Patterns and Mechanisms of the Exploitation of Mutualisms

Total Page:16

File Type:pdf, Size:1020Kb

Patterns and Mechanisms of the Exploitation of Mutualisms PATTERNS AND MECHANISMS OF THE EXPLOITATION OF MUTUALISMS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Biological Sciences by Ellen McGrail Reid B.A. Boston University, 2005 August 2010 ACKNOWLEDGEMENTS I would like to thank the members of my advisory committee: Kyle Harms, Jim Cronin, and Richard Stevens for their guidance and advice. I would especially like to thank Kyle Harms, my advisor, for his encouragement, patience, and assistance over the somewhat difficult course of my studies. I would like to thank my lab mates: Adriana Bravo and Jonathan Myers, two wonderful scientists and great people who were always ready to listen and help. I am indebted to the Lowy Foundation at Louisiana State University for funding my participation in a course through the Organization for Tropical Studies, Tropical Biology: An Ecological Approach in 2008. My work during that course provided inspiration for this thesis. I would also like to thank the Organization for Tropical Studies for funding my proposal for the grant that allowed me to carry out much of this work in Palo Verde National Park in Costa Rica. I would not have been able to complete my thesis without the help and support of several friends and colleagues: Joe Sapp, Susan Whitehead, Andre Kessler, Katja Poveda, Amanda Accamando, Natalia Aristizabal, Jessie Deichmann, Meche Gavilanez, Noah Reid, Maria Sagot, and many others. I owe many thanks to Prissy Milligan for helping me navigate the logistics of finishing my thesis. I thank Dr. C. Kelly Swing, the inspirational teacher, biologist, and conservationist who first introduced me to fieldwork in the tropics. Thanks to my parents, Robert Reid and Kathleen McGrail, who had the confidence that I could chart my path and supported me along my way. Finally, I would like to thank David Johnson for his encouragement and support. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .......................................................................................................................... ii ABSTRACT................................................................................................................................................. iv CHAPTER 1: INTRODUCTION ................................................................................................................. 1 CHAPTER 2: EXPLOITATION OF AN ANT-ACACIA MUTUALISM BY MOZENA SP. (HEMIPTERA: COREIDAE)....................................................................................................................... 3 INTRODUCTION .................................................................................................................................... 3 METHODS............................................................................................................................................... 5 Study site and collection of study organisms ....................................................................................... 5 Specificity to ant colony of origin........................................................................................................ 5 Species-specificity to Vachellia host.................................................................................................... 5 Species-specificity to ant host species.................................................................................................. 6 Ant response to glandular compounds ................................................................................................. 6 Ant response to lanolin-dissolved cuticular and glandular compounds............................................... 6 Removal of coreid cuticular hydrocarbons .......................................................................................... 7 Ant response to methyl salicylate......................................................................................................... 7 Chemical analyses ................................................................................................................................ 7 RESULTS................................................................................................................................................. 8 Specificity to ant colony of origin........................................................................................................ 8 Species-specificity to Vachellia host.................................................................................................... 8 Species-specificity to ant host species.................................................................................................. 8 Ant response to glandular compounds ................................................................................................. 8 Ant response to lanolin-dissolved cuticular and glandular compounds............................................. 11 Removal of coreid cuticular hydrocarbons ........................................................................................ 12 Ant response to methyl salicylate....................................................................................................... 12 Chemical analyses .............................................................................................................................. 12 DISCUSSION......................................................................................................................................... 13 Species-specificity to ant- and plant-hosts ......................................................................................... 13 The role of coreid glandular and cuticular compounds...................................................................... 14 The role of methyl salicylate in ant-coreid interactions..................................................................... 15 Chemical analyses .............................................................................................................................. 15 Conclusions ........................................................................................................................................ 15 CHAPTER 3: THE COSTS OF EXPLOITATION OF MUTUALISMS .................................................. 17 INTRODUCTION .................................................................................................................................. 17 METHODS............................................................................................................................................. 18 RESULTS............................................................................................................................................... 19 DISCUSSION......................................................................................................................................... 22 CHAPTER 4: CONCLUSIONS ................................................................................................................. 24 LITERATURE CITED ............................................................................................................................... 25 VITA ........................................................................................................................................................... 31 iii ABSTRACT Mutualisms are reciprocally exploitative interactions providing net benefits to both partners. These interactions can be exploited, in turn, by individuals that take advantage of benefits offered by one or both partners in a mutualism, while offering no benefits in return. For many mutualist-exploiter interactions the mechanisms allowing exploitation, and the maintenance of mutualisms in the face of exploitation, are still poorly understood. Here I describe manipulative field and laboratory experiments to investigate the mechanisms used by an exploiter to invade an ant-plant mutualism. I tested two non-mutually exclusive hypotheses for how a coreid (Mozena sp., Hemiptera: Coreidae) feeds on mymecophytic acacia trees (Vachellia spp.) while avoiding attack by resident ants: chemical defense and chemical mimicry. I found that chemical compounds produced by Mozena sp. in both the metathoracic gland and the cuticle reduced the number of ant attacks and cuticular compounds appeared to be essential in escaping recognition on ant-occupied Vachellia spp. trees. The compounds were effective on multiple colonies and for multiple ant species, thus they are not strictly host- or species-specific. In addition, gas chromatography and mass spectrometry analyses of cuticular compounds revealed a close match between chemical profiles of Mozena sp. and Pseudomyrmex spinicola ants, suggesting chemical mimicry is the primary mechanism by which Mozena sp. exploits the ant- acacia mutualism. To examine the prevalence of a cost of exploitation for plant partners in exploited mutualisms, I conducted a meta-analysis of studies from the published literature. I found that exploitation has a weak, negative, but insignificant impact on the reproductive success of mutualistic plants. Collectively, these analyses illuminated methods by which exploiters may succeed in infiltrating mutualisms and suggested that the relatively low costs of exploitation may account for the lack of destabilization and degradation by exploiters of some mutualistic interactions. iv CHAPTER 1 INTRODUCTION Mutualisms are reciprocally
Recommended publications
  • Finote Gijsman C/O ICIPE, Kasarani, P.O
    Finote Gijsman c/o ICIPE, Kasarani, P.O. Box 30772, Nairobi, Kenya [email protected] | +254 (734) 810-523 EDUCATION Princeton University, Princeton, New Jersey Sep 2020 – Present Doctor of Philosophy (PhD), Department of Ecology and Evolutionary Biology Pringle Lab Northwestern University, Evanston, Illinois Jun 2019 Bachelor of Arts, Double Major in Biology (Plant Concentration) and Environmental Sciences. Cumulative GPA: 3.72/4.0 | Dean’s List: 10/12 quarters Relevant Courses: Community Ecology, Quantitative Methods in Ecology and Conservation, Plant Biology, Spring Flora, Population Genetics, and Applied GIS. Duke University, Tropical Biology on a Changing Planet, Costa Rica Aug 2017 – Dec 2017 • Fieldwork-based study abroad program in Costa Rica run by the Organization for Tropical Studies and Duke University. Cumulative GPA: 4.0/4.0 Relevant Courses: Research Methods in Tropical Biology, Fundamentals in Tropical Biology, Environmental Sciences and Policy in the Tropics. HONORS AND AWARDS Department Honors in Environmental Sciences Jun 2019 Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois Recipient of Undergraduate Research Grants ($13,500) Jun 2016 – May 2019 Northwestern University, Evanston, Illinois Northwestern Scientific Image Contest Winner Sep 2017 Helix Magazine, Science in Society, Northwestern University, Evanston, Illinois Fletcher Best Research Award Finalist Oct 2016 Northwestern University, Evanston, Illinois PUBLICATIONS Gijsman, F., Havens, K., & Vitt, P. (2020). Effect of capitulum position and weevil infestation on seed production of threatened monocarpic perennial, Cirsium pitcheri. Global Ecology and Conservation, 22, e00945, doi: https://doi.org/10.1016/j.gecco.2020.e00945. Gijsman, F. & Guevara, M. (2020). Yellow-headed caracara as cleaner of white-tailed deer in urban park.
    [Show full text]
  • Supplementary Materialsupplementary Material
    10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell.
    [Show full text]
  • Faune De France Hémiptères Coreoidea Euro-Méditerranéens
    1 FÉDÉRATION FRANÇAISE DES SOCIÉTÉS DE SCIENCES NATURELLES 57, rue Cuvier, 75232 Paris Cedex 05 FAUNE DE FRANCE FRANCE ET RÉGIONS LIMITROPHES 81 HÉMIPTÈRES COREOIDEA EUROMÉDITERRANÉENS Addenda et Corrigenda à apporter à l’ouvrage par Pierre MOULET Illustré de 3 planches de figures et d'une photographie couleur 2013 2 Addenda et Corrigenda à apporter à l’ouvrage « Hémiptères Coreoidea euro-méditerranéens » (Faune de France, vol. 81, 1995) Pierre MOULET Museum Requien, 67 rue Joseph Vernet, F – 84000 Avignon [email protected] Leptoglossus occidentalis Heidemann, 1910 (France) Photo J.-C. STREITO 3 Depuis la parution du volume Coreoidea de la série « Faune de France », de nombreuses publications, essentiellement faunistiques, ont paru qui permettent de préciser les données bio-écologiques ou la distribution de nombreuses espèces. Parmi ces publications il convient de signaler la « Checklist » de FARACI & RIZZOTTI-VLACH (1995) pour l’Italie, celle de V. PUTSHKOV & P. PUTSHKOV (1997) pour l’Ukraine, la seconde édition du « Verzeichnis der Wanzen Mitteleuropas » par GÜNTHER & SCHUSTER (2000) et l’impressionnante contribution de DOLLING (2006) dans le « Catalogue of the Heteroptera of the Palaearctic Region ». En outre, certains travaux qui m’avaient échappé ou m’étaient inconnus lors de la préparation de cet ouvrage ont été depuis ré-analysés ou étudiés. Enfin, les remarques qui m’ont été faites directement ou via des notes scientifiques sont ici discutées ; MATOCQ (1996) a fait paraître une longue série de corrections à laquelle on se reportera avec profit. - - - Glandes thoraciques : p. 10 ─ Ligne 10, après « considérés ici » ajouter la note infrapaginale suivante : Toutefois, DAVIDOVA-VILIMOVA, NEJEDLA & SCHAEFER (2000) ont observé une aire d’évaporation chez Corizus hyoscyami, Liorhyssus hyalinus, Brachycarenus tigrinus, Rhopalus maculatus et Rh.
    [Show full text]
  • Phytologia (June 2006) 88(1) the GENUS SENEGALIA
    .. Phytologia (June 2006) 88(1) 38 THE GENUS SENEGALIA (FABACEAE: MIMOSOIDEAE) FROM THE NEW WORLD 1 2 3 David S. Seigler , John E. Ebinger , and Joseph T. Miller 1 Department of Plant Biology, University of Illinois, Urbana, Illinois 61801, U.S.A. E-mail: [email protected] 2 Emeritus Professor of Botany, Eastern Illinois University, Charleston, Illinois 61920, U.S.A. E-mail: [email protected] 3 Joseph T. Miller, Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, 232 BB, University of Iowa, Iowa City, IA 52242, U.S.A. E-mail: [email protected] ABSTRACT Morphological and genetic differences separating the subgenera of Acacia s.l. and molecular evidence that the genus Acacia s.l. is polyphyletic necessitate transfer of the following New World taxa from Acacia subgenus Aculeiferum Vassal to Senegalia, resulting in fifty-one new combinations in the genus Senegalia: Senegalia alemquerensis (Huber) Seigler & Ebinger, Senegalia altiscandens (Ducke) Seigler & Ebinger, Senegalia amazonica (Benth.) Seigler & Ebinger, Senegalia bahiensis (Benth.) Seigler & Ebinger, Senegalia bonariensis (Gillies ex Hook. & Arn.) Seigler & Ebinger, Senegalia catharinensis (Burkart) Seigler & Ebinger, Senegalia emilioana (Fortunato & Cialdella) Seigler & Ebinger, Senegalia etilis (Speg.) Seigler & Ebinger, Senegalia feddeana (Harms) Seigler & Ebinger, Senegalia fiebrigii (Hassl.) Seigler & Ebinger, Senegalia gilliesii (Steud.) Seigler & Ebinger, Senegalia grandistipula (Benth.) Seigler & Ebinger, Senegalia huberi (Ducke) Seigler & Ebinger, Senegalia kallunkiae (Grimes & Barneby) Seigler & Ebinger, Senegalia klugii (Standl. ex J. F. Macbr.) Seigler & Ebinger, Senegalia kuhlmannii (Ducke) Seigler & Ebinger, Senegalia lacerans (Benth.) Seigler & Ebinger, Senegalia langsdorfii (Benth.) Seigler & Ebinger, Senegalia lasophylla (Benth.) Seigler & Ebinger, Senegalia loretensis (J. F. Macbr.) Seigler & Ebinger, Senegalia macbridei (Britton & Rose ex J.
    [Show full text]
  • Composition of Extrafloral Nectar Influences Interactions Between the Myrmecophyte Humboldtia Brunonis and Its Ant Associates
    J Chem Ecol (2012) 38:88–99 DOI 10.1007/s10886-011-0052-z Composition of Extrafloral Nectar Influences Interactions between the Myrmecophyte Humboldtia brunonis and its Ant Associates Megha Shenoy & Venkatesan Radhika & Suma Satish & Renee M. Borges Received: 30 August 2010 /Revised: 23 November 2011 /Accepted: 11 December 2011 /Published online: 11 January 2012 # Springer Science+Business Media, LLC 2012 Abstract Ant–plant interactions often are mediated by higher sucrose concentrations and certain essential/non-essential extrafloral nectar (EFN) composition that may influence plant amino acid mixtures. The mutualistic Technomyrmex visitation by ants. Over a 300 km range in the Indian Western albipes (southern study site) preferred sucrose over glucose Ghats, we investigated the correlation between the EFN com- or fructose solutions and consumed the leaf EFN mimic to a position of the myrmecophytic ant-plant Humboldtia brunonis greater extent than the floral bud EFN mimic. This young leaf (Fabaceae) and the number and species of ants visiting EFN. EFN mimic had low sugar concentrations, the lowest viscosity EFN composition varied among H. brunonis populations and and sugar:amino acid ratio, was rich in essential amino acids, between plant organs (floral bud vs. young leaf EFN). In and appeared ideally suited to the digestive physiology of T. general, EFN was rich in sugars with small quantities albipes. This preference for young leaf EFN may explain the of amino acids, especially essential amino acids, and had greater protection afforded to young leaves than to floral buds moderate invertase activity. In experiments at the study sites by T. albipes, and may also help to resolve ant–pollinator with sugar and amino acid solutions and with leaf or conflicts.
    [Show full text]
  • Predation Success by a Plant-Ant Indirectly
    Predation success by a plant-ant indirectly favours the growth and fitness of its host myrmecophyte Alain Dejean, Jérôme Orivel, Vivien Rossi, Olivier Roux, Jérémie Lauth, Pierre-Jean G. Malé, Régis Céréghino, Céline Leroy To cite this version: Alain Dejean, Jérôme Orivel, Vivien Rossi, Olivier Roux, Jérémie Lauth, et al.. Predation success by a plant-ant indirectly favours the growth and fitness of its host myrmecophyte. PLoS ONE, Public Library of Science, 2013, vol. 8 (3), pp. 1-6. 10.1371/journal.pone.0059405. hal-00913754 HAL Id: hal-00913754 https://hal.archives-ouvertes.fr/hal-00913754 Submitted on 4 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 10202 To link to this article : DOI:10.1371/journal.pone.0059405 URL : http://dx.doi.org/10.1371/journal.pone.0059405 To cite this version : Dejean, Alain and Orivel, Jérôme and Rossi, Vivien and Roux, Olivier and Lauth, Jérémie and Malé, Pierre-Jean G.
    [Show full text]
  • Macaranga-Ant Plants Optimize Investment in Biotic Defence
    Journal of Experimental Botany, Vol. 52, No. 363, Plants under Stress Special Issue, pp. 2057–2065, October 2001 Adaptations to biotic and abiotic stress: Macaranga-ant plants optimize investment in biotic defence K. Eduard Linsenmair1,5, Martin Heil1,4, Werner M. Kaiser2, Brigitte Fiala1, Thomas Koch3 and Wilhelm Boland3 1 Lehrstuhl fu¨ r Tiero¨ kologie und Tropenbiologie (Zoologie III), Theodor-Boveri-Institut, Biozentrum, Am Hubland, D-97074 Wu¨ rzburg, Germany 2 Lehrstuhl fu¨ r Molekulare Pflanzenphysiologie und Biophysik (Botanik I), Julius-von-Sachs-Institut, Julius-von-Sachs-Platz 2, D-97082 Wu¨ rzburg, Germany 3 Max-Planck-Institut fu¨ r chemische O¨ kologie, Carl Zeiss-Promenade 10, D-07745 Jena, Germany Received 12 February 2001; Accepted 21 June 2001 Abstract incurred when counterbalanced by defensive effects of mutualistic insects. Obligate ant plants (myrmecophytes) in the genus Macaranga produce energy- and nutrient-rich food Key words: Ant plant, anti-herbivore defence, mutualism, bodies (FBs) to nourish mutualistic ants which live myrmecophyte, tropics. inside the plants. These defend their host against biotic stress caused by herbivores and pathogens. Facultative, ‘myrmecophilic’ interactions are based on the provision of FBs anduor extrafloral nectar Introduction (EFN) to defending insects that are attracted from the vicinity. FB production by the myrmecophyte, Many tropical plants of different taxonomic groups M. triloba, was limited by soil nutrient content under have evolved mutualisms with ants (Beattie, 1985; field conditions and was regulated according to the Buckley, 1982; Ho¨lldobler and Wilson, 1990; McKey presence or absence of an ant colony. However, and Davidson, 1993). In most cases, ants are used as an increased FB production promoted growth of the indirect (Price et al., 1980), ‘biotic’ defence mechanism.
    [Show full text]
  • Lepidoptera: Noctuidae)
    _____________Mun. Ent. Zool. Vol. 1, No. 1, January 2006___________ 123 OBJECTIVE REPLACEMENT NAMES FOR ERIOCERA GUENÉE, 1852, LOBOCHEILOS HAMPSON, 1891 AND HIMELLA GROTE, 1874 (LEPIDOPTERA: NOCTUIDAE) Hüseyin Özdikmen* and Selma Seven** * Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / TÜRKİYE, e-mail: [email protected] ** Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / TÜRKİYE, e-mail: [email protected] [Özdikmen, H. & Seven, S. 2006. Objective replacement names for Eriocera Guenée, 1852, Lobocheilos Hampson, 1891 and Himella Grote, 1874 (Lepidoptera: Noctuidae). Munis Entomology & Zoology, 1 (1): 123-128] ABSTRACT: Three junior homonyms were detected amongst the Lepidoptera and the following replacement names are proposed: Neoeriocera nom. nov. for Eriocera Guenée, 1852 (Noctuidae: Calpinae), Latiphea nom. nov. for Lobocheilos Hampson, 1891 (Noctuidae: Acontiinae) and Kocakina nom. nov. for Himella Grote, 1874 (Noctuidae: Hadeninae). Accordingly, new combinations are herein proposed for the species currently included in these genera: Neoeriocera mitrula (Guenée, 1852) comb. nov. for Eriocera mitrula Guenée, 1852; Latiphea berresoides (Hampson, 1893) comb. nov. for Lobocheilos berresoides Hampson, 1893; Latiphea plana (Swinhoe, 1890) comb. nov. for Lobocheilos illattioides Hampson, 1891 and Kocakina fidelis (Grote, 1874) comb. nov. for Himella fidelis Grote, 1874. KEY WORDS: Neoeriocera, Latiphea, Kocakina, Lobocheilos, Himella, homonymy, replacement name. The purpose of the present paper is to bring the taxonomy of noctuid moths into accordance with the requirements of the International Code of Zoological Nomenclature (1999). It considers homonymous genus group names of noctuid moths introduced from 1758 to 2004. In an effort to reduce the number of homonyms in Noctuidae (Lepidoptera), we systematically checked all generic names published.
    [Show full text]
  • Hemiptera, Heteroptera, Coreidae
    Hemiptera, Heteroptera, Coreidae Catálogo de las especies hasta ahora encontradas en los alrededores de Puerto Ayacucho, Municipio Atures, Estado Amazonas, Venezuela.Venezuela El período de tiempo de toma de fotos y colección de los ejemplares es desde enero 2012 hasta agosto 2016. Con la colaboración de las Comunidades Indígenas de la Etnia Piaroa Comunidad Babilla de Pintao, Macawana y eje carretero Gavilá n que nos permiten entrar en su zona para hacer nuestras colectas Por: Renato y Roberto Mattei Roberto Mattei: [email protected], Renato Mattei: [email protected] Visita nuestro blog: Hemipteros de la Amazonas Artrópodos de Venezuela y demás Países Neotropicales [854] 1 fieldguides.fieldmuseum.org versión 01/2017 Nuestro Blog: http://hemipterosdelamazonas.blogspot.com/ Pag. 1 Figs 1-5 Acanthocephalini, 1-3 Ejemplares adultos, hembras de Acanthocephala sp. 4 Macho,, Acanthocephala sp. 5 Macho,, Acanthocephala sp. FFigsigs 6-10 Coreini, 6-7 Anasa bellator (Fabricius), 8-10 Anasa near varicornis. Figs 11-14 Anisoscelini, Baldus vinulus Stål. Figs 15-16 Chariesterini, Chariesterus sp. Figs 17-22 Discogastrini, 17 Cnemomis ticinensis (Brayloovsky & Barrera !"#). 18 Cnemomis sp. 19 Cnemomis sp. 20 $infa de Cnemomis sp. Figs 21-22 Cnemomis c%& 'racilis ((allas) Fig 23 Anisoscelini, (iactor bilineatus Fabricius, ")*. Figs 24-25 Anisoscelini, +hthiarella decorata St-l, "#.. Nuestro Blog: http://hemipterosdelamazonas.blogspot.com/ [854] 1 Pag. 2 fieldguides.fieldmuseum.org versión 01/2017 Figs 26-28 Meropachyini sp// Figs 29-38 Meropachyini sp// Figs 39-40 Anisoscelini, 0olhymenia sp Figs 41-44 Anisoscelini, 0olhymenia sp Figs 45-47 Nematopodini, 45 $ematopus indus ♂& 46 $ematopus indus ♀& 47 $ematopus indus, pareja. Figs 48-49 Nematopodini, 48 $ematopus sp♂ 49 $ematopus sp♀ Fig 50 Nematopodini, $ematopus c%& caicarensis ♂ Nuestro Blog: http://hemipterosdelamazonas.blogspot.com/ [854] 1 Pag.
    [Show full text]
  • Diversity of Ant-Plant Interactions: Protective Efficacy in Macaranga Species with Different De,Grees of Ant Association
    Oecologia (1994) 97: 186-192 ("' Springer-Verlag 1994 Brigitte Fiala " Harald Grunsky . Ulrich Maschwitz K. Eduard Linsenmair Diversity of ant-plant interactions: protective efficacy in Macaranga species with different de,grees of ant association Received: 9 June 1993/ Accepted: 20 November 1993 Abstract The pioneer tree Macaranga in SE Asia has dence for any specific relationships. The results of this developed manyfold associations with ants. The genus study strongly support the hypothesis that non-specific, comprises all stages of interaction with ants, from facul­ facultative associations with ants can be advantageous tative relationships to obligate myrmecophytes. Only for Macaranga plants. Food bodies appear to have low­ myrmecophytic Macaranga offer nesting space for ants er attractive value for opportunistic ants than EFN and and are associated with a specific ant partner. The non­ may require a specific dietary adaptation. This is also myrmecophytic species are visited by a variety of differ­ indicated by the fact that food body production in the ent ant species which are attracted by extrafloral nec­ transitional M. hosei does not start before stem struc­ taries (EFN) and food bodies. Transitional Macaranga ture allows a colonization by the obligate Cremato­ species like M. hosei are colonized later in their develop­ gaster species. M. hosei thus benefits from facultative ment due to their stem structure. Before the coloniza­ association with a variety of ants until it produces its tion by their specific Crematogaster partner the young first domatia and can be colonized by its obligate mutu­ plants are visited by different ant species attracted by alist. EFN. These nectaries are reduced and food body pro­ duction starts as soon as colonization becomes possible.
    [Show full text]
  • Mesquite Bugs and Other Insects in the Diet of Pallid Bats in Southeastern Arizona
    A peer-reviewed version of this preprint was published in PeerJ on 4 December 2018. View the peer-reviewed version (peerj.com/articles/6065), which is the preferred citable publication unless you specifically need to cite this preprint. Czaplewski NJ, Menard KL, Peachey WD. 2018. Mesquite bugs, other insects, and a bat in the diet of pallid bats in southeastern Arizona. PeerJ 6:e6065 https://doi.org/10.7717/peerj.6065 Mesquite bugs and other insects in the diet of pallid bats in southeastern Arizona Nicholas J Czaplewski Corresp., 1 , Katrina L Menard 2 , William D Peachey 3 1 Section of Vertebrate Paleontology, Oklahoma Museum of Natural History, Norman, Oklahoma, United States of America 2 Section of Recent Invertebrates, Oklahoma Museum of Natural History, Norman, Oklahoma, United States 3 Sonoran Science Solutions, Tucson, Arizona, United States Corresponding Author: Nicholas J Czaplewski Email address: [email protected] The pallid bat (Antrozous pallidus) is a species of arid and semiarid western North America, inhabiting ecoregions ranging from desert to oak and pine forest. Considered primarily insectivorous predators on large arthropods but taking occasional small vertebrate prey, pallid bats were recently shown to be at least seasonally omnivorous; they demonstrate unusual dietary flexibility and opportunism in certain parts of their geographic range and at different times of year. In a few areas they take nectar from cactus flowers and eat cactus fruit pulp and seeds. Until recently mesquite bugs were primarily tropical- subtropical inhabitants of Mexico and Central America but have since occupied the southwestern United States where mesquite trees occur. Pallid bats regularly use night roosts as temporary shelters in which to process and consume large arthropods caught near their foraging areas.
    [Show full text]
  • Botany Plant Interactions with Insects, Nematodes, Symbionts and Other
    References 1. Bronstein JL, 1994. Our current understanding of mutualism. Quarterly Review of Biology 69: 31–51. 2. Bronstein JL, Alarcón R, Geber M, 2006. The evolution of plant–insect mutualisms. New Phytologist 172: 412–428. 3. Crepet WL, 2008. The fossil record of angiosperms: requiem or renaissance? Annals of the Missouri Botanical Garden 95: 3–33. 4. Darwin CD, 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray. 5. Davidson DW, 1997. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biological Journal of the Linnean Society 61: 153–181. 6. Ehrlich PR, Raven PH, 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586–608. 7. Hu S, Dilcher DL, Jarzen DM, Taylor DW, 2008. Early steps of angiosperm-pollinator coevolution. The Proceedings of the National Academy of Sciences of the United States of America 105: 240–245. 8. Labandeira CC, 1998. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences 26: 329–377. 9. Landry C, 2012. Mighty mutualisms: The nature of plant-pollinator interactions. Nature Education Knowledge 3: 37. 10. Mithofer A, Boland W, 2012. Plant defense against herbivores: Chemical aspects. Annual Reviews of Plant Biology 63: 431–50. 11. Stone GN, van der Ham RWJM, Brewer JG, 2008. Fossil oak galls preserve ancient multitrophic interactions. Proceedings of the Royal Society B 275: 2213–2219. 12. Van der Heijden MGA, Horton TR, 2009. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems.
    [Show full text]