Jaakko Hintikka and Gabriel Sandu a REVOLUTION in LOGIC? Logic Might at First Sight Seem an Unlikely Arena for Revolutions, Even

Total Page:16

File Type:pdf, Size:1020Kb

Jaakko Hintikka and Gabriel Sandu a REVOLUTION in LOGIC? Logic Might at First Sight Seem an Unlikely Arena for Revolutions, Even Jaakko Hintikka and Gabriel Sandu AREVOLUTIONINLOGIC? Logic might at first sight seem an unlikely arena for revolutions, even for revolutions in Jefferson’s sense rather than Lenin’s. Kant maintained that Aristotelian logic had not changed in two thousand years and could never change.1 Even though Kant’s view of Aristo- tle’s logic has been thoroughly discredited (even by Aristotle’s own standards) both systematically and historically,2 most contemporary philosophers and linguists are adopting the same Kantian attitude to Frege’s logic, or strictly speaking rather to that part of Frege’s logic that has come to be known variously as first-order logic, quantification theory, or lower predicate calculus. When a critic once suggested to a prominent philosopher of language that one of the cornerstones of ordinary first-order logic, Frege’s treatment of verbs for being like is, does not capture the true Sprachlogik, he looked at the speaker with an expression of horror—mock horror, we hope—and said, ‘Nothing is sacred in philosophy any longer!’ Yet Frege’s formulation of first-order logic contains a fundamental error. It is manifested already in his formation rules. And this same virus has infected all the subsequent formulations and versions of first- order logic. In order to see what Frege’s mistake is, we have to go back to the basics and ask what first-order logic is all about. The answer is obvious. First-order logic is about quantifiers. It is not for nothing called quantification theory. But what is often overlooked is that quantification theory is not a study of quantifiers in splendid isolation from each other. If you use quantifiers one by one unrelated to each other, the only logic you end up with is monadic first-order 1Immanuel Kant, Kritik der reinen Vernunft B 7–8. 2Cf. Jaakko Hintikka, “Aristotle’s Incontinent Logician”, Ajatus vol. 37 (1978), pp. 48–65, where Hintikka argues that Aristotle’s system of logic was an unhappy compromise between the different guiding ideas he was trying to implement. Nordic Journal of Philosophical Logic, Vol. 1, No. 2, pp. 169–183. c 1996 Scandinavian University Press. 170 jaakko hintikka and gabriel sandu logic or some other mild generalization of Aristotelian syllogistic. The real power of first-order logic lies in the use of dependent quantifiers, as in (1) (∀x)(∃y)S[x, y] where the truth-making choice of a value of y depends on the value of x. Without dependent quantifiers, one cannot even express the func- tional dependence of a variable on another. Quantifier dependence is therefore the veritable secret of the strength of first-order logic. One can almost say that to understand first-order logic is to understand the notion of quantifier dependence. Several of the typical applications of first-order logic in philosophical analysis, such as uncovering quantifier- switch fallacies, exploit directly the idea of quantifier dependence. But to understand quantifier dependence is ipso facto to under- stand the notion of quantifier independence. The latter is simply the same concept as the former in a different dress. Hence it does not mean transcending in the least the conceptual repertoire of ordinary quantifi- cation theory if we introduce into it an explicit independence indicator by means of which the independence of (Q1x) of another quantifier (Q2x) is expressed by writing it (Q1x/Q2x). The same slash notation can be applied to propositional connec- tives. It is intuitively obvious what is meant by such formulas as (2) (∀x)(A(x)(∨/∀x)B(x)) or (3) (∀x)(∃y)(∀z)(S1[x, y, z](∨/∀x)S2[x, y, z]) It turns out that if we limit our attention to formulas in negation normal form (i.e. in a form where all negation-signs precede immediately atomic formulas or identities), it suffices to consider only two kinds of uses of the slash, viz. (∃x/∀y)and(∨/∀y). The result of adding the slash to the conceptual arsenal of the received first-order logic results in what will be called independence- friendly (IF) first-order logic. What is IF first-order logic like? Does it really go beyond from received first-order logic? In simplest cases, the new notation does not yield anything new. For instance, (4) (∀x)(∃y/∀x)S[x, y] is obviously logically equivalent with (5) (∃y)(∀x)S[x, y] a revolution in logic? 171 Likewise (2) is equivalent with (6) (∀x)A(x) ∨ (∀x)B(x) But in more complex cases something remarkable happens. Consider, for instance, the sentence (7) (∀x)(∀z)(∃y/∀z)(∃u/∀x)S[x, y, z, u] which is equivalent to (8) (∀x)(∃y)(∀z)(∃u/∀x)S[x, y, z, u] Can (7) be expressed without the slash notation? If so, there would be a linear ordering of the four initial quantifiers (∀x), (∃y), (∀z), (∃u) that would result in the same logical force as (7). But what kind of ordering might that be? Since (∃y)dependsin(7)on(∀x) but not on (∀z), the relative order of the three would have to be (9) (∀x)(∃y)(∀z) But since (∃u) depends on (∀z) but not on (∀x), their relative order wouldhavetobe(∀z)(∃u)(∀x), which is incompatible with (9). Likewise, it can be shown that (3) cannot be expressed without the slash notation (or equivalent). Here we are beginning to see the whole horror of Frege’s mistake. The notation he introduced (like the later notation of Russell and Whitehead) arbitrarily rules out certain perfectly possible patterns of dependence and independence between quantifiers or between connec- tives and quantifiers. These patterns are the ones represented by ir- reducible slashed quantifier combination (and similar combinations in- volving quantifiers and connectives). Anyone who understands received first-order logic understands sentences which involve such patterns, for instance understands sentences of the form (7) or (8), in the concrete sense of understanding the precise conditions that their truth imposes on reality. Hence they ought to be expressible in the language of our basic logic. And the only way of doing so is to build our true logic of quantification so as to dispense with the artificial restrictions Frege im- posed on the received first-order logic. The real logic of quantification, in other words the real ground floor of the edifice of logic, is not the ordinary first-order logic. It is IF first-order logic. Terminologically speaking, we are doing ourselves an injustice by calling the received first-order logic “ordinary”. The limitations we have been discussing make Fregean logic systematically speaking quite extraordinary, as is 172 jaakko hintikka and gabriel sandu also reflected by the fact that the properties of the received first-order logic do not reflect at all faithfully what one can expect to happen in logic in general.3 In order to reach IF first-order logic, it is not necessary to introduce any new notation like our slash notation. All that is needed is to for- mulate the rules for parentheses (scope) more liberally than Frege and Russell. If you reflect on the matter (and even if you don’t), there is absolutely no reason why the so-called scope of a quantifier, expressed by the associated pair of parentheses, should comprise a continuous segment of a formula adjacent to the quantifier and following it.4 Ex- pressions violating this requirement (and consequently violating the usual formation rules) can have a perfectly understandable semantical interpretation. Indeed, (8) might as well be written as follows: (10) (∀x)[(∃y)(∀z)](∃u)[S[x, y, z, u]] where the two outer pairs of square brackets indicate the (discontin- uous) scope of (∀x). In more complicated cases, alas, the liberated parentheses notation turns out to be unintuitive to the point of being unreadable. Hence for practical reasons we prefer the slash notation. A fragment of IF first-order logic is known to the cognoscendi as the logic of partially ordered (“branching”) quantifiers.5 This logic is nevertheless not entirely representative of the conceptual situation in general. For one thing, propositional connectives can exhibit the same independence phenomena as quantifiers.6 Moreover, even though quantifier dependencies and independencies can always be dealt with in terms of partial ordering, this is not true of other concepts. For there is in general no reason why the dependence of logical notions on each other should be transitive. 3Cf. Jaakko Hintikka, The Principles of Mathematics Revisited. Cambridge Uni- versity Press, Cambridge, 1996. 4Note that the usual scope notation for propositional connectives already violates some of these requirements. 5Branching quantifiers were introduced by Leon Henkin, “Some Remarks on In- finitely Long Formulas”, in Infinitistic Methods, Warsaw, 1959, pp. 167–183. For their theory, see e.g. W. Walkoe, “Finite Partially Ordered Quantification”, in Journal of Symbolic Logic, vol. 35 (1970), pp. 535–550; Herbert Enderton, “Finite Partially-Ordered Quantifiers”, in Zeitschrift f¨ur Mathematische Logik und Grund- lagen der Mathematik, vol. 16 (1970), pp. 393–397; and Jon Barwise, “Some Ap- plications of Henkin Quantifiers”, in Israel Journal of Mathematics, 25, 1976, pp. 47–80. 6See Gabriel Sandu and Jouko V¨a¨an¨anen, “Partially Ordered Connectives”, Zeitschrift f¨ur Mathematische Logik und Grundlagen der Mathematik, vol. 38 (1992), pp. 361–372. a revolution in logic? 173 Furthermore, the treatment of negation in the context of indepen- dent quantifiers requires more attention than it has been paid in the theory of partially ordered quantifiers.7 By excluding the possibility of genuine independence between quan- tifiers (and by implication between other concepts) Frege excluded from the purview of logic a wealth of important subjects. Many logicians are still apt to consider the logic of branching quantifiers and also IF first-order logic as a marginal curiosity.
Recommended publications
  • The Constituents of the Propositions of Logic Kevin C
    10 The Constituents of the Propositions of Logic Kevin C. Klement 1 Introduction Many founders of modern logic—Frege and Russell among them—bemoan- ed the tendency, still found in most textbook treatments, to define the subject matter of logic as “the laws of thought” or “the principles of inference”. Such descriptions fail to capture logic’s objective nature; they make it too dependent on human psychology or linguistic practices. It is one thing to identify what logic is not about. It is another to say what it is about. I tell my students that logic studies relationships between the truth-values of propositions that hold in virtue of their form. But even this characterization leaves me uneasy. I don’t really know what a “form” is, and even worse perhaps, I don’t really know what these “propositions” are that have these forms. If propositions are considered merely as sentences or linguistic assertions, the definition does not seem like much of an improvement over the psychological definitions. Language is a human invention, but logic is more than that, or so it seems. It is perhaps forgiveable then that at certain times Russell would not have been prepared to give a very good answer to the question “What is Logic?”, such as when he attempted, but failed, to compose a paper with that title in October 1912. Given that Russell had recently completed Principia Mathematica, a work alleging to establish the reducibility of mathematics to logic, one might think this overly generous. What does the claim that mathematics reduces to logic come to if we cannot independently speci- Published in Acquaintance, Knowledge and Logic: New Essays on Bertrand Russell’s Problems of Philosophy, edited by Donovan Wishon and Bernard Linsky.
    [Show full text]
  • The Philosophical Importance of Mathematical Logic Bertrand Russell in SPEAKING of "Mathematical Logic", I Use This Word in a Very Broad Sense
    The Philosophical Importance of Mathematical Logic Bertrand Russell IN SPEAKING OF "Mathematical logic", I use this word in a very broad sense. By it I understand the works of Cantor on transfinite numbers as well as the logical work of Frege and Peano. Weierstrass and his successors have "arithmetised" mathematics; that is to say, they have reduced the whole of analysis to the study of integer numbers. The accomplishment of this reduction indicated the completion of a very important stage, at the end of which the spirit of dissection might well be allowed a short rest. However, the theory of integer numbers cannot be constituted in an autonomous manner, especially when we take into account the likeness in properties of the finite and infinite numbers. It was, then, necessary to go farther and reduce arithmetic, and above all the definition of numbers, to logic. By the name "mathematical logic", then, I will denote any logical theory whose object is the analysis and deduction of arithmetic and geometry by means of concepts which belong evidently to logic. It is this modern tendency that I intend to discuss here. In an examination of the work done by mathematical logic, we may consider either the mathematical results, the method of mathematical reasoning as revealed by modern work, or the intrinsic nature of mathematical propositions according to the analysis which mathematical logic makes of them. It is impossible to distinguish exactly these three aspects of the subject, but there is enough of a distinction to serve the purpose of a framework for discussion. It might be thought that the inverse order would be the best; that we ought first to consider what a mathematical proposition is, then the method by which such propositions are demonstrated, and finally the results to which this method leads us.
    [Show full text]
  • Mathematics, Reason & Religion
    05_JavierLEACH.qxd:Maqueta.qxd 26/6/08 11:54 Página 639 MATHEMATICS, REASON & RELIGION JAVIER LEACH Universidad Complutense de Madrid ABSTRACT: This paper will study the relationship between mathematics and religion from the perspective of reason and the role played by reason in human knowledge. Firstly, I will study the relationship between reason, logic and mathematics. From this starting point, I will study the relationship between reason and natural science and finally, I will draw some conclusions on the relationship between reason, philosophy and theology. The relationship between mathematics, reason and religion will be studied within the context of the global unity of human knowledge. This paper intends to explain how the ‘pure deductive reason’ is present in all human thinking. Mathematics and natural science share this universal presence with metaphysics and religion. Pure deductive reasoning is somehow an absolute value that transcends all aspects and levels of human knowledge, including metaphysical and religious knowledge. Metaphysical and theological arguments need to be able to span different cultural communities. Pure deductive reasoning is a kind of reasoning that can fully span communities and it forms a basis for inter- disciplinary, inter-cultural and inter-religious communication. KEY WORDS: mathematics, reason, pure deductive reason, logic, natural science, metaphysics, religión, revelation. Matemática, Razón y Religión RESUMEN: En este artículo voy a estudiar la interrelación entre matemática y religión desde el punto de vista de la razón y del papel de ésta en el conocimiento humano. En primer lugar estudiaré la rela- ción entre la razón, la lógica y la matemática. Partiendo de ahí estudiaré la relación entre la razón y las ciencias de la naturaleza y por último sacaré conclusiones acerca de la relación entre la razón, la filo- sofía y la teología.
    [Show full text]
  • Otto Hölder's Interpretation of David Hilbert's Axiomatic Method*
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 17-1 | 2013 The Epistemological Thought of Otto Hölder Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method Mircea Radu Electronic version URL: http://journals.openedition.org/philosophiascientiae/831 DOI: 10.4000/philosophiascientiae.831 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 1 March 2013 Number of pages: 117-129 ISBN: 978-2-84174-620-0 ISSN: 1281-2463 Electronic reference Mircea Radu, « Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method », Philosophia Scientiæ [Online], 17-1 | 2013, Online since 01 March 2016, connection on 03 November 2020. URL : http:// journals.openedition.org/philosophiascientiae/831 ; DOI : https://doi.org/10.4000/ philosophiascientiae.831 Tous droits réservés Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method ∗ Mircea Radu Universität Bielefeld (Germany) Résumé : L’article présente une reconstruction brève de la conception de preuve développée par Otto Hölder. La reconstruction se concentre sur la critique de la conception axiomatique de David Hilbert en général et sur sa conception des métamathématiques en particulier. On affirme que l’analyse faite par Hölder des idées méthodologiques générales de Hilbert et surtout de la structure logique des preuves fournie par Hilbert dans les Grundlagen der Geometrie (1899) est très utile pour comprendre plus clairement la thèse de van der Waerden affirmant le lien entre la conception de la preuve développée par Hölder et la tradition établie par Kurt Gödel. Abstract: In this paper I provide a brief reconstruction of Otto Hölder’s conception of proof. My reconstruction focuses on Hölder’s critical assess- ment of David Hilbert’s account of axiomatics in general, and of Hilbert’s conception of metamathematics in particular.
    [Show full text]
  • Abductive Inference, 98 Abstractness, Platonic Vs. Nonplatonic
    Index Abductive inference, 98 Availability theory, 140 Abstractness, platonic vs. nonplatonic, Avenarius, R., 4 192 Acknowledging the predicament, 55, Basic Laws of Arithmetic (Frege), 32 69–71 Begriffsschrift (Frege), xii, 32, 120, 207, AI 229 strong, 102–106, 108 Belnap, N., 252n18 weak, 103, 105, 108 Benacerraf, P., xxi, 2, 22–25, 71, Analytic inferences, 225 155–156, 182–191, 193, 199–200 Analyticity, 36–37 Benacerraf dilemma Analytic necessity, 197 extended, 184 Analytic philosophy, xx, 1, 3 original, 182–184 Alice, 158–159, 185 Block, N., 93 Antinaturalism, 14–21 Bolzano, B., 5 Antiperceptualism, 186, 189, 191–200 Bonjour, L., 188 Antipsychologism, 14–21 Boole, G., xi–xiii, 25, 31–32, 115–116, Antirealism, 185, 188–189 131, 204–205, 216 Anti-supernaturalism, 9 Braine, M., 130 Aphasias, 86, 106–107 Brentano, F., 1, 4 A priori–a posteriori, xii, 272n20, Broca’s area, 106 273n24 Byrne, R., 135 Apriority of protologic, 29, 44–45, 109, 201 Carnap, R., 36–37, 54, 59–61, 65, 186, Aristotle, xi, xiii–xv, 31–32, 124 210–211, 226–227 Arnaud, P., xii, 204–205 Carroll, L. (Charles Dodgson), 54–59, Artificial intelligence. See AI 61–62, 65, 69, 78, 158, 223 Art of Thinking (Arnaud and Nicole), Carruthers, P., 111 xii Categorical normativity. See Aspects of the Theory of Syntax Normativity, categorical (Chomsky), 86 Causation, 23, 189–190, 242n62 Autism, 112 Central processes, 89, 100–102, 109 310 Index Chalmers, D., 12, 98, 277–278n78 Darwinian evolution, 97, 142–143 Cheng, P., 141 Davidson, D., 110, 173 Cherniak, C., 146, 270n88 Dedekind, R., 36 Chinese brain argument, 106–107 Dedicated cognitive capacity, 88, 101 Chinese nation argument, 93 Deduction, intuitive vs.
    [Show full text]
  • To Prove Or Disprove: the Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples
    To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples A dissertation presented to the faculty of The Patton College of Education of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Kelly M. Bubp December 2014 © 2014 Kelly M. Bubp. All Rights Reserved. 2 This dissertation titled To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples by KELLY M. BUBP has been approved for the Department of Teacher Education and The Patton College of Education by Robert M. Klein Associate Professor of Mathematics Renée A. Middleton Dean, The Patton College of Education 3 Abstract BUBP, KELLY M., Ph.D., December 2014, Mathematics Education To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples Director of Dissertation: Robert M. Klein Deciding on the truth value of mathematical statements is an essential aspect of mathematical practice in which students are rarely engaged. This study explored undergraduate students’ approaches to mathematical statements with unknown truth values. The research questions were 1. In what ways and to what extent do students use intuition and analysis to decide on the truth value of mathematical statements? 2. What are the connections between students’ process of deciding on the truth value of mathematical statements and their ability to construct associated proofs and counterexamples? 3.
    [Show full text]
  • Frege's Critical Arguments for Axioms
    Frege’s Critical Arguments for Axioms Abstract There is a traditional and substantive philosophical question about how we can be justied in accepting logical axioms and other basic truths. We can discover an interesting answer by considering an outstanding interpre- tive puzzle about Frege’s approach to logical axioms. The puzzle is: having claimed that logical axioms are “self-evident,” to be recognized as true “in- dependently of other truths,” why does he then oer arguments for those axioms? The answer, I argue, is that he thinks the arguments give us justi- cation for accepting the axioms, and that this does not in fact conict with anything he says about axioms. This resolution of the puzzle makes good sense in the light of historical and philosophical considerations when we read Frege’s procedure in the light of the “critical method”: an approach to the justication of axioms endorsed by leading philosophers at the time. 1 The Puzzle about Frege’s Arguments There is something puzzling about Frege’s introduction of his “Basic Laws” or “axioms” of logic. On the one hand, he thinks that “it is part of the concept of an axiom that it can be recognized as true independently of other truths,”1 and he oers a regress argument to show that there must be truths with that feature: The grounds which justify the recognition of a truth often reside in other truths which have already been recognized. But if there are any truths recognized by us at all, this cannot be the only form that justication takes.
    [Show full text]
  • A Classical Defense Against Mathematical Empiricism
    The Crucial Role of Proof: A Classical Defense Against Mathematical Empiricism by Catherine Allen Womack Submitted to the Department of Linguistics and Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1993 @ Massachust•Os Institute of Technology 1993. All rights reserved. Author ... ................................... ............ ......... Department of Linguistics and Philosophy March 10, 1993 Certified by .............. .......................................... James Higginbotham Professor Thesis Supervisor Read by ...... .... , .... ....... ....................................... George Boolos Professor Thesis Reader Accepted by ..-. ,. ... ..................................... - . George Boolos Chairman, Departmental Committee on Graduate Students ARCHIVES MACSACHUSETTS INSTITUTE OF TECHNOLOGY rJUN 03 1993 The Crucial Role of Proof: A Classical Defense Against Mathematical Empiricism by Catherine Allen Womack Submitted to the Department of Linguistics and Philosophy on March 10, 1993, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Mathematical knowledge seems to enjoy special status not accorded to scientific knowledge: it is considered a priori and necessary. We attribute this status to math- ematics largely' because of the way we come to know it-through following proofs. Mathematics has come under attack from sceptics who reject the idea that mathe- matical knowledge is a priori. Many sceptics consider it to be a posteriori knowledge, subject to possible empirical refutation. In a series of three papers I defend the a priori status of mathematical knowledge by showing that rigorous methods of proof are sufficient to convey a priori knowledge of the theorem proved. My first paper addresses Philip Kitcher's argument in his book The Natuire of Mathematical Knowledge that mathematics is empirical. Kitcher develops a view of a priori knowledge according to which mathematics is not a priori.
    [Show full text]
  • Frege on Knowing the Foundation Author(S): Tyler Burge Source: Mind, Vol
    Mind Association Frege on Knowing the Foundation Author(s): Tyler Burge Source: Mind, Vol. 107, No. 426 (Apr., 1998), pp. 305-347 Published by: Oxford University Press on behalf of the Mind Association Stable URL: http://www.jstor.org/stable/2659879 Accessed: 11-04-2017 02:10 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Mind Association, Oxford University Press are collaborating with JSTOR to digitize, preserve and extend access to Mind This content downloaded from 128.97.244.236 on Tue, 11 Apr 2017 02:10:28 UTC All use subject to http://about.jstor.org/terms Frege on Knowing the Foundation TYLER BURGE The paper scrutinizes Frege's Euclideanism-his view of arithmetic and ge- ometry as resting on a small number of self-evident axioms from which non- self-evident theorems can be proved. Frege's notions of self-evidence and axiom are discussed in some detail. Elements in Frege's position that are in apparent tension with his Euclideanism are considered-his introduction of axioms in The Basic Laws of Arithmetic through argument, his fallibilism about mathematical understanding, and his view that understanding is closely associated with inferential abilities.
    [Show full text]
  • Four Challenges to the a Priori—A Posteriori Distinction
    Four challenges to the a priori—a posteriori distinction Albert Casullo Synthese An International Journal for Epistemology, Methodology and Philosophy of Science ISSN 0039-7857 Volume 192 Number 9 Synthese (2015) 192:2701-2724 DOI 10.1007/s11229-013-0341-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Synthese (2015) 192:2701–2724 DOI 10.1007/s11229-013-0341-x Four challenges to the a priori—a posteriori distinction Albert Casullo Received: 14 April 2013 / Accepted: 19 August 2013 / Published online: 14 September 2013 © Springer Science+Business Media Dordrecht 2013 Abstract During the past decade a new twist in the debate regarding the a priori has unfolded. A number of prominent epistemologists have challenged the coherence or importance of the a priori—a posteriori distinction or, alternatively, of the concept of a priori knowledge. My focus in this paper is on these new challenges to the a priori.
    [Show full text]
  • Uncontrolled Logic: Intuitive Sensitivity to Logical Structure in Random Responding
    Thinking & Reasoning ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ptar20 Uncontrolled logic: intuitive sensitivity to logical structure in random responding Stephanie Howarth, Simon Handley & Vince Polito To cite this article: Stephanie Howarth, Simon Handley & Vince Polito (2021): Uncontrolled logic: intuitivesensitivitytologicalstructureinrandomresponding, Thinking & Reasoning, DOI: 10.1080/13546783.2021.1934119 To link to this article: https://doi.org/10.1080/13546783.2021.1934119 Published online: 22 Jun 2021. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ptar20 THINKING & REASONING https://doi.org/10.1080/13546783.2021.1934119 Uncontrolled logic: intuitive sensitivity to logical structure in random responding Stephanie Howarth , Simon Handley and Vince Polito Department of Cognitive Science, Macquarie University, Sydney, Australia ABSTRACT It is well established that beliefs provide powerful cues that influence reason- ing. Over the last decade research has revealed that judgments based upon logical structure may also pre-empt deliberative reasoning. Evidence for ‘intuitive logic’ has been claimed using a range of measures (i.e. confidence ratings or latency of response on conflict problems). However, it is unclear how well such measures genuinely reflect logical intuition. In this paper we introduce a new method designed to test for evidence of intuitive logic. In two experiments participants were asked to make random judgments about the logical validity of a series of simple and complex syllogistic arguments. For simple arguments there was an effect of logical validity on random respond- ing, which was absent for complex arguments.
    [Show full text]
  • Ergostuctures, Ergologic and the Universal Learning Problem: Chapters 1, 2
    Ergostuctures, Ergologic and the Universal Learning Problem: Chapters 1, 2. Misha Gromov March 14, 2013 Contents 1 Structures and Metaphors. 1 1.1 Universality, Freedom and Curiosity . .2 1.2 Ego and Ergo. .4 1.3 Ergo-Ideas and Common Sense. .5 1.4 Ergo Perspective on Chess . .7 1.5 Learning, Communicating, Understanding. 11 2 Mathematics and its Limits. 13 2.1 Logic and Rigor. 14 2.2 Computations, Equations, Iterations, Simulations. 18 2.3 Numbers and Symmetries. 28 2.4 Languages, Probabilities and the Problems with Definitions. 30 3 Libraries, Dictionaries and language Understanding 36 4 Bibliography. 36 1 Structures and Metaphors. Every sentence I utter must be understood not as an affirmation, but as a question. Niels Bohr.1 Our ultimate aim is to develop mathematical means for describing/designing learning systems L that would be similar in their essential properties to the minds of humans and certain animals. Learning and Structures. We want to understand the process(es) of learning, e.g. of mother tongue or of a mathematical theory, in the context of what we call ergostructures. Such structures, as we see them, are present in the depth of the human (some animal?) minds, in natural languages, in logical/combinatorial organizations of branches of mathematics and, in a less 1I could not find on the web when and where Bohr said/wrote it. Maybe he never did. But here and everywhere, a quote is not an appeal to an authority but an acknowledgment of something having been already said. 1 mature form, in biological systems – from regulatory networks of living cells up to, possibly, ecological networks.2 Learning from this perspective is a dynamical process of building the internal ergostructure of an L from the raw structures in the incoming flows S of signals, where S may or may not itself contain an ergostructure or its ingredients.
    [Show full text]