Review of the Freshwater Mullets of Iran (Family Mugilidae)

Total Page:16

File Type:pdf, Size:1020Kb

Review of the Freshwater Mullets of Iran (Family Mugilidae) Iran. J. Ichthyol. (June 2016), 4(2): 75–130 Received: April 1, 2017 © 2017 Iranian Society of Ichthyology Accepted: May 29, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2016.0 http://www.ijichthyol.org Review of the Freshwater Mullets of Iran (Family Mugilidae) Brian W. COAD Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada. Email: [email protected] Abstract: The systematics, morphology, distribution, biology, economic importance and conservation of the freshwater mullets of Iran are described, the species are illustrated, and a bibliography on these fishes in Iran is provided. Two species are found in the Caspian Sea basin as exotics (Chelon auratus, C. saliens), two species in southern Iranian fresh waters as native species (Mugil cephalus, Planiliza abu) and two species in brackish waters of rivers (Ellochelon vaigiensis, C. subviridis). Keywords: Biology, Morphology, Mugilidae, Chelon, Ellochelon, Liza, Mugil, Planiliza. Citation: Coad, B.W. (2017). Review of the freshwater mullets of Iran (Family Mugilidae). Iranian Journal of Ichthyology 4 (2): 75-130. Introduction number of species are recorded as entering the rivers The freshwater ichthyofauna of Iran comprises a of southern Iran from the Persian Gulf and Sea of diverse set of families and species distributed in Oman although identification is not always certain different basins (Fig. 1). These form important and only two are described here (Ellochelon elements of the aquatic ecosystem and a number of vaigiensis and Planiliza subviridis). Examples of species are of commercial or other significance. The other Persian Gulf estuarine records include literature on these fishes is widely scattered, both in Moolgarda seheli (Forsskål, 1775) and P. klunzingeri time and place. Summaries of the morphology and (Day, 1888) in the Kol River, Hormozgan (Bagheri biology of these species were given in a website et al. 2010), and M. buchanani (Bleeker, 1853) (www.briancoad.com) which is updated here, while generally in southern rivers (Nematzadeh et al. the relevant section of that website is now closed 2013), and doubtless other mullet species may be down. found in estuaries (see Fischer & Bianchi (1984) and Kuronuma & Abe (1986) for Persian Gulf marine Family Mugilidae species in general). The three main species of Iran are The mullets or grey mullets are found world-wide in Chelon auratus and C. saliens introduced to the temperate to tropical coastal waters readily entering Caspian Sea and Planiliza abu of southern Iranian estuaries and even resident in freshwaters. There are fresh waters (see Esmaeili et al. 2017). These three about 20 genera and about 75 species (Nelson et al. species are commercially important. 2016) but only three species are native to Iran in fresh Literature on the Iranian species has appeared and brackish waters and a further two species have under a variety of generic names. Fishes in the genera been successfully introduced (the latter not mapped Chelon, Ellochelon and Planiliza were previously in in Berra (2001) because they are exotics). The native the genus Liza Jordan & Swain, 1884. Molecular data species are placed in context with other Iranian fishes has caused this re-assessment and can be found in in Coad (1987, 1998) and Coad & Abdoli (1996). A such papers as Durand et al. (2012, 2012), 75 Iran. J. Ichthyol. (June 2017), 2(2): 75-130 Fig.1. Map of Iran showing different basins, (M= Maharlu) (Esmaeili et al. 2017). Nematzadeh et al. (2013) and Xia et al. (2016). with growth, upper elements of the gill arch are Various authors have accepted, or not, these generic specialised as a pharyngobranchial organ, 5-6 placements and a review of these opinions are branchiostegal rays, a spiny and short first dorsal fin beyond the scope of this paper. The “Catalog of (4 spines), the second dorsal with 1 unbranched ray Fishes” (Eschmeyer et al. 2016) should be referred to or spine and 6-10, usually 8, branched rays, anal fin for varying opinions and a history of generic with 2-3 spines and 8-12 branched rays, an placement of species although Liza is retained there abdominal pelvic fin with 1 spine and 5 soft rays, (downloaded 19 January 2017). Most of the literature pelvic bones connected to the postcleithrum by a cited below refers to the species discussed under the ligament, mouth transverse and small, teeth on jaws genus Liza (except for Mugil cephalus) but the genus short, weak and flexible, the lower jaw may be name has been changed in this text for consistency. toothless, the stomach wall is strongly muscled This family is characterised by a compressed to (gizzard-like), and the gut is very long and coiled. subcylindrical body with a somewhat flattened head, Maximum size is about 0.9m moderate sized scales which may be cycloid but are Mullets are schooling fish which feed on ctenoid in most adults and extend onto the top and microscopic algae and the minute animals associated sides of the head, faint or no lateral line along the with the algae. They grub, gulp or suck (hence flank but pits or grooves on scales contain the sense "mugil") bottom deposits, spitting out some of the organs, the eye may have an adipose or fatty eyelid debris and extracting nutrient from the remainder. forming a vertical, slit-like opening, vertebrae The long gill rakers filter the food, the strong gizzard- usually 24, rarely as high as 26, wide gill openings, like stomach crushes it and the long intestine (about gill rakers long and slender and increasing in number seven times body length) aids in digestion. Their 76 Coad-Mullets f Iran bottom feeding leaves long patches of disturbed Fisheries Research and Training Organization sediment readily visible from a distance. Eggs, larvae Newsletter 4: 8, 1994). The general name for mullets and young mullet are pelagic. Adults are found in in Farsi is kefal or kafal. large schools in coastal waters or on tidal flats. These Pillay (1972) gave a bibliography on mullets, fishes are very important economically as food eaten Thomson (1997) reviewed the taxonomy, giving fresh, smoked or canned, as bait, and as cultured fish further details of anatomy than summarised here, in ponds. The flesh is oily and rich but has few bones. Ghasemzadeh & Ivantsoff (2004) gave an overview Mugilid species in Khuzestan are thought to be the of mugilid systematics, Crosetti & Blaber (2016) intermediate hosts of Heterophyidae flukes found in summarised biology, ecology and culture, and Xia et humans and carnivores (Massoud et al. 1981). Barati al. (2016) provided a key to genera. (2009) found that the main prey in the early stages of chick development of the Great Cormorant, Genus Chelon Artedi, 1793 Phalacrocorax carbo, at Ramsar on the Caspian Sea This genus is defined more by traits found in related was Mugilidae. genera but absent in Chelon. It is characterised by Soltani & Rahanandeh (2001) describe a case of thin to moderately thick, terminal upper lip with or gastric bloat in Mugil capito in the Caspian Sea. without papillae, the lower lip is directed forwards Mugil capito Cuvier, 1829 is a synonym of Chelon and is thin-edged, teeth are setiform, ciliiform or ramada (Risso, 1827), a species not known from the absent in the upper lip, ciliiform or absent in the Caspian Sea. However, Nematzadeh et al. (2013) lower lip, there is a symphysial knob to the lower jaw mention that samples of that species were imported and the lower jaws meet at a 90º angle or more, the from Egypt to the Gomishan Research Center in maxilla is bent down over the premaxilla and is either Gorgan where they were being maintained. uniformly curved or is s-shaped, the maxilla end is The total production of this family in 2013 was visible when the mouth is closed, the anteroventral 698,293 tonnes, mainly (80.2%) capture fisheries but edge of the preorbital bone is serrate, weakly concave with 138,143t from aquaculture. Capture fisheries of or kinked and ventrally it is broad and squarish, an C. abu were at 593t, C. auratus at 170t, C. saliens at adipose eyelid is present sometimes but is not well- 111t and Mugil cephalus at 133,514t (plus 12,245t developed being a narrow rim around the eye at all from aquaculture for the latter). Iran’s total for 2013 ages, the pharyngobranchial organ has two valves, was 8,510t but 6,137t was for Persian Gulf marine pyloric caeca number 2-14, the intestine is 4-7 times species (Moolgarda seheli and Planiliza klunzingeri). standard length, the pelvic fin tip reaches the vertical Grey mullet roe is also consumed and the fish are from spines I-IV of the dorsal fin, scales are ctenoid, used for bait by recreational and commercial fishers. predorsal scales are uni- or multi-caniculate (= Crosetti & Blaber (2016) give further details about grooved), the pectoral axillary scale is weak or capture methods and usage. absent, and a neural postzygapophysis is short with a Studies have been carried out on culturing spine-like process gently curved and hook-like on the M. cephalus and C. auratus in brackish water, in second vertebra (cf. Planiliza). Thomson (1997) and inland pools and salt and freshwater culture ponds in Xia et al. (2016) list further characters. the northern and central parts of Iran (Emadi 1993, Members of this genus were formerly placed in Iranian Fisheries Research and Training the genus Liza Jordan and Swain, 1884. Some Organization Newsletter 11: 6, 1996, Azari Takami authors accept Chelon as the correct name, others et al. 1997; Yelghi et al. 2012). In April 1994, 20,000 retain Liza. For example, Ghasemzadeh (1998) stated M. cephalus fry weighing 0.5g were imported from that nomenclatural issues were complex and needed Hong Kong as part of this programme (Iranian more work before Chelon could be accepted.
Recommended publications
  • Cytogenetic Analysis of Global Populations of Mugil Cephalus (Striped Mullet) by Different Staining Techniques and Fluorescent in Situ Hybridization
    Heredity 76 (1996) 77—82 Received 30 May 1995 Cytogenetic analysis of global populations of Mugil cephalus (striped mullet) by different staining techniques and fluorescent in situ hybridization ANNA RITA ROSSI, DONATELLA CROSETTIt, EKATERINA GORNUNG & LUCIANA SOLA* Department of Animal and Human Biology, University of Rome 7, Via A. Bore/li 50, 00161 Rome and tICRAM, Central Institute for Marine Research, Via L. Respighi 5, 00197 Rome, Italy Thepresent paper reports the results of cytogenetic analysis carried out on several scattered populations of the striped mullet, Mugil cephalus, the most widespead among mugilid species. The karyotype was investigated through Ag-staining, C-banding, fluorochrome-staining (chro- momycin A3/DAPI) and fluorescent in situ hybridization with rDNA genes. All populations showed the same chromosome number and morphology and no changes were detected in heterochromatin and NORs. Therefore, neither population- nor sex-specific marker chromo- somes were identified. In some of the specimens, NOR size heteromorphism was detected. Results are discussed with respect to karyotype and ribosomal cistrons organization and to cytotaxonomic implications. Keywords:cytotaxonomy,FISH, heterochromatin, karyotype, NOR. Although the karyotype of M cephalus is already Introduction known (Table 1), there are no data from differential Thestriped mullet, Mugil cephalus, is the most wide- staining techniques, except for observations on spread among mugilid species, and inhabits the trop- nucleolar organizer regions (NOR5) by Amemiya & ical and subtropical seas of the world. Both the Gold (1986). Moreover, previous studies cover only worldwide distribution, the range discontinuity few localities from the wide species range and speci- (Thomson, 1963) and the coastally-dependent life mens from more than one collecting site have never history have raised questions on the conspecificity of been observed in the same laboratory.
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • Molecular Phylogeny of Mugilidae (Teleostei: Perciformes) D
    The Open Marine Biology Journal, 2008, 2, 29-37 29 Molecular Phylogeny of Mugilidae (Teleostei: Perciformes) D. Aurelle1, R.-M. Barthelemy*,2, J.-P. Quignard3, M. Trabelsi4 and E. Faure2 1UMR 6540 DIMAR, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France 2LATP, UMR 6632, Evolution Biologique et Modélisation, case 18, Université de Provence, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France 3Laboratoire d’Ichtyologie, Université Montpellier II, 34095 Montpellier, France 4Unité de Biologie marine, Faculté des Sciences, Campus Universitaire, 2092 Manar II, Tunis, Tunisie Abstract: Molecular phylogenetic relationships among five genera and twelve Mugilidae species were investigated us- ing published mitochondrial cytochrome b and 16S rDNA sequences. These analyses suggested the paraphyly of the genus Liza and also that the separation of Liza, Chelon and Oedalechilus might be unnatural. Moreover, all the species of the genus Mugil plus orthologs of Crenimugil crenilabis clustered together; however, molecular analyses suggested possible introgressions in Mugil cephalus and moreover, that fish identified as Mugil curema could correspond to two different species as already shown by karyotypic analyses. Keywords: Mugilidae, grey mullets, mitochondrial DNA, Mugil cephalus, introgression. INTRODUCTION We have focused this study on Mugilid species for which both cytochrome b (cytb) and 16S rDNA mtDNA sequences The family Mugilidae, commonly referred to as grey have been already published. Their geographic distributions mullets, includes several species which have a worldwide are briefly presented here. Oedalechilus labeo is limited to distribution; they inhabit marine, estuarine, and freshwater the Mediterranean Sea and the Moroccan Atlantic coast, environments at all latitudes except the Polar Regions [1]; a whereas, Liza and Chelon inhabit also the Eastern Atlantic few spend all their lives in freshwater [2].
    [Show full text]
  • I CHARACTERIZATION of the STRIPED MULLET (MUGIL CEPHALUS) in SOUTHWEST FLORIDA: INFLUENCE of FISHERS and ENVIRONMENTAL FACTORS
    i CHARACTERIZATION OF THE STRIPED MULLET (MUGIL CEPHALUS) IN SOUTHWEST FLORIDA: INFLUENCE OF FISHERS AND ENVIRONMENTAL FACTORS ________________________________________________________________________ A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment of the requirements for the degree of Master of Science ________________________________________________________________________ By Charlotte Marin 2018 ii APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Masters of Science ________________________________________ Charlotte A. Marin Approved: 2018 ________________________________________ S. Gregory Tolley, Ph.D. Committee Chair ________________________________________ Richard Cody, Ph.D. ________________________________________ Edwin M. Everham III, Ph.D. The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii ACKNOWLEDGMENTS I would like to dedicate this project to Harvey and Kathryn Klinger, my loving grandparents, to whom I can attribute my love of fishing and passion for the environment. I would like to express my sincere gratitude to my mom, Kathy, for providing a solid educational foundation that has prepared me to reach this milestone and inspired me to continuously learn. I would also like to thank my aunt, Deb, for always supporting my career aspirations and encouraging me to follow my dreams. I would like to thank my in-laws, Carlos and Dora, for their enthusiasm and generosity in babysitting hours and for always wishing the best for me. To my son, Leo, the light of my life, who inspires me every day to keep learning and growing, to set the best example for him.
    [Show full text]
  • (Teleostei: Mugilidae) with Special Reference to the Mullets of Australia
    Phylogeny and Systematics of Indo-Pacific mullets (Teleostei: Mugilidae) with special reference to the mullets of Australia By JAVAD GHASEMZADEH B.Sc, University of Tehran, Iran Grad. Dipl, University of New South Wales, Sydney M.Sc, University of New South Wales, Sydney A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences Macquarie University Sydney, Australia July 1998 DECLARATION This work is in accordance with the regulations of Macquarie University for the Degree of Doctor of Philosophy. All work is that of the author unless otherwise indicated. The material presented has not been submitted, either in whole or in part, for a degree at this or any other University. Javad Ghasemzadeh i Table of contents Declaration i Contents ii-ix Summary x-xi Acknowledgements xii-xiii Chapter 1 Introduction 1 Taxonomic position of Mullets 3 Historical review of Mullet taxonomy 6 Materials and methods 14 Study area 14 Material examined 14 Morphometric and meristics 17 Osteology 24 Lepidology 24 Photography and Scanning Electron Microscopy 25 Terminology 25 Phylogenetic analysis 25 Literature review 25 Chapter 2 - Musculoskeletal anatomy oiMugil cephalus 27 Neurocranium 27 Ethmoid 29 Lateral ethmoid 31 Nasals 33 Vomer 33 Frontal 34 Sphenotics 34 Pterosphenoids 36 Parietals 36 ii Parasphenoid 37 Prootics 37 Intercalars 39 Pterotics 39 Epioccipitals 40 Supraoccipital 42 Exoccipitals 42 Basioccipital 43 Orbit and circumorbital series 44 Lachrymals 44 Dermosphenotic 46 Accessory
    [Show full text]
  • Largescale Mullet (Planiliza Macrolepis) Can Recover from Thermal Pollution-Induced Malformations
    RESEARCH ARTICLE Largescale mullet (Planiliza macrolepis) can recover from thermal pollution-induced malformations Yi Ta Shao1,2, Shang-Ying Chuang1, Hao-Yi Chang1, Yung-Che Tseng3, Kwang- Tsao Shao1,4* 1 Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, 2 Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, 3 Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 It is well known in aquaculture that hyperthermic perturbations may cause skeleton malfor- mations in fish, but this phenomenon has rarely been documented in wild species. One rare location where thermal pollution has increased the proportion of malformed fish in OPEN ACCESS wild population is in the waters near the Kuosheng Nuclear Power Plant in Taiwan. At this site, the threshold temperature and critical exposure time for inducing deformations have Citation: Shao YT, Chuang S-Y, Chang H-Y, Tseng Y-C, Shao K-T (2018) Largescale mullet (Planiliza not been previously determined. In addition, it was unclear whether juvenile fish with ther- macrolepis) can recover from thermal pollution- mal-induced malformations are able to recover when the temperature returns below the induced malformations. PLoS ONE 13(11): threshold. In the present study, juvenile largescale mullet (Planiliza macrolepis) were kept e0208005. https://doi.org/10.1371/journal. at temperatures ranging from 26ÊC and 36ÊC for 1±4 weeks, after which malformed fish pone.0208005 were maintained at a preferred temperature of 26ÊC for another 8 weeks.
    [Show full text]
  • Karyological Characterization of Mugil Trichodon Poey, 1876 (Pisces: Mugilidae)*
    sm69n4525-1949 21/11/05 16:06 Página 525 SCI. MAR., 69 (4): 525-530 SCIENTIA MARINA 2005 Karyological characterization of Mugil trichodon Poey, 1876 (Pisces: Mugilidae)* MAURO NIRCHIO 1, ERNESTO RON 1 and ANNA RITA ROSSI 2 1 Escuela de Ciencias Aplicadas del Mar, Universidad de Oriente, Apartado Postal 174-Porlamar, Isla de Margarita, Venezuela. E-mail: [email protected] 2 Dipartimento di Biologia Animale e dell'Uomo, Università di Roma "La Sapienza", Via A. Borelli 50, 00161 Roma, Italia. SUMMARY: Cytogenetic studies were conducted on Mugil trichodon from Margarita Island, Venezuela. The species showed a karyotype 2n=48 with entirely acrocentric chromosomes (Arm number, NF=48). Chromosomes gradually decreased in size and did not allow a clear distinction of homologues, except for one marker pair, which showed a conspic- uous secondary constriction. C-banding showed heterochromatic blocks restricted at the centromeric regions of all the chro- mosomes. Some were more obvious than others, with the exception of the chromosome pair that had a secondary constric- tion with entirely heterochromatic short arms. Sequential staining with Giemsa and AgNO3 demonstrated the conspicuous secondary constrictions corresponding to the NORs, and these had significant intraindividual size variations between both homologous chromosomes. The data obtained here support the contention that Mugilidae have a conservative chromosome macrostructure and reinforce the hypothesis that small structural chromosome rearrangements involving active NOR sites are the main cause of the karyotypic diversification seen in this group. Keywords: karyotype, NOR, C-banding, Mugil trichodon. RESUMEN: CARACTERIZACIÓN CARIOLÓGICA DE MUGIL TRICHODON POEY, 1876 (PISCES: MUGILIDAE). – Se presenta el estu- dio citogenético de Mugil trichodon de la Isla de Margarita, Venezuela.
    [Show full text]
  • Identification of Juveniles of Grey Mullet Species (Teleostei
    Cah. Biol. Mar. (2008) 49 : 269-276 Identification of juveniles of grey mullet species (Teleostei: Perciformes) from Kuriat Islands (Tunisia) and evidence of gene flow between Atlantic and Mediterranean Liza aurata Monia TRABELSI1, Didier AURELLE2, Nawzet BOURIGA1,4, Jean-Pierre QUIGNARD3, Jean-Paul CASANOVA4 and Eric FAURE4* (1) Unité de Biologie marine, Faculté des Sciences, Campus Universitaire, 2092 Manar II, Tunis, Tunisie (2) UMR 6540 DIMAR, Station Marine d'Endoume, Rue de la batterie des Lions, 13007 Marseille, France (3) Laboratoire d’Ichtyologie, Université Montpellier II, Montpellier, France (4) LATP, CNRS-UMR 6632, Evolution biologique et modélisation, case 5, Université de Provence, Place Victor Hugo, 13331 Marseille cedex 3, France *Corresponding author: Tel: 00 (33) 491 10 61 77, Fax: 00 (33) 491 10 62 25, E-mail: [email protected] Abstract: Unidentified juveniles of a grey mullet species from the Kuriat Islands (Tunisia) were compared with Mediterranean and Atlantic candidate species (Mugil spp. or Liza spp.) using a mitochondrial gene (cytochrome b). These analyses have shown that juveniles are L. aurata individuals; phylogenetic analyses supported this grouping with very high bootstrap values and also shown evidence of gene flow between Atlantic and Mediterranean populations. Moreover, phylogenetic analyses were congruent with the analyses of the number of pyloric caeca. As mugilid juveniles for aquaculture are still obtained from wild stocks, these data provided a valuable baseline for further investigations on identification of these fish. Moreover, using the polymerase chain reaction, sufficient DNA for phylogenetic analyses can be amplified from very small portions of caudal fins and these samples can be collected without sacrificing individuals, which is one important requirement for the study of species that young fry is used for stocking lagoons and lakes.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Fish, Crustaceans, Molluscs, Etc Capture Production by Species
    542 Fish, crustaceans, molluscs, etc Capture production by species items Pacific, Eastern Central C-77 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Pacifique, centre-est (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Pacífico, centro-oriental English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2012 2013 2014 2015 2016 2017 2018 Nombre inglés Nombre científico Grupo de especies t t t t t t t Milkfish Chanos chanos 25 9 052 6 861 10 521 10 669 6 312 11 843 7 069 God's flounder Cyclopsetta panamensis 31 ... ... 117 2 20 20 113 California flounder Paralichthys californicus 31 171 170 178 185 210 255 253 Flatfishes nei Pleuronectiformes 31 3 190 4 340 5 401 5 775 5 583 6 346 6 251 North Pacific hake Merluccius productus 32 2 592 8 302 10 077 7 431 11 581 8 248 12 971 Gadiformes nei Gadiformes 32 71 1 1 855 180 949 202 Hawaiian ladyfish Elops hawaiensis 33 0 0 0 - 0 1 - Sea catfishes nei Ariidae 33 3 069 3 721 4 704 5 401 6 471 5 958 7 065 Squirrelfishes nei Holocentridae 33 23 26 25 4 24 26 19 Flathead grey mullet Mugil cephalus 33 516 3 877 5 055 6 266 7 989 6 957 8 947 White mullet Mugil curema 33 176 1 432 1 647 1 798 2 175 1 996 2 436 Bobo mullet Joturus pichardi 33 53 30 28 47 69 52 77 Mullets nei Mugilidae 33 2 972 464 389 557 746 617 834 Snooks(=Robalos) nei Centropomus spp 33 1 655 2 316 3 426 3 310 4 323 3 926 4 840 Groupers nei Epinephelus spp 33 48 45 42 42 42 42 41 ...A Paralabrax spp 33 5 878 5 317 5 520 5 308 5 682 5 892 6 364 Groupers, seabasses
    [Show full text]
  • Using DNA Barcodes to Aid the Identification of Larval Fishes in Tropical Estuarine Waters (Malacca Straits, Malaysia)
    Zoological Studies 58: 30 (2019) doi:10.6620/ZS.2019.58-30 Open Access Using DNA Barcodes to Aid the Identification of Larval Fishes in Tropical Estuarine Waters (Malacca Straits, Malaysia) Cecilia Chu1, Kar Hoe Loh1, Ching Ching Ng2, Ai Lin Ooi3, Yoshinobu Konishi4, Shih-Pin Huang5, and Ving Ching Chong2,* 1Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia. E-mail: [email protected] (Chu); [email protected] (Loh) 2Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia. *Correspondence: E-mail: [email protected]. E-mail: [email protected] (Ng) 3Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak. E-mail: [email protected] 4Seikai National Fisheries Research Institute, Nagasaki, Japan. E-mail: [email protected] 5Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan. E-mail: [email protected] Received 3 April 2019 / Accepted 18 August 2019 / Published 18 October 2019 Communicated by Benny K.K. Chan Larval descriptions of tropical marine and coastal fishes are very few, and this taxonomic problem is further exacerbated by the high diversity of fish species in these waters. Nonetheless, accurate larval identification in ecological and early life history studies of larval fishes is crucial for fishery management and habitat protection. The present study aimed to evaluate the usefulness of DNA barcodes to support larval fish identification since conventional dichotomous keys based on morphological traits are not efficient due to the lack of larval traits and the rapid morphological changes during ontogeny. Our molecular analysis uncovered a total of 48 taxa (21 families) from the larval samples collected from the Klang Strait waters encompassing both spawning and nursery grounds of marine and estuarine fishes.
    [Show full text]
  • Vulnerability and Over-Exploitation of Grey Mullet in UK Waters
    Vulnerability and Over-Exploitation of Grey Mullet in UK Waters Alan Butterworth & Andy Burt National Mullet Club February 2018 Vulnerability and Over-Exploitation of Grey Mullet in UK Waters. 1. Introduction There are three species of Mugilidae commonly present in UK waters; Golden-Grey Mullet (Liza aurata), Thin-lipped Grey Mullet (Liza aurata) and Thick-lipped Grey Mullet (Chelon labrosus). They have been regarded as having limited commercial interest with consequently no limit on catches and are simply collectively named as “grey mullet” for reporting landings; this takes no account of the individual species ecology, growth rates, or size at maturity. This perceived lack of commercial interest has resulted in little scientific interest and no studies on population size and dynamics, and fails to recognise the increased commercial interest as populations of other species decline. It is a recognised science-based and common-sense approach that exploitation should not take place until the majority of the fish stock has spawned at least once. The Marine Management Organisation (MMO) has set no Minimum Conservation Reference Size (MCRS) for any of the species, and five of the Inshore Fisheries and Conservation Authorities (IFCAs) have no prescribed size limit. Where IFCAs have set limits - two at 20cm and two at 30cm – they are below the size at which thin-lipped and thick-lipped mullet are known to first spawn in UK and Irish waters. Although mullet have always been targeted to some degree, especially by inshore fishermen, the recent restrictions on fishing for bass, Dicentrarchus labrax, has seemingly led to an increase in commercial exploitation of grey mullet.
    [Show full text]