Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly firom the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI University Microfilms International A Bell & Howell Information Company 300 Nortti Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9237229 A case of philosophical amnesia: Russell, Wittgenstein and a forgotten manuscript Shosky, John Edwin, Ph.D. The American University, 1992 Copyright ©1993 by Shosky, John Edwin. All rights reserved. UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 A CASE OF PHILOSOPHICAL AMNESIA: RUSSELL, WITTGENSTEIN AND A FORGOTTEN MANUSCRIPT By John Edwin Shosky Submitted to the Faculty of the College of Arts and Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Philosophy Signatures of Committee Chair jab=4_ Dêan .o|E t h e College Date 1991 The American University Washington, D.C. 20016 rra iiBEEiciK oiiTBfism im m DEDICATION This dissertation is dedicated to the memory of A.J. Ayer. XI A CASE OF PHILOSOPHICAL AMNESIA: RUSSELL, WITTGENSTEIN AND A FORGOTTEN MANUSCRIPT BY John Shosky ABSTRACT This dissertation analyzes Bertrand Russell's Theory of Knowledge, published in 1984 by George Allen and Unwin, Volume 7 in The Collected Papers of Bertrand Russell. This manuscript by Russell is a major work by one of the most important figures in the history of philosophy, offering arguments on several topics that are crucial contributions to outstanding issues in epistemology and logic. It fills in several curious and large gaps in our understanding of the development of Russell's philosophical progress from 1912 through 1918. In addition, it provides an indispensable context for understanding the development of Ludwig Wittgenstein's Tractatus Logico-Philosophicus. The dissertation explores several related topics, including the development and later publication of Theory of Knowledge, the content of the book, the place of Russell's manuscript in the development of his thought, the influence of Theory iii of Knowledge on Wittgenstein's Tractatus. the joint collaboration in 1913 between Russell and Wittgenstein, and the significance of the 1913 manuscript in the history of philosophy. IV ACKNOWLEDGEMENTS I would like to thank the members of my committee for bountiful assistance, encouragement and patience. The chairman, David Rodier, has been a mentor and friend. I can truthfully say that without his help and support I would not have received my Master of Arts degree nor would I have made it to this point in my Ph.D. work. Peter Simpson, Harold Durfee and Charles White have been extremely considerate and inspiring to me. I must include a special note of thanks to Antony Flew for agreeing to serve on my committee. I have long admired his work and learned much from him. It is a great honor and privilege to have him evaluate my scholarship. I must also thank Michelle Ward, Paul Summers, Birgit Summers, Elizabeth Stolpe, Bob Barnard, Cliff Henke, Brian Brooks and Michael Anderson for their constant concern, friendship and support. V TABLE OF CONTENTS Page Preface .............................................. 1 Chapter One: "An Event of First-Rate Importance"..... 8 Chapter Two: "The Simplest and Most Pervading Aspect of Experience".................. 24 Chapter Three; Resurrecting Russell .................. 44 Chapter Four: The Missing Reference..... .... ....... 76 Chapter Five: Russell's Tractatus? ................. 100 Chapter Six: Rewriting History ................... 110 Appendix: A Discussion of G o d e l ................ 114 Bibliography........................................ 127 VI PREFACE Bertrand Russell was born in 1872, at the height of the Victorian period. In 1967, after 95 years of life and some 70 years of professional work that produced some of the most important discoveries in the history of philosophy, including the theory of descriptions and the theory of types, as well as the Principia Mathematics and a Nobel prize for literature, Russell's career was close to completion. So, pressed for funds to support his International War Crimes Tribunal, Russell offered his personal papers and letters for sale. While cataloguing these papers for public auction, Kenneth Blackwell found a 208 page manuscript, numbered pages 143 to 350, dated 1913, and clearly written in Russell's hand. Russell's autobiography did not mention this document,^ nor did Alan Wood's biography of Russell,^ In fact, Russell's essay, "My Mental Development," in The Philosophy of Bertrand Russell. (1944) Volume 5 in the Librarv of Living Philosophers Series, jumps from the publication of the Principle Mathematica in 1910 to the beginning of World War I in 1914, virtually leaving out his association with Wittgenstein and never mentioning an unpublished manuscript. In addition, the first volume of the Autobioaraphv of Bertrand Russell 1872-1914 (1967) gives 2 nor was there a reference to it in any of Russell's published materials, significantly absent from his own encompassing summary in 1959 entitled Mv Philosophical Development.^ Blackwell persuaded the literary agent in charge of the archives, Mr. Anton Felton, to write to Russell about the book. Russell did not answer the letter. Later in 1967, Blackwell asked Russell himself about the manuscript, which appeared to discuss topics in the theory of knowledge. Russell said that he could remember nothing about it, that a completely misleading picture. While not mentioning the manuscript, Russell argues that after the new year began in 1914, "I arranged for a shorthand typist to come next day, though I had not the vaguest idea what I should say to her when she came. As she entered the room, my ideas fell into place, and I dictated in a completely orderly sequence from that moment until the work was finished. What I dictated to her was subsequently published as a book with the titled Our Knowledge of the External World as a Field for Scientific Method in Philosophv. " (p. 210) Below an argument will be presented to place the date of the writing of the these lectures closer to the last months of 1913. However, Russell's passage indicates that he had not been working on epistemology, while in fact he had prepared the first two sections of a massive book, which biographer Ronald W. Clark (1975) called "(Russell's) first full-scale effort since Principia Mathematica." The Life of Bertrand Russell, p. 206. Bertrand Russell: The Passionate Skeptic. (1958) Until the publication of Ronald Clark's book in 1975, this was the definitive biography on Russell, and it is still a good source of sympathetic information. Mv Philosophical Development. (1959) Although, in all fairness, he does claim in "My Own Philosophy," (1946) that "my professional attention has been devoted to [the foundations of empirical knowledge] ever since the publication of Principia Mathematica" (p. 10). 3 "it would take some time to think about a period so long past.The matter was not raised again and the manuscript was noted in the catalogue of the archives.^ This paper is about an excavation of vital importance to philosophy. Russell's Theorv of Knowledge, published in 1984 by George Allen and Unwin, in collaboration with the Bertrand Russell archives, is Volume 7 in The Collected Papers of Bertrand Russell.* This manuscript is significant for several reasons. First, it is a major work by one of the most important figures in the history of Kenneth Blackwell and Elizabeth Ramsden Eames, "Russell's Unpublished Book on Theory of Knowledge," Russell, Autumn, 1975, p. 4. This omission is nothing short of fantastic. Russell begins his chapter in Mv Philosophical Development on "Theory of Knowledge" by dating his interest in epistemology as arising after World War I — an interest that represented "a more or less permanent change in my philosophical interests." (p. 95). He dates his first major work in this field as The Analvsis on Mind in 1921, significantly ignoring the lasting impact of his "shilling shocker". The Problems of Philosophv. in 1912 and his Lowell Lectures delivered while at Harvard in 1914 and later published that same year as Our Knowledge of the External World. Also, it is worth nothing that he used virtually nothing from his unpublished Theorv of Knowledge manuscript in the Lowell Lectures, even though the lectures were written and delivered no more than 10 months after Russell started writing the work under examination in this paper. Bertrand Russell, Theorv of Knowledge, The 1913 Manuscript, The Collected Papers of Bertrand Russell, Volume 7, edited by Elizabeth Ramsden Eames in collaboration with Kenneth Blackwell. Introduction by Elizabeth Ramsden Eames. London: George Allen and Unwin, 1984. This volume will be referred to by the date of composition, 1913, rather than by the date of publication.
Recommended publications
  • The Constituents of the Propositions of Logic Kevin C
    10 The Constituents of the Propositions of Logic Kevin C. Klement 1 Introduction Many founders of modern logic—Frege and Russell among them—bemoan- ed the tendency, still found in most textbook treatments, to define the subject matter of logic as “the laws of thought” or “the principles of inference”. Such descriptions fail to capture logic’s objective nature; they make it too dependent on human psychology or linguistic practices. It is one thing to identify what logic is not about. It is another to say what it is about. I tell my students that logic studies relationships between the truth-values of propositions that hold in virtue of their form. But even this characterization leaves me uneasy. I don’t really know what a “form” is, and even worse perhaps, I don’t really know what these “propositions” are that have these forms. If propositions are considered merely as sentences or linguistic assertions, the definition does not seem like much of an improvement over the psychological definitions. Language is a human invention, but logic is more than that, or so it seems. It is perhaps forgiveable then that at certain times Russell would not have been prepared to give a very good answer to the question “What is Logic?”, such as when he attempted, but failed, to compose a paper with that title in October 1912. Given that Russell had recently completed Principia Mathematica, a work alleging to establish the reducibility of mathematics to logic, one might think this overly generous. What does the claim that mathematics reduces to logic come to if we cannot independently speci- Published in Acquaintance, Knowledge and Logic: New Essays on Bertrand Russell’s Problems of Philosophy, edited by Donovan Wishon and Bernard Linsky.
    [Show full text]
  • The Philosophical Importance of Mathematical Logic Bertrand Russell in SPEAKING of "Mathematical Logic", I Use This Word in a Very Broad Sense
    The Philosophical Importance of Mathematical Logic Bertrand Russell IN SPEAKING OF "Mathematical logic", I use this word in a very broad sense. By it I understand the works of Cantor on transfinite numbers as well as the logical work of Frege and Peano. Weierstrass and his successors have "arithmetised" mathematics; that is to say, they have reduced the whole of analysis to the study of integer numbers. The accomplishment of this reduction indicated the completion of a very important stage, at the end of which the spirit of dissection might well be allowed a short rest. However, the theory of integer numbers cannot be constituted in an autonomous manner, especially when we take into account the likeness in properties of the finite and infinite numbers. It was, then, necessary to go farther and reduce arithmetic, and above all the definition of numbers, to logic. By the name "mathematical logic", then, I will denote any logical theory whose object is the analysis and deduction of arithmetic and geometry by means of concepts which belong evidently to logic. It is this modern tendency that I intend to discuss here. In an examination of the work done by mathematical logic, we may consider either the mathematical results, the method of mathematical reasoning as revealed by modern work, or the intrinsic nature of mathematical propositions according to the analysis which mathematical logic makes of them. It is impossible to distinguish exactly these three aspects of the subject, but there is enough of a distinction to serve the purpose of a framework for discussion. It might be thought that the inverse order would be the best; that we ought first to consider what a mathematical proposition is, then the method by which such propositions are demonstrated, and finally the results to which this method leads us.
    [Show full text]
  • Mathematics, Reason & Religion
    05_JavierLEACH.qxd:Maqueta.qxd 26/6/08 11:54 Página 639 MATHEMATICS, REASON & RELIGION JAVIER LEACH Universidad Complutense de Madrid ABSTRACT: This paper will study the relationship between mathematics and religion from the perspective of reason and the role played by reason in human knowledge. Firstly, I will study the relationship between reason, logic and mathematics. From this starting point, I will study the relationship between reason and natural science and finally, I will draw some conclusions on the relationship between reason, philosophy and theology. The relationship between mathematics, reason and religion will be studied within the context of the global unity of human knowledge. This paper intends to explain how the ‘pure deductive reason’ is present in all human thinking. Mathematics and natural science share this universal presence with metaphysics and religion. Pure deductive reasoning is somehow an absolute value that transcends all aspects and levels of human knowledge, including metaphysical and religious knowledge. Metaphysical and theological arguments need to be able to span different cultural communities. Pure deductive reasoning is a kind of reasoning that can fully span communities and it forms a basis for inter- disciplinary, inter-cultural and inter-religious communication. KEY WORDS: mathematics, reason, pure deductive reason, logic, natural science, metaphysics, religión, revelation. Matemática, Razón y Religión RESUMEN: En este artículo voy a estudiar la interrelación entre matemática y religión desde el punto de vista de la razón y del papel de ésta en el conocimiento humano. En primer lugar estudiaré la rela- ción entre la razón, la lógica y la matemática. Partiendo de ahí estudiaré la relación entre la razón y las ciencias de la naturaleza y por último sacaré conclusiones acerca de la relación entre la razón, la filo- sofía y la teología.
    [Show full text]
  • Otto Hölder's Interpretation of David Hilbert's Axiomatic Method*
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 17-1 | 2013 The Epistemological Thought of Otto Hölder Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method Mircea Radu Electronic version URL: http://journals.openedition.org/philosophiascientiae/831 DOI: 10.4000/philosophiascientiae.831 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 1 March 2013 Number of pages: 117-129 ISBN: 978-2-84174-620-0 ISSN: 1281-2463 Electronic reference Mircea Radu, « Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method », Philosophia Scientiæ [Online], 17-1 | 2013, Online since 01 March 2016, connection on 03 November 2020. URL : http:// journals.openedition.org/philosophiascientiae/831 ; DOI : https://doi.org/10.4000/ philosophiascientiae.831 Tous droits réservés Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method ∗ Mircea Radu Universität Bielefeld (Germany) Résumé : L’article présente une reconstruction brève de la conception de preuve développée par Otto Hölder. La reconstruction se concentre sur la critique de la conception axiomatique de David Hilbert en général et sur sa conception des métamathématiques en particulier. On affirme que l’analyse faite par Hölder des idées méthodologiques générales de Hilbert et surtout de la structure logique des preuves fournie par Hilbert dans les Grundlagen der Geometrie (1899) est très utile pour comprendre plus clairement la thèse de van der Waerden affirmant le lien entre la conception de la preuve développée par Hölder et la tradition établie par Kurt Gödel. Abstract: In this paper I provide a brief reconstruction of Otto Hölder’s conception of proof. My reconstruction focuses on Hölder’s critical assess- ment of David Hilbert’s account of axiomatics in general, and of Hilbert’s conception of metamathematics in particular.
    [Show full text]
  • Abductive Inference, 98 Abstractness, Platonic Vs. Nonplatonic
    Index Abductive inference, 98 Availability theory, 140 Abstractness, platonic vs. nonplatonic, Avenarius, R., 4 192 Acknowledging the predicament, 55, Basic Laws of Arithmetic (Frege), 32 69–71 Begriffsschrift (Frege), xii, 32, 120, 207, AI 229 strong, 102–106, 108 Belnap, N., 252n18 weak, 103, 105, 108 Benacerraf, P., xxi, 2, 22–25, 71, Analytic inferences, 225 155–156, 182–191, 193, 199–200 Analyticity, 36–37 Benacerraf dilemma Analytic necessity, 197 extended, 184 Analytic philosophy, xx, 1, 3 original, 182–184 Alice, 158–159, 185 Block, N., 93 Antinaturalism, 14–21 Bolzano, B., 5 Antiperceptualism, 186, 189, 191–200 Bonjour, L., 188 Antipsychologism, 14–21 Boole, G., xi–xiii, 25, 31–32, 115–116, Antirealism, 185, 188–189 131, 204–205, 216 Anti-supernaturalism, 9 Braine, M., 130 Aphasias, 86, 106–107 Brentano, F., 1, 4 A priori–a posteriori, xii, 272n20, Broca’s area, 106 273n24 Byrne, R., 135 Apriority of protologic, 29, 44–45, 109, 201 Carnap, R., 36–37, 54, 59–61, 65, 186, Aristotle, xi, xiii–xv, 31–32, 124 210–211, 226–227 Arnaud, P., xii, 204–205 Carroll, L. (Charles Dodgson), 54–59, Artificial intelligence. See AI 61–62, 65, 69, 78, 158, 223 Art of Thinking (Arnaud and Nicole), Carruthers, P., 111 xii Categorical normativity. See Aspects of the Theory of Syntax Normativity, categorical (Chomsky), 86 Causation, 23, 189–190, 242n62 Autism, 112 Central processes, 89, 100–102, 109 310 Index Chalmers, D., 12, 98, 277–278n78 Darwinian evolution, 97, 142–143 Cheng, P., 141 Davidson, D., 110, 173 Cherniak, C., 146, 270n88 Dedekind, R., 36 Chinese brain argument, 106–107 Dedicated cognitive capacity, 88, 101 Chinese nation argument, 93 Deduction, intuitive vs.
    [Show full text]
  • To Prove Or Disprove: the Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples
    To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples A dissertation presented to the faculty of The Patton College of Education of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Kelly M. Bubp December 2014 © 2014 Kelly M. Bubp. All Rights Reserved. 2 This dissertation titled To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples by KELLY M. BUBP has been approved for the Department of Teacher Education and The Patton College of Education by Robert M. Klein Associate Professor of Mathematics Renée A. Middleton Dean, The Patton College of Education 3 Abstract BUBP, KELLY M., Ph.D., December 2014, Mathematics Education To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples Director of Dissertation: Robert M. Klein Deciding on the truth value of mathematical statements is an essential aspect of mathematical practice in which students are rarely engaged. This study explored undergraduate students’ approaches to mathematical statements with unknown truth values. The research questions were 1. In what ways and to what extent do students use intuition and analysis to decide on the truth value of mathematical statements? 2. What are the connections between students’ process of deciding on the truth value of mathematical statements and their ability to construct associated proofs and counterexamples? 3.
    [Show full text]
  • Frege's Critical Arguments for Axioms
    Frege’s Critical Arguments for Axioms Abstract There is a traditional and substantive philosophical question about how we can be justied in accepting logical axioms and other basic truths. We can discover an interesting answer by considering an outstanding interpre- tive puzzle about Frege’s approach to logical axioms. The puzzle is: having claimed that logical axioms are “self-evident,” to be recognized as true “in- dependently of other truths,” why does he then oer arguments for those axioms? The answer, I argue, is that he thinks the arguments give us justi- cation for accepting the axioms, and that this does not in fact conict with anything he says about axioms. This resolution of the puzzle makes good sense in the light of historical and philosophical considerations when we read Frege’s procedure in the light of the “critical method”: an approach to the justication of axioms endorsed by leading philosophers at the time. 1 The Puzzle about Frege’s Arguments There is something puzzling about Frege’s introduction of his “Basic Laws” or “axioms” of logic. On the one hand, he thinks that “it is part of the concept of an axiom that it can be recognized as true independently of other truths,”1 and he oers a regress argument to show that there must be truths with that feature: The grounds which justify the recognition of a truth often reside in other truths which have already been recognized. But if there are any truths recognized by us at all, this cannot be the only form that justication takes.
    [Show full text]
  • A Classical Defense Against Mathematical Empiricism
    The Crucial Role of Proof: A Classical Defense Against Mathematical Empiricism by Catherine Allen Womack Submitted to the Department of Linguistics and Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1993 @ Massachust•Os Institute of Technology 1993. All rights reserved. Author ... ................................... ............ ......... Department of Linguistics and Philosophy March 10, 1993 Certified by .............. .......................................... James Higginbotham Professor Thesis Supervisor Read by ...... .... , .... ....... ....................................... George Boolos Professor Thesis Reader Accepted by ..-. ,. ... ..................................... - . George Boolos Chairman, Departmental Committee on Graduate Students ARCHIVES MACSACHUSETTS INSTITUTE OF TECHNOLOGY rJUN 03 1993 The Crucial Role of Proof: A Classical Defense Against Mathematical Empiricism by Catherine Allen Womack Submitted to the Department of Linguistics and Philosophy on March 10, 1993, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Mathematical knowledge seems to enjoy special status not accorded to scientific knowledge: it is considered a priori and necessary. We attribute this status to math- ematics largely' because of the way we come to know it-through following proofs. Mathematics has come under attack from sceptics who reject the idea that mathe- matical knowledge is a priori. Many sceptics consider it to be a posteriori knowledge, subject to possible empirical refutation. In a series of three papers I defend the a priori status of mathematical knowledge by showing that rigorous methods of proof are sufficient to convey a priori knowledge of the theorem proved. My first paper addresses Philip Kitcher's argument in his book The Natuire of Mathematical Knowledge that mathematics is empirical. Kitcher develops a view of a priori knowledge according to which mathematics is not a priori.
    [Show full text]
  • Frege on Knowing the Foundation Author(S): Tyler Burge Source: Mind, Vol
    Mind Association Frege on Knowing the Foundation Author(s): Tyler Burge Source: Mind, Vol. 107, No. 426 (Apr., 1998), pp. 305-347 Published by: Oxford University Press on behalf of the Mind Association Stable URL: http://www.jstor.org/stable/2659879 Accessed: 11-04-2017 02:10 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Mind Association, Oxford University Press are collaborating with JSTOR to digitize, preserve and extend access to Mind This content downloaded from 128.97.244.236 on Tue, 11 Apr 2017 02:10:28 UTC All use subject to http://about.jstor.org/terms Frege on Knowing the Foundation TYLER BURGE The paper scrutinizes Frege's Euclideanism-his view of arithmetic and ge- ometry as resting on a small number of self-evident axioms from which non- self-evident theorems can be proved. Frege's notions of self-evidence and axiom are discussed in some detail. Elements in Frege's position that are in apparent tension with his Euclideanism are considered-his introduction of axioms in The Basic Laws of Arithmetic through argument, his fallibilism about mathematical understanding, and his view that understanding is closely associated with inferential abilities.
    [Show full text]
  • Four Challenges to the a Priori—A Posteriori Distinction
    Four challenges to the a priori—a posteriori distinction Albert Casullo Synthese An International Journal for Epistemology, Methodology and Philosophy of Science ISSN 0039-7857 Volume 192 Number 9 Synthese (2015) 192:2701-2724 DOI 10.1007/s11229-013-0341-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Synthese (2015) 192:2701–2724 DOI 10.1007/s11229-013-0341-x Four challenges to the a priori—a posteriori distinction Albert Casullo Received: 14 April 2013 / Accepted: 19 August 2013 / Published online: 14 September 2013 © Springer Science+Business Media Dordrecht 2013 Abstract During the past decade a new twist in the debate regarding the a priori has unfolded. A number of prominent epistemologists have challenged the coherence or importance of the a priori—a posteriori distinction or, alternatively, of the concept of a priori knowledge. My focus in this paper is on these new challenges to the a priori.
    [Show full text]
  • Uncontrolled Logic: Intuitive Sensitivity to Logical Structure in Random Responding
    Thinking & Reasoning ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ptar20 Uncontrolled logic: intuitive sensitivity to logical structure in random responding Stephanie Howarth, Simon Handley & Vince Polito To cite this article: Stephanie Howarth, Simon Handley & Vince Polito (2021): Uncontrolled logic: intuitivesensitivitytologicalstructureinrandomresponding, Thinking & Reasoning, DOI: 10.1080/13546783.2021.1934119 To link to this article: https://doi.org/10.1080/13546783.2021.1934119 Published online: 22 Jun 2021. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ptar20 THINKING & REASONING https://doi.org/10.1080/13546783.2021.1934119 Uncontrolled logic: intuitive sensitivity to logical structure in random responding Stephanie Howarth , Simon Handley and Vince Polito Department of Cognitive Science, Macquarie University, Sydney, Australia ABSTRACT It is well established that beliefs provide powerful cues that influence reason- ing. Over the last decade research has revealed that judgments based upon logical structure may also pre-empt deliberative reasoning. Evidence for ‘intuitive logic’ has been claimed using a range of measures (i.e. confidence ratings or latency of response on conflict problems). However, it is unclear how well such measures genuinely reflect logical intuition. In this paper we introduce a new method designed to test for evidence of intuitive logic. In two experiments participants were asked to make random judgments about the logical validity of a series of simple and complex syllogistic arguments. For simple arguments there was an effect of logical validity on random respond- ing, which was absent for complex arguments.
    [Show full text]
  • Ergostuctures, Ergologic and the Universal Learning Problem: Chapters 1, 2
    Ergostuctures, Ergologic and the Universal Learning Problem: Chapters 1, 2. Misha Gromov March 14, 2013 Contents 1 Structures and Metaphors. 1 1.1 Universality, Freedom and Curiosity . .2 1.2 Ego and Ergo. .4 1.3 Ergo-Ideas and Common Sense. .5 1.4 Ergo Perspective on Chess . .7 1.5 Learning, Communicating, Understanding. 11 2 Mathematics and its Limits. 13 2.1 Logic and Rigor. 14 2.2 Computations, Equations, Iterations, Simulations. 18 2.3 Numbers and Symmetries. 28 2.4 Languages, Probabilities and the Problems with Definitions. 30 3 Libraries, Dictionaries and language Understanding 36 4 Bibliography. 36 1 Structures and Metaphors. Every sentence I utter must be understood not as an affirmation, but as a question. Niels Bohr.1 Our ultimate aim is to develop mathematical means for describing/designing learning systems L that would be similar in their essential properties to the minds of humans and certain animals. Learning and Structures. We want to understand the process(es) of learning, e.g. of mother tongue or of a mathematical theory, in the context of what we call ergostructures. Such structures, as we see them, are present in the depth of the human (some animal?) minds, in natural languages, in logical/combinatorial organizations of branches of mathematics and, in a less 1I could not find on the web when and where Bohr said/wrote it. Maybe he never did. But here and everywhere, a quote is not an appeal to an authority but an acknowledgment of something having been already said. 1 mature form, in biological systems – from regulatory networks of living cells up to, possibly, ecological networks.2 Learning from this perspective is a dynamical process of building the internal ergostructure of an L from the raw structures in the incoming flows S of signals, where S may or may not itself contain an ergostructure or its ingredients.
    [Show full text]