Rooney-Latham S3, Macedo DM5 1Martin-Luther-Universität, Institut für Biologie, Institutsbereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany 2Mie University, Department of Bioresources, Graduate School, 1577 Kurima-Machiya, Tsu 514-8507, Japan 3Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, U.S.A. 4Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Km. 9.5 Carretera Morelia-Zinapécuaro, Tarímbaro, Michoacán CP 58880, México 5Universidade Federal de Viçosa (UFV), Departemento de Fitopatologia, CEP 36570-000, Viçosa, MG, Brazil Braun U, Meeboon J, Takamatsu S, Blomquist C, Fernández Pavía SP, Rooney-Latham S, Macedo DM 2017 – Powdery mildew species on papaya – a story of confusion and hidden diversity. Mycosphere 8(9), 1403–1423, Doi 10.5943/mycosphere/8/9/7 Abstract Carica papaya and other species of the genus Carica are hosts of numerous powdery mildews belonging to various genera, including some records that are probably classifiable as accidental infections. Using morphological and phylogenetic analyses, five different Erysiphe species were identified on papaya, viz. Erysiphe caricae, E. caricae-papayae sp. nov., Erysiphe diffusa (= Oidium caricae), E. fallax sp. nov., and E. necator. The history of the name Oidium caricae and its misapplication to more than one species of powdery mildews is discussed under Erysiphe diffusa, to which O.
    [Show full text]
  • Notizbuchartige Auswahlliste Zur Bestimmungsliteratur Für Unitunicate Pyrenomyceten, Saccharomycetales Und Taphrinales
    Pilzgattungen Europas - Liste 9: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für unitunicate Pyrenomyceten, Saccharomycetales und Taphrinales Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Zur Beachtung: Hier befinden sich auch die Ascomycota ohne Fruchtkörperbildung, selbst dann, wenn diese mit gewissen Discomyceten phylogenetisch verwandt sind. Gattungen 1) Hauptliste 2) Liste der heute nicht mehr gebräuchlichen Gattungsnamen (Anhang) 1) Hauptliste Acanthogymnomyces Udagawa & Uchiyama 2000 (ein Segregate von Spiromastix mit Verwandtschaft zu Shanorella) [Europa?]: Typus: A. terrestris Udagawa & Uchiyama Erstbeschr.: Udagawa, S.I. u. S. Uchiyama (2000), Acanthogymnomyces ..., Mycotaxon 76, 411-418 Acanthonitschkea s. Nitschkia Acanthosphaeria s. Trichosphaeria Actinodendron Orr & Kuehn 1963: Typus: A. verticillatum (A.L. Sm.) Orr & Kuehn (= Gymnoascus verticillatus A.L. Sm.) Erstbeschr.: Orr, G.F. u. H.H. Kuehn (1963), Mycopath. Mycol. Appl. 21, 212 Lit.: Apinis, A.E. (1964), Revision of British Gymnoascaceae, Mycol. Pap. 96 (56 S. u. Taf.) Mulenko, Majewski u. Ruszkiewicz-Michalska (2008), A preliminary checklist of micromycetes in Poland, 330 s. ferner in 1) Ajellomyces McDonough & A.L. Lewis 1968 (= Emmonsiella)/ Ajellomycetaceae: Lebensweise: Z.T. humanpathogen Typus: A. dermatitidis McDonough & A.L. Lewis [Anamorfe: Zymonema dermatitidis (Gilchrist & W.R. Stokes) C.W. Dodge; Synonym: Blastomyces dermatitidis Gilchrist & Stokes nom. inval.; Synanamorfe: Malbranchea-Stadium] Anamorfen-Formgattungen: Emmonsia, Histoplasma, Malbranchea u. Zymonema (= Blastomyces) Bestimm. d. Gatt.: Arx (1971), On Arachniotus and related genera ..., Persoonia 6(3), 371-380 (S. 379); Benny u. Kimbrough (1980), 20; Domsch, Gams u. Anderson (2007), 11; Fennell in Ainsworth et al. (1973), 61 Erstbeschr.: McDonough, E.S. u. A.L.
    [Show full text]
  • Plant Pathology Self Study Oct2011 REV.Pdf
    EXECUTIVE SUMMARY The Department of Plant Pathology is one of nine academic units in the College of Food, Agricultural, and Environmental Sciences (CFAES) at The Ohio State University, and is the sole academic unit dedicated to plant-microbe interactions in Ohio's Higher Education system. The department consists of faculty, students, post-docs, and staff located on the Columbus and Wooster campuses of OSU. Funding comes from the Ohio Agricultural Research and Development Center (OARDC) and Ohio State University Extension (OSUE) line items, and from OSU Academic Programs; higher levels of financial support are obtained from external grants, contracts and gifts. Research programs in the department encompass basic investigations of plant-microbe interactions at the molecular level to studies of epidemics at the population level, and, in parallel, mission-oriented investigations of management tactics for diseases of major crops and forest trees. Graduate education is one of the foundations of the department. Currently, there are about 2.5 graduate students per faculty advisor; 217 students have enrolled in our graduate program over the last two decades, and many of our graduates have gone on to leadership roles in academia, government and private industry. The department is fully committed to undergraduate education, with a major in Plant Health Management, a minor in Plant Pathology, a new Plant Pathology major, and courses designed for non-majors. Although our UG enrollment in our major is small, our students are very successful, and 70% ultimately enroll in graduate school. Through the use of oral, printed, and electronic media, we are at the forefront in the college in outreach and engagement efforts, primarily through our Extension education programming.
    [Show full text]
  • Resolving the Polyphyletic Nature of Pyricularia (Pyriculariaceae)
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY ▪:1–36. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae) S. Klaubauf1,2, D. Tharreau3, E. Fournier4, J.Z. Groenewald1, P.W. Crous1,5,6*, R.P. de Vries1,2, and M.-H. Lebrun7* 1CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands; 2Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands; 3UMR BGPI, CIRAD, Campus International de Baillarguet, F-34398 Montpellier, France; 4UMR BGPI, INRA, Campus International de Baillarguet, F-34398 Montpellier, France; 5Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; 6Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 7UR1290 INRA BIOGER-CPP, Campus AgroParisTech, F-78850 Thiverval-Grignon, France *Correspondence: P.W. Crous, [email protected]; M.-H. Lebrun, [email protected] Abstract: Species of Pyricularia (magnaporthe-like sexual morphs) are responsible for major diseases on grasses. Pyricularia oryzae (sexual morph Magnaporthe oryzae) is responsible for the major disease of rice called rice blast disease, and foliar diseases of wheat and millet, while Pyricularia grisea (sexual morph Magnaporthe grisea) is responsible for foliar diseases of Digitaria. Magnaporthe salvinii, M. poae and M. rhizophila produce asexual spores that differ from those of Pyricularia sensu stricto that has pyriform, 2-septate conidia produced on conidiophores with sympodial proliferation. Magnaporthe salvinii was recently allocated to Nakataea, while M. poae and M. rhizophila were placed in Magnaporthiopsis. To clarify the taxonomic relationships among species that are magnaporthe- or pyricularia-like in morphology, we analysed phylogenetic relationships among isolates representing a wide range of host plants by using partial DNA sequences of multiple genes such as LSU, ITS, RPB1, actin and calmodulin.
    [Show full text]
  • Impact of Foliar Nickel Application on Urease Activity, Antioxidant Metabolism and Control of Powdery Mildew (Microsphaera Diffusa) in Soybean Plants
    Plant Pathology (2018) 67, 1502–1513 Doi: 10.1111/ppa.12871 Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants J. P. Q. Barcelosa,H.P.G.Reisa, C. V. Godoyb, P. L. Gratao~ c, E. Furlani Juniora, F. F. Puttid, M. Camposd and A. R. Reisad* aSao~ Paulo State University – UNESP, Ilha Solteira, SP, 15385-000; bEmbrapa Soybean, Rodovia Carlos Joao~ Strass – Distrito de Warta, Londrina, 86001-970, PR; cSao~ Paulo State University – UNESP, Jaboticabal, 79560-000, SP; and dSao~ Paulo State University – UNESP, Tupa,~ 17602-496, SP, Brazil Nickel (Ni) is a cofactor for urease, an enzyme that breaks down urea into ammonia and carbon dioxide. This study aimed to evaluate the physiological impact of Ni on urea, antioxidant metabolism and powdery mildew severity in soy- À bean plants. Seven levels of Ni (0, 10, 20, 40, 60, 80 and 100 g ha 1) alone or combined with the fungicides fluxapy- À roxad and pyraclostrobin were applied to soybean plants. The total Ni concentration ranged from 3.8 to 38.0 mg kg 1 À in leaves and 3.0 to 18.0 mg kg 1 in seeds. A strong correlation was observed between Ni concentration in the leaves À and seeds, indicating translocation of Ni from leaves to seeds. Application of Ni above 60 g ha 1 increased lipid perox- À À idation in the leaf tissues, indicative of oxidative stress. Application of 40 g ha 1 Ni combined with 300 mL ha 1 of fungicide reduced powdery mildew severity by up to 99%.
    [Show full text]
  • Genome Wide Analysis of the Transition to Pathogenic Lifestyles in Magnaporthales Fungi Received: 25 January 2018 Ning Zhang1,2, Guohong Cai3, Dana C
    www.nature.com/scientificreports OPEN Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi Received: 25 January 2018 Ning Zhang1,2, Guohong Cai3, Dana C. Price4, Jo Anne Crouch 5, Pierre Gladieux6, Bradley Accepted: 29 March 2018 Hillman1, Chang Hyun Khang7, Marc-Henri LeBrun8, Yong-Hwan Lee9, Jing Luo1, Huan Qiu10, Published: xx xx xxxx Daniel Veltri11, Jennifer H. Wisecaver12, Jie Zhu7 & Debashish Bhattacharya2 The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated genome sequence data from fve additional Magnaporthales fungi including non-pathogenic species, and performed comparative genome analysis of a total of 13 fungal species in the class Sordariomycetes to understand the evolutionary history of the Magnaporthales and of fungal pathogenesis. Our results suggest that the Magnaporthales diverged ca. 31 millon years ago from other Sordariomycetes, with the phytopathogenic blast clade diverging ca. 21 million years ago. Little evidence of inter-phylum horizontal gene transfer (HGT) was detected in Magnaporthales. In contrast, many genes underwent positive selection in this order and the majority of these sequences are clade-specifc. The blast clade genomes contain more secretome and avirulence efector genes, which likely play key roles in the interaction between Pyricularia species and their plant hosts. Finally, analysis of transposable elements (TE) showed difering proportions of TE classes among Magnaporthales genomes, suggesting that species-specifc patterns may hold clues to the history of host/environmental adaptation in these fungi.
    [Show full text]
  • Nutritional Characteristics of Hydrilla Verticillata and Its Effect on Two Biological Control Agents
    Nutritional characteristics of Hydrilla verticillata and its effect on two biological control agents J.F. Shearer, M.J. Grodowitz and J.E. Freedman Summary A complex of abiotic and biotic factors is known to impact the establishment and success of biological control agents. Experiments using the ephydrid fly Hydrellia pakistanae Deonier have demonstrated that hydrilla, Hydrilla verticillata (L.f.) Royle, containing low protein content appears to impact larval development time and the number of eggs oviposited per female. Eggs per female were over twofold higher for larvae reared on hydrilla containing 2.4-fold more protein. Mean adult female fly weight peaked when emergence is low (i.e. low crowding) and leaf protein content is high. The hy- drilla biological control pathogen Mycoleptodiscus terrestris (Gerd.) Ostazeski also responds to plant nutritional condition. The nutritional status of hydrilla shoots affects M. terrestris vegetative growth, disease development and conidia and microsclerotia production. High protein content in shoot tissues was associated with a more than threefold increase in conidia production and maximum disease se- verity. In contrast, low protein content in shoot tissues stimulated a 3.7-fold increase in melanized mi- crosclerotia, reproductive structures that are more persistent in the environment than conidia. These studies suggest that the nutritional condition of target plants cannot be excluded as an important factor in efficacy of biological control agents. Both agents responded to favorable conditions by reproducing prolifically, which ultimately resulted in increased host damage. Keywords: Hydrellia pakistanae, Mycoleptodiscus terrestris, evaluation. Introduction stanae individuals have been released with established populations occurring in Florida, Arkansas, Alabama, In aquatic systems, there is scant information on the Georgia and Texas (Center et al., 1997; Julien and Grif- impact of biological control agents relative to the fiths, 1998; Grodowitz et al., 1999).
    [Show full text]
  • Molecular and Morphological Characterization of Pyricularia and Allied Genera
    Mycologia, 97(5), 2005, pp. 1002–1011. # 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular and morphological characterization of Pyricularia and allied genera B. Bussaban (1880) with the type species, P. grisea (Cooke) Sacc., S. Lumyong1 which originally was described from crabgrass (Digi- Department of Biology, Faculty of Science, Chiang Mai taria sanguinalis L.). The name ‘‘Pyricularia’’ refers University, Chiang Mai 50200, Thailand to the pyriform shape of the conidia. Cavara (1892) P. Lumyong subsequently described P. oryzae Cav. from rice (Oryza Department of Plant Pathology, Faculty of Agriculture, sativa L.), a taxon with similar morphology to P. Chiang Mai University, Chiang Mai 50200, Thailand grisea. Despite the lack of obvious morphological 50200 differences, these two taxa have been maintained as separate species. Rossman et al (1990) argued that P. T. Seelanan oryzae should be synonymized with P. grisea and Department of Botany, Faculty of Science, grouped these two anamorphs under the teleomorph Chulalongkorn University, Bangkok 10330, Thailand Magnaporthe grisea (Hebert) Barr. Recent molecular D.C. Park genetic analyses, however, have indicated that Pyr- E.H.C. McKenzie icularia species isolated from different hosts are Landcare Research, Private Bag 92170, Auckland, genetically distinct (Borromeo et al 1993, Shull and New Zealand Hamer 1994, Kato et al 2000). Based on RFLP and K.D. Hyde DNA sequence analysis, Borromeo et al (1993) and Centre for Research in Fungal Diversity, Department of Kato et al (2000) suggested that the Pyricularia Ecology & Biodiversity, The University of Hong Kong, isolates from Digitaria sp. and rice represent distinct Pokfulam Road, Hong Kong SAR, China species.
    [Show full text]
  • Cover Page 2017 James P. Cuda, Ph.D. Professor and Fulbright
    IPM Award Nomination 1 James Cuda Cover Page 2017 James P. Cuda, Ph.D. Professor and Fulbright Scholar Charles Steinmetz Hall UF/IFAS Entomology & Nematology Dept. Bldg. 970, Natural Area Drive PO Box 110620 Gainesville, FL 32611-0620 (352) 273-3921 [email protected] IPM Award Nomination 2 James Cuda College of Agricultural and Life Sciences Steinmetz Hall, Bldg. 970 Entomology and Nematology Department 1881 Natural Area Drive P.O Box 110620 Gainesville, FL 32611-0620 352-273-3901 352-392-0190 Fax January 24, 2017 Southeastern Branch of the ESA Awards Committee Dear Committee: Although I have only recently joined the Entomology and Nematology Department at the University of Florida, I have quickly come to learn of Dr. Jim Cuda’s accomplishments and passion for research and education in in biocontrol and integrated pest management. As a consequence, I have decided to nominate him for the ESA SEB Recognition Award in IPM and believe he is deserving of your strongest consideration. Jim has developed an internationally recognized program in biocontrol of invasive weeds and has become a globally recognized authority in identifying and evaluating potential biocontrol agents of invasive weeds. He has made significant contributions to the successful management of important invasive weed species in both aquatic and terrestrial environments. He also has made important discoveries in understanding the attributes of successful introduction of exotic biocontrol agents in a manner that successfully mitigates the invasion without disruption of native species. Information from this work has been critical to the management of important invasive plant species such as the tropical soda apple.
    [Show full text]