Abductive Inference, 98 Abstractness, Platonic Vs. Nonplatonic

Total Page:16

File Type:pdf, Size:1020Kb

Abductive Inference, 98 Abstractness, Platonic Vs. Nonplatonic Index Abductive inference, 98 Availability theory, 140 Abstractness, platonic vs. nonplatonic, Avenarius, R., 4 192 Acknowledging the predicament, 55, Basic Laws of Arithmetic (Frege), 32 69–71 Begriffsschrift (Frege), xii, 32, 120, 207, AI 229 strong, 102–106, 108 Belnap, N., 252n18 weak, 103, 105, 108 Benacerraf, P., xxi, 2, 22–25, 71, Analytic inferences, 225 155–156, 182–191, 193, 199–200 Analyticity, 36–37 Benacerraf dilemma Analytic necessity, 197 extended, 184 Analytic philosophy, xx, 1, 3 original, 182–184 Alice, 158–159, 185 Block, N., 93 Antinaturalism, 14–21 Bolzano, B., 5 Antiperceptualism, 186, 189, 191–200 Bonjour, L., 188 Antipsychologism, 14–21 Boole, G., xi–xiii, 25, 31–32, 115–116, Antirealism, 185, 188–189 131, 204–205, 216 Anti-supernaturalism, 9 Braine, M., 130 Aphasias, 86, 106–107 Brentano, F., 1, 4 A priori–a posteriori, xii, 272n20, Broca’s area, 106 273n24 Byrne, R., 135 Apriority of protologic, 29, 44–45, 109, 201 Carnap, R., 36–37, 54, 59–61, 65, 186, Aristotle, xi, xiii–xv, 31–32, 124 210–211, 226–227 Arnaud, P., xii, 204–205 Carroll, L. (Charles Dodgson), 54–59, Artificial intelligence. See AI 61–62, 65, 69, 78, 158, 223 Art of Thinking (Arnaud and Nicole), Carruthers, P., 111 xii Categorical normativity. See Aspects of the Theory of Syntax Normativity, categorical (Chomsky), 86 Causation, 23, 189–190, 242n62 Autism, 112 Central processes, 89, 100–102, 109 310 Index Chalmers, D., 12, 98, 277–278n78 Darwinian evolution, 97, 142–143 Cheng, P., 141 Davidson, D., 110, 173 Cherniak, C., 146, 270n88 Dedekind, R., 36 Chinese brain argument, 106–107 Dedicated cognitive capacity, 88, 101 Chinese nation argument, 93 Deduction, intuitive vs. rote, 199 Chinese room argument, 103–104 Deferred ostension, 187, 190 Chomsky, N., xi, xiii, xxi, 25–26, 30, De Morgan, A., 218 46–52, 78–79, 83–87, 90, 98, “Deny the doctrine, change the subject” 109–111, 121, 128–130, 133, 172, argument, 42, 181 209, 250n57, 250n60 Descartes, R., 78, 98, 110, 134, 174, Church-Turing thesis, 102. See also 176, 224–226, 229, 282n57 Turing computability; Turing Deviant logic, xii, 40–41, 234n12, machines 246n34. See also Nonclassical logic Circular argument, 31 Deviant Logic (Haack), 40 Classical logic, xii, xx, 29, 35–36, Dialetheic logic, xii, 41, 223–224, 40–46, 122, 148, 216, 222, 231, 234n14 233n10 Diehard classicism (about logic), 41–43, Cogito, 224–225 133, 222 Cognitive creativity, 86–88, 102 Diehard nonclassicism (about logic), Cognitive faculties, 79–80 41–43, 122, 133 Cognitive generativity, 86, 102 Discourse on Method (Descartes), 224 Cognitive productivity. See Cognitive Domain-specific cognitive capacities, creativity 88–89, 101 Cognitive relativism, 5, 8, 29, 238n18 Dretske, F., 187–188 Cognitive science, xx, 82, 231 Dualism, 262n56 Cognitivism, xii. See also Logical Dummett, M., 3, 22, 54, 66–69, cognitivism 253n21, 253n22, 253n24 Cognitivist existential predicament, 136, 147–148, 200 Early modern conceptions of ourselves, Cognitivist solution to the logocentric 113–114 predicament, 74 Einstein, A., 98 Cohen, L. J., 117, 128–129 Elementary logic. See Classical logic Competence, 263n6 Embodied rationalism, 13, 283–284n72 Connectionism, 260n38 Empirical psychology, 7, 52 Consequence. See Logical consequence Empiricism, 8, 10, 29, 84–85, 186, Constructivism, 79, 85–88, 107, 109 188–189 Conventionalism, 60–68, 185, 188–189, Encapsulated cognitive capacities, 89, 210–213 101 Copi, I., 219 Enquiry Concerning Human Cosmides, L., 142, 227 Understanding (Hume), 160 Cox, G. R., 125 Epigenesis of pure reason, 86–87 Craik, K., 135 E pluribus unum problem, xx, 29–52, Creativity. See Productivity 75, 77, 115, 122, 133, 138 Index 311 Erdmann, B., 5 Henle, M., 123, 130 Ethics of logic, 201–231 Herbart, J., 5 Euler diagrams, 136 Heuristics-and-biases theory, 139–146, Evans, J., 126 226 Evnine, S., 254n33 Hilbert, D., 58, 60, 244n7 Extensions of classical logic, xii, 40–41, Holyoak, K., 141 148, 233n11 Human interest postulates, 211 Hume, D., xvii, 84, 115, 160, 163, 164, Fallacies, 217–220 167, 170, 186, 228 Fast cognitive capacities, 88, 101 Husserl, E., xii, xix, 1–9, 14, 20, 24, Fictionalism, 185, 188 27, 205, 206–209, 238n20 Field, H., 185, 189 Fluent aphasia, 106–107 I-language, 90 Fodor, J., xi, xiii, 26, 78–80, 88, 90–91, I-logic, 51, 251n67 94, 110, 121 Imagination Folk psychology, 82 linguistic, 175 Foot, P., 210–212 logical, 35, 192–195, 199–200 Formalism, 244n7 Incompleteness theorems. See Gödel, K. Formal logic, 30–32 Indeterminacy of translation, 161 Form of life, 180 Indexicality, 145 Foundations of Arithmetic (Frege), 7 Indirect perceptualism, 188, 190–191 Frankfurt, H., 281n36 Inductive logic, 30–31 Free logic, 41 Inference-tickets, 57, 63, 65, 207 Frege, G., xii, xix, 1–9, 14, 21, 24, 27, Inference to the best explanation, 52, 98 31–32, 36–37, 81, 90, 116, 174, 182, Inferential role theory of logical con- 204–206, 208, 229, 238–239n29 stants, 63–65, 133–134, 156, Freud, S., 115 168–170 Informal logic, 31 Garden path sentences, 220 Informational encapsulation, 26, Generativity, 249n52 100–101, 132 Genetic logic, 120–122 Informational promiscuity, 100–102, 107 Gentzen, G., 54, 63, 65, 131, 133, 206 Innatism, 79, 83–85, 96–99, 107, 109, Geuss, R., 228 134, 138, 258–259n27 Gödel, K., 36, 38–40, 134, 187, 235n23 Inscrutability of reference, 161 Goodman, N., 66, 70, 161 Intensional logic, 31 Griggs, R. A., 125 Intentionalism. See Representationalism Groundlessness of logic, 55, 69–72, 74–75 Intentionality, 80–82, 256n9 Intuition, 171–182 Haack, S., 1, 28, 54, 66, 68–70, vs. deduction, 174–175 246–247n35, 247n41, 253n23, 253n24 logical (see Logical intuition) Hale, B., 39, 186 mathematical (see Mathematical Harman, G., xxii, 202, 220–223 intuition) Hegel, G. W. F., xvii Intuitionist logic, 41 312 Index Intuition-of, 173 Law of noncontradiction, 31, 41–42, Intuition-that, 173 243–244n3 Investigation of the Laws of Thought Lawrence, D. H., 115 (Boole), xii, 32, 120 Laws of thought, 4, 25–26, 78, 110, 204 “Investigations into Logical Deduction” Leibniz, G. W., 5, 31 (Gentzen), 63 Lewis, C. I., 20, 33, 35, 40–41, 156 Irrationalism, 124–130, 146–147, 150, Liar paradox, 36, 38–39 154, 226 Lingua mentis (mental language). See Language of thought Jackendoff, R., 86 Linguistic competence, 78, 121, James, W., 116–120, 122–123 128–129, 250n55 Jäsche Logic (Kant), xii Lipps, T., 5 Johnson-Laird, P., 116, 135, 193–194 Logical animals, 77–78, 201, 215 Justification, 44 Logical bad faith, 166 Justificational holism, 255n37 Logical cognitivism, xix, 3, 24–29, “The Justification of Deduction” 46–47, 52–53, 75, 77, 115, 156, 180, (Dummett), 66 202, 209, 213, 230 “The Justification of Deduction” Logical communitarianism, 69–71 (Haack), 68 Logical competence, 51 Justification of deduction problem, 54, Logical consequence, xv, 27, 133–34, 66–69 214–215, 231, 234n17 Logical expressivism, 70–71, 186, 188–189 Kahneman, D., 116, 140 Logical form, 51 Kant, I., xi–xiii, xvii, xx, xxi, 1, 5, Logical intuition, 156–157, 170–182, 25–26, 31, 37, 45, 85–87, 110, 115, 168, 197–201 131, 204–205, 208–214, 217, 230, Logical knowledge, 155–200 231, 236n32 Logical necessity, 158, 195–197 Kantian constructivism in ethics, 212 Logical nihilism, 227, 230 Katz, J., 186, 189 Logical nonfactualism. See Logical Kim, J., 11 expressivism Kirk, R., 111 Logical possibility, 196, 225 Kosslyn, S., 193–194 Logical pragmatism, 70–71 Kripke, S., 41, 98, 156, 158–168, 178 Logical prudentialism, 69, 71 Kripkenstein, 161, 163–168, 170. See Logical psychologism, xii, xix–xx, 1–29, also Rule following paradox 75, 115–116, 206–208, 222 Kusch, M., 5 Logical structuralism, 156, 191–192, 199–200 Language of thought (LOT), 26, 47, 78, Logical Syntax of Language (Carnap), 80, 90–92, 94–96, 107–110, 151, 213 54, 59–61, 210 L’art de penser (art of thinking), 204 Logical truth, 61–63, 225 Law of bivalence, 31, 41, 243–244n3 Logic faculty thesis, xiii, 3, 25–26, 28, Law of excluded middle, 31, 41, 46–53, 73–75, 77, 107–108, 115, 243–244n3 154, 157, 168, 200–202, 230 Index 313 Logicism, 36, 40 Modal downsizing, 8, 29 Logic-liberated-animals, xxii Modality, xv Logic of thought, 51, 107–110, Modes of presentation (MOPs), 81, 93 132–133, 135, 154, 213–214, 226 Modularity, 25, 79, 88–90, 100–102, Logic-oriented conception of human 107, 109, 131–132, 259n30 rationality, xviii, 77–78, 113–115, Monty Python’s Flying Circus, 156, 201–202 115–116, 152 Logocentric predicament, 53–75, 115, Mooney, C., 88 157, 211 Mooney faces, 88 Lotze, H., 5 Moore, G. E., 2, 14–18, 20, 24, 27 Lowe, E. J., 136 “Morality as a System of Hypothetical Imperatives” (Foot), 210 Mach, E., 5 Moral science conception of logic, Machine functionalism, 26, 103, 205–206, 231 243n74 Mr. Spock, 215 Macnamara, J., 130, 266n37 Multiple embodiability, xviii, 25, 52 Mad Hatter, 78 Manktelow, K.I., 126 Nagel, T., 281n36 Many-valued logic, 41 Nativism. See Innatism Mathematical intuition, 23 Natorp, P., 5 Mathematical logic, 3, 32–35 Naturalistic fallacy, 2, 15–17 “Mathematical Truth” (Benacerraf), 182 Natural logic, 51, 251n68 Meditations on First Philosophy “The Nature of Judgement” (Moore), 15 (Descartes), 224, 229 Necker cube, 89, 219 Mein Kampf, 229 Negation, 165–166, 180–182, 225 Meinong, A., 41 Negativity, 165–166, 180–182 Mentalese. See Language of thought Neo-Fregeanism, 39 Mental language. See Language of Neo-Kantianism, 9, 13 thought Neo-Nietzscheanism, xii, 224, Mental Logic, 131–135, 138, 145 226–231 Mental logic theory, xxi, 130–136, Nicole, J., xii, 204–205 145–146, 151, 266–267n45, 267n46 Nietzsche, F., 226, 227–229 Mental models theory, 135–140, 145, Noncausal perceptualism, 187, 190–191 267n51 Nonclassical logic, 40–46, 73, Metalogic, 61 216, 231 Metalogical principles of protologic, Noncontact causal perceptualism, 187, 45–46 189, 191 Metaphysical necessity, 196–197, Nonepistemic perception, 187, 190 234–235n21, 278n79 Nonformal logic, 30–31 Mill, J.
Recommended publications
  • The Constituents of the Propositions of Logic Kevin C
    10 The Constituents of the Propositions of Logic Kevin C. Klement 1 Introduction Many founders of modern logic—Frege and Russell among them—bemoan- ed the tendency, still found in most textbook treatments, to define the subject matter of logic as “the laws of thought” or “the principles of inference”. Such descriptions fail to capture logic’s objective nature; they make it too dependent on human psychology or linguistic practices. It is one thing to identify what logic is not about. It is another to say what it is about. I tell my students that logic studies relationships between the truth-values of propositions that hold in virtue of their form. But even this characterization leaves me uneasy. I don’t really know what a “form” is, and even worse perhaps, I don’t really know what these “propositions” are that have these forms. If propositions are considered merely as sentences or linguistic assertions, the definition does not seem like much of an improvement over the psychological definitions. Language is a human invention, but logic is more than that, or so it seems. It is perhaps forgiveable then that at certain times Russell would not have been prepared to give a very good answer to the question “What is Logic?”, such as when he attempted, but failed, to compose a paper with that title in October 1912. Given that Russell had recently completed Principia Mathematica, a work alleging to establish the reducibility of mathematics to logic, one might think this overly generous. What does the claim that mathematics reduces to logic come to if we cannot independently speci- Published in Acquaintance, Knowledge and Logic: New Essays on Bertrand Russell’s Problems of Philosophy, edited by Donovan Wishon and Bernard Linsky.
    [Show full text]
  • The Philosophical Importance of Mathematical Logic Bertrand Russell in SPEAKING of "Mathematical Logic", I Use This Word in a Very Broad Sense
    The Philosophical Importance of Mathematical Logic Bertrand Russell IN SPEAKING OF "Mathematical logic", I use this word in a very broad sense. By it I understand the works of Cantor on transfinite numbers as well as the logical work of Frege and Peano. Weierstrass and his successors have "arithmetised" mathematics; that is to say, they have reduced the whole of analysis to the study of integer numbers. The accomplishment of this reduction indicated the completion of a very important stage, at the end of which the spirit of dissection might well be allowed a short rest. However, the theory of integer numbers cannot be constituted in an autonomous manner, especially when we take into account the likeness in properties of the finite and infinite numbers. It was, then, necessary to go farther and reduce arithmetic, and above all the definition of numbers, to logic. By the name "mathematical logic", then, I will denote any logical theory whose object is the analysis and deduction of arithmetic and geometry by means of concepts which belong evidently to logic. It is this modern tendency that I intend to discuss here. In an examination of the work done by mathematical logic, we may consider either the mathematical results, the method of mathematical reasoning as revealed by modern work, or the intrinsic nature of mathematical propositions according to the analysis which mathematical logic makes of them. It is impossible to distinguish exactly these three aspects of the subject, but there is enough of a distinction to serve the purpose of a framework for discussion. It might be thought that the inverse order would be the best; that we ought first to consider what a mathematical proposition is, then the method by which such propositions are demonstrated, and finally the results to which this method leads us.
    [Show full text]
  • Mathematics, Reason & Religion
    05_JavierLEACH.qxd:Maqueta.qxd 26/6/08 11:54 Página 639 MATHEMATICS, REASON & RELIGION JAVIER LEACH Universidad Complutense de Madrid ABSTRACT: This paper will study the relationship between mathematics and religion from the perspective of reason and the role played by reason in human knowledge. Firstly, I will study the relationship between reason, logic and mathematics. From this starting point, I will study the relationship between reason and natural science and finally, I will draw some conclusions on the relationship between reason, philosophy and theology. The relationship between mathematics, reason and religion will be studied within the context of the global unity of human knowledge. This paper intends to explain how the ‘pure deductive reason’ is present in all human thinking. Mathematics and natural science share this universal presence with metaphysics and religion. Pure deductive reasoning is somehow an absolute value that transcends all aspects and levels of human knowledge, including metaphysical and religious knowledge. Metaphysical and theological arguments need to be able to span different cultural communities. Pure deductive reasoning is a kind of reasoning that can fully span communities and it forms a basis for inter- disciplinary, inter-cultural and inter-religious communication. KEY WORDS: mathematics, reason, pure deductive reason, logic, natural science, metaphysics, religión, revelation. Matemática, Razón y Religión RESUMEN: En este artículo voy a estudiar la interrelación entre matemática y religión desde el punto de vista de la razón y del papel de ésta en el conocimiento humano. En primer lugar estudiaré la rela- ción entre la razón, la lógica y la matemática. Partiendo de ahí estudiaré la relación entre la razón y las ciencias de la naturaleza y por último sacaré conclusiones acerca de la relación entre la razón, la filo- sofía y la teología.
    [Show full text]
  • Otto Hölder's Interpretation of David Hilbert's Axiomatic Method*
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 17-1 | 2013 The Epistemological Thought of Otto Hölder Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method Mircea Radu Electronic version URL: http://journals.openedition.org/philosophiascientiae/831 DOI: 10.4000/philosophiascientiae.831 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 1 March 2013 Number of pages: 117-129 ISBN: 978-2-84174-620-0 ISSN: 1281-2463 Electronic reference Mircea Radu, « Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method », Philosophia Scientiæ [Online], 17-1 | 2013, Online since 01 March 2016, connection on 03 November 2020. URL : http:// journals.openedition.org/philosophiascientiae/831 ; DOI : https://doi.org/10.4000/ philosophiascientiae.831 Tous droits réservés Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method ∗ Mircea Radu Universität Bielefeld (Germany) Résumé : L’article présente une reconstruction brève de la conception de preuve développée par Otto Hölder. La reconstruction se concentre sur la critique de la conception axiomatique de David Hilbert en général et sur sa conception des métamathématiques en particulier. On affirme que l’analyse faite par Hölder des idées méthodologiques générales de Hilbert et surtout de la structure logique des preuves fournie par Hilbert dans les Grundlagen der Geometrie (1899) est très utile pour comprendre plus clairement la thèse de van der Waerden affirmant le lien entre la conception de la preuve développée par Hölder et la tradition établie par Kurt Gödel. Abstract: In this paper I provide a brief reconstruction of Otto Hölder’s conception of proof. My reconstruction focuses on Hölder’s critical assess- ment of David Hilbert’s account of axiomatics in general, and of Hilbert’s conception of metamathematics in particular.
    [Show full text]
  • To Prove Or Disprove: the Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples
    To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples A dissertation presented to the faculty of The Patton College of Education of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Kelly M. Bubp December 2014 © 2014 Kelly M. Bubp. All Rights Reserved. 2 This dissertation titled To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples by KELLY M. BUBP has been approved for the Department of Teacher Education and The Patton College of Education by Robert M. Klein Associate Professor of Mathematics Renée A. Middleton Dean, The Patton College of Education 3 Abstract BUBP, KELLY M., Ph.D., December 2014, Mathematics Education To Prove or Disprove: The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples Director of Dissertation: Robert M. Klein Deciding on the truth value of mathematical statements is an essential aspect of mathematical practice in which students are rarely engaged. This study explored undergraduate students’ approaches to mathematical statements with unknown truth values. The research questions were 1. In what ways and to what extent do students use intuition and analysis to decide on the truth value of mathematical statements? 2. What are the connections between students’ process of deciding on the truth value of mathematical statements and their ability to construct associated proofs and counterexamples? 3.
    [Show full text]
  • Frege's Critical Arguments for Axioms
    Frege’s Critical Arguments for Axioms Abstract There is a traditional and substantive philosophical question about how we can be justied in accepting logical axioms and other basic truths. We can discover an interesting answer by considering an outstanding interpre- tive puzzle about Frege’s approach to logical axioms. The puzzle is: having claimed that logical axioms are “self-evident,” to be recognized as true “in- dependently of other truths,” why does he then oer arguments for those axioms? The answer, I argue, is that he thinks the arguments give us justi- cation for accepting the axioms, and that this does not in fact conict with anything he says about axioms. This resolution of the puzzle makes good sense in the light of historical and philosophical considerations when we read Frege’s procedure in the light of the “critical method”: an approach to the justication of axioms endorsed by leading philosophers at the time. 1 The Puzzle about Frege’s Arguments There is something puzzling about Frege’s introduction of his “Basic Laws” or “axioms” of logic. On the one hand, he thinks that “it is part of the concept of an axiom that it can be recognized as true independently of other truths,”1 and he oers a regress argument to show that there must be truths with that feature: The grounds which justify the recognition of a truth often reside in other truths which have already been recognized. But if there are any truths recognized by us at all, this cannot be the only form that justication takes.
    [Show full text]
  • A Classical Defense Against Mathematical Empiricism
    The Crucial Role of Proof: A Classical Defense Against Mathematical Empiricism by Catherine Allen Womack Submitted to the Department of Linguistics and Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1993 @ Massachust•Os Institute of Technology 1993. All rights reserved. Author ... ................................... ............ ......... Department of Linguistics and Philosophy March 10, 1993 Certified by .............. .......................................... James Higginbotham Professor Thesis Supervisor Read by ...... .... , .... ....... ....................................... George Boolos Professor Thesis Reader Accepted by ..-. ,. ... ..................................... - . George Boolos Chairman, Departmental Committee on Graduate Students ARCHIVES MACSACHUSETTS INSTITUTE OF TECHNOLOGY rJUN 03 1993 The Crucial Role of Proof: A Classical Defense Against Mathematical Empiricism by Catherine Allen Womack Submitted to the Department of Linguistics and Philosophy on March 10, 1993, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Mathematical knowledge seems to enjoy special status not accorded to scientific knowledge: it is considered a priori and necessary. We attribute this status to math- ematics largely' because of the way we come to know it-through following proofs. Mathematics has come under attack from sceptics who reject the idea that mathe- matical knowledge is a priori. Many sceptics consider it to be a posteriori knowledge, subject to possible empirical refutation. In a series of three papers I defend the a priori status of mathematical knowledge by showing that rigorous methods of proof are sufficient to convey a priori knowledge of the theorem proved. My first paper addresses Philip Kitcher's argument in his book The Natuire of Mathematical Knowledge that mathematics is empirical. Kitcher develops a view of a priori knowledge according to which mathematics is not a priori.
    [Show full text]
  • Frege on Knowing the Foundation Author(S): Tyler Burge Source: Mind, Vol
    Mind Association Frege on Knowing the Foundation Author(s): Tyler Burge Source: Mind, Vol. 107, No. 426 (Apr., 1998), pp. 305-347 Published by: Oxford University Press on behalf of the Mind Association Stable URL: http://www.jstor.org/stable/2659879 Accessed: 11-04-2017 02:10 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Mind Association, Oxford University Press are collaborating with JSTOR to digitize, preserve and extend access to Mind This content downloaded from 128.97.244.236 on Tue, 11 Apr 2017 02:10:28 UTC All use subject to http://about.jstor.org/terms Frege on Knowing the Foundation TYLER BURGE The paper scrutinizes Frege's Euclideanism-his view of arithmetic and ge- ometry as resting on a small number of self-evident axioms from which non- self-evident theorems can be proved. Frege's notions of self-evidence and axiom are discussed in some detail. Elements in Frege's position that are in apparent tension with his Euclideanism are considered-his introduction of axioms in The Basic Laws of Arithmetic through argument, his fallibilism about mathematical understanding, and his view that understanding is closely associated with inferential abilities.
    [Show full text]
  • Four Challenges to the a Priori—A Posteriori Distinction
    Four challenges to the a priori—a posteriori distinction Albert Casullo Synthese An International Journal for Epistemology, Methodology and Philosophy of Science ISSN 0039-7857 Volume 192 Number 9 Synthese (2015) 192:2701-2724 DOI 10.1007/s11229-013-0341-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Synthese (2015) 192:2701–2724 DOI 10.1007/s11229-013-0341-x Four challenges to the a priori—a posteriori distinction Albert Casullo Received: 14 April 2013 / Accepted: 19 August 2013 / Published online: 14 September 2013 © Springer Science+Business Media Dordrecht 2013 Abstract During the past decade a new twist in the debate regarding the a priori has unfolded. A number of prominent epistemologists have challenged the coherence or importance of the a priori—a posteriori distinction or, alternatively, of the concept of a priori knowledge. My focus in this paper is on these new challenges to the a priori.
    [Show full text]
  • Uncontrolled Logic: Intuitive Sensitivity to Logical Structure in Random Responding
    Thinking & Reasoning ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ptar20 Uncontrolled logic: intuitive sensitivity to logical structure in random responding Stephanie Howarth, Simon Handley & Vince Polito To cite this article: Stephanie Howarth, Simon Handley & Vince Polito (2021): Uncontrolled logic: intuitivesensitivitytologicalstructureinrandomresponding, Thinking & Reasoning, DOI: 10.1080/13546783.2021.1934119 To link to this article: https://doi.org/10.1080/13546783.2021.1934119 Published online: 22 Jun 2021. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ptar20 THINKING & REASONING https://doi.org/10.1080/13546783.2021.1934119 Uncontrolled logic: intuitive sensitivity to logical structure in random responding Stephanie Howarth , Simon Handley and Vince Polito Department of Cognitive Science, Macquarie University, Sydney, Australia ABSTRACT It is well established that beliefs provide powerful cues that influence reason- ing. Over the last decade research has revealed that judgments based upon logical structure may also pre-empt deliberative reasoning. Evidence for ‘intuitive logic’ has been claimed using a range of measures (i.e. confidence ratings or latency of response on conflict problems). However, it is unclear how well such measures genuinely reflect logical intuition. In this paper we introduce a new method designed to test for evidence of intuitive logic. In two experiments participants were asked to make random judgments about the logical validity of a series of simple and complex syllogistic arguments. For simple arguments there was an effect of logical validity on random respond- ing, which was absent for complex arguments.
    [Show full text]
  • Ergostuctures, Ergologic and the Universal Learning Problem: Chapters 1, 2
    Ergostuctures, Ergologic and the Universal Learning Problem: Chapters 1, 2. Misha Gromov March 14, 2013 Contents 1 Structures and Metaphors. 1 1.1 Universality, Freedom and Curiosity . .2 1.2 Ego and Ergo. .4 1.3 Ergo-Ideas and Common Sense. .5 1.4 Ergo Perspective on Chess . .7 1.5 Learning, Communicating, Understanding. 11 2 Mathematics and its Limits. 13 2.1 Logic and Rigor. 14 2.2 Computations, Equations, Iterations, Simulations. 18 2.3 Numbers and Symmetries. 28 2.4 Languages, Probabilities and the Problems with Definitions. 30 3 Libraries, Dictionaries and language Understanding 36 4 Bibliography. 36 1 Structures and Metaphors. Every sentence I utter must be understood not as an affirmation, but as a question. Niels Bohr.1 Our ultimate aim is to develop mathematical means for describing/designing learning systems L that would be similar in their essential properties to the minds of humans and certain animals. Learning and Structures. We want to understand the process(es) of learning, e.g. of mother tongue or of a mathematical theory, in the context of what we call ergostructures. Such structures, as we see them, are present in the depth of the human (some animal?) minds, in natural languages, in logical/combinatorial organizations of branches of mathematics and, in a less 1I could not find on the web when and where Bohr said/wrote it. Maybe he never did. But here and everywhere, a quote is not an appeal to an authority but an acknowledgment of something having been already said. 1 mature form, in biological systems – from regulatory networks of living cells up to, possibly, ecological networks.2 Learning from this perspective is a dynamical process of building the internal ergostructure of an L from the raw structures in the incoming flows S of signals, where S may or may not itself contain an ergostructure or its ingredients.
    [Show full text]
  • PT Johnstone, Notes on Logic and Set Theory
    336 BOOK REVIEWS JOHNSTONE, P. T., Notes on logic and set theory (Cambridge University Press, Cambridge, 1987) 120 pp., cloth: 0521 335027, £20; paper: 0 521336929, £6.95. This is a remarkable book. In only 107 pages of text, it includes all of the results of modern mathematical logic and set theory which are of basic significance. There are three chapters on logic, culminating in the Lowenheim-Skolem theorem and the completeness and compactness theorems for first-order predicate logic. There is a chapter on recursive functions, including discussion of register machines, Church's Thesis, recursive unsolvability and formal definability. The chapter on formal set-theory covers the Zermelo-Fraenkel axioms. This runs naturally on into a chapter on ordinals and well-orderings, and the book ends with chapters on the Axiom of Choice, cardinal arithmetic, and finally consistency, incompleteness and independence results. In respect of its scope and length, the book is reminiscent of R. C. Lyndon, Notes on logic (Van Nostrand, 1964) and J. N. Crossley et a/., What is mathematical logic? (Oxford University Press, 1972). But it is a very different book from these. Although the author makes a point of rejecting a title such as "Logic for the working mathematician", in fact the content would be aptly described in that way. Furthermore, its presentation relies on a considerable mathematical sophistication on the part of the reader, so that anyone who is not a working mathematician would find it difficult. The treatment is definitely logic-as-mathematics, the flavour being that of D. W. Barnes and J.
    [Show full text]