Predicate Logic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tt-Satisfiable
CMPSCI 601: Recall From Last Time Lecture 6 Boolean Syntax: ¡ ¢¤£¦¥¨§¨£ © §¨£ § Boolean variables: A boolean variable represents an atomic statement that may be either true or false. There may be infinitely many of these available. Boolean expressions: £ atomic: , (“top”), (“bottom”) § ! " # $ , , , , , for Boolean expressions Note that any particular expression is a finite string, and thus may use only finitely many variables. £ £ A literal is an atomic expression or its negation: , , , . As you may know, the choice of operators is somewhat arbitary as long as we have a complete set, one that suf- fices to simulate all boolean functions. On HW#1 we ¢ § § ! argued that is already a complete set. 1 CMPSCI 601: Boolean Logic: Semantics Lecture 6 A boolean expression has a meaning, a truth value of true or false, once we know the truth values of all the individual variables. ¢ £ # ¡ A truth assignment is a function ¢ true § false , where is the set of all variables. An as- signment is appropriate to an expression ¤ if it assigns a value to all variables used in ¤ . ¡ The double-turnstile symbol ¥ (read as “models”) de- notes the relationship between a truth assignment and an ¡ ¥ ¤ expression. The statement “ ” (read as “ models ¤ ¤ ”) simply says “ is true under ”. 2 ¡ ¤ ¥ ¤ If is appropriate to , we define when is true by induction on the structure of ¤ : is true and is false for any , £ A variable is true iff says that it is, ¡ ¡ ¡ ¡ " ! ¥ ¤ ¥ ¥ If ¤ , iff both and , ¡ ¡ ¡ ¡ " ¥ ¤ ¥ ¥ If ¤ , iff either or or both, ¡ ¡ ¡ ¡ " # ¥ ¤ ¥ ¥ If ¤ , unless and , ¡ ¡ ¡ ¡ $ ¥ ¤ ¥ ¥ If ¤ , iff and are both true or both false. 3 Definition 6.1 A boolean expression ¤ is satisfiable iff ¡ ¥ ¤ there exists . -
Propositional Logic - Basics
Outline Propositional Logic - Basics K. Subramani1 1Lane Department of Computer Science and Electrical Engineering West Virginia University 14 January and 16 January, 2013 Subramani Propositonal Logic Outline Outline 1 Statements, Symbolic Representations and Semantics Boolean Connectives and Semantics Subramani Propositonal Logic (i) The Law! (ii) Mathematics. (iii) Computer Science. Definition Statement (or Atomic Proposition) - A sentence that is either true or false. Example (i) The board is black. (ii) Are you John? (iii) The moon is made of green cheese. (iv) This statement is false. (Paradox). Statements, Symbolic Representations and Semantics Boolean Connectives and Semantics Motivation Why Logic? Subramani Propositonal Logic (ii) Mathematics. (iii) Computer Science. Definition Statement (or Atomic Proposition) - A sentence that is either true or false. Example (i) The board is black. (ii) Are you John? (iii) The moon is made of green cheese. (iv) This statement is false. (Paradox). Statements, Symbolic Representations and Semantics Boolean Connectives and Semantics Motivation Why Logic? (i) The Law! Subramani Propositonal Logic (iii) Computer Science. Definition Statement (or Atomic Proposition) - A sentence that is either true or false. Example (i) The board is black. (ii) Are you John? (iii) The moon is made of green cheese. (iv) This statement is false. (Paradox). Statements, Symbolic Representations and Semantics Boolean Connectives and Semantics Motivation Why Logic? (i) The Law! (ii) Mathematics. Subramani Propositonal Logic (iii) Computer Science. Definition Statement (or Atomic Proposition) - A sentence that is either true or false. Example (i) The board is black. (ii) Are you John? (iii) The moon is made of green cheese. (iv) This statement is false. -
Chapter 9: Initial Theorems About Axiom System
Initial Theorems about Axiom 9 System AS1 1. Theorems in Axiom Systems versus Theorems about Axiom Systems ..................................2 2. Proofs about Axiom Systems ................................................................................................3 3. Initial Examples of Proofs in the Metalanguage about AS1 ..................................................4 4. The Deduction Theorem.......................................................................................................7 5. Using Mathematical Induction to do Proofs about Derivations .............................................8 6. Setting up the Proof of the Deduction Theorem.....................................................................9 7. Informal Proof of the Deduction Theorem..........................................................................10 8. The Lemmas Supporting the Deduction Theorem................................................................11 9. Rules R1 and R2 are Required for any DT-MP-Logic........................................................12 10. The Converse of the Deduction Theorem and Modus Ponens .............................................14 11. Some General Theorems About ......................................................................................15 12. Further Theorems About AS1.............................................................................................16 13. Appendix: Summary of Theorems about AS1.....................................................................18 2 Hardegree, -
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
Propositional Logic
Propositional Logic - Review Predicate Logic - Review Propositional Logic: formalisation of reasoning involving propositions Predicate (First-order) Logic: formalisation of reasoning involving predicates. • Proposition: a statement that can be either true or false. • Propositional variable: variable intended to represent the most • Predicate (sometimes called parameterized proposition): primitive propositions relevant to our purposes a Boolean-valued function. • Given a set S of propositional variables, the set F of propositional formulas is defined recursively as: • Domain: the set of possible values for a predicate’s Basis: any propositional variable in S is in F arguments. Induction step: if p and q are in F, then so are ⌐p, (p /\ q), (p \/ q), (p → q) and (p ↔ q) 1 2 Predicate Logic – Review cont’ Predicate Logic - Review cont’ Given a first-order language L, the set F of predicate (first-order) •A first-order language consists of: formulas is constructed inductively as follows: - an infinite set of variables Basis: any atomic formula in L is in F - a set of predicate symbols Inductive step: if e and f are in F and x is a variable in L, - a set of constant symbols then so are the following: ⌐e, (e /\ f), (e \/ f), (e → f), (e ↔ f), ∀ x e, ∃ s e. •A term is a variable or a constant symbol • An occurrence of a variable x is free in a formula f if and only •An atomic formula is an expression of the form p(t1,…,tn), if it does not occur within a subformula e of f of the form ∀ x e where p is a n-ary predicate symbol and each ti is a term. -
Inference Versus Consequence* Göran Sundholm Leyden University
To appear in LOGICA Yearbook, 1998, Czech Acad. Sc., Prague. Inference versus Consequence* Göran Sundholm Leyden University The following passage, hereinafter "the passage", could have been taken from a modern textbook.1 It is prototypical of current logical orthodoxy: The inference (*) A1, …, Ak. Therefore: C is valid if and only if whenever all the premises A1, …, Ak are true, the conclusion C is true also. When (*) is valid, we also say that C is a logical consequence of A1, …, Ak. We write A1, …, Ak |= C. It is my contention that the passage does not properly capture the nature of inference, since it does not distinguish between valid inference and logical consequence. The view that the validity of inference is reducible to logical consequence has been made famous in our century by Tarski, and also by Wittgenstein in the Tractatus and by Quine, who both reduced valid inference to the logical truth of a suitable implication.2 All three were anticipated by Bolzano.3 Bolzano considered Urteile (judgements) of the form A is true where A is a Satz an sich (proposition in the modern sense).4 Such a judgement is correct (richtig) when the proposition A, that serves as the judgemental content, really is true.5 A correct judgement is an Erkenntnis, that is, a piece of knowledge.6 Similarly, for Bolzano, the general form I of inference * I am indebted to my colleague Dr. E. P. Bos who read an early version of the manuscript and offered valuable comments. 1 Could have been so taken and almost was; cf. -
First Order Logic and Nonstandard Analysis
First Order Logic and Nonstandard Analysis Julian Hartman September 4, 2010 Abstract This paper is intended as an exploration of nonstandard analysis, and the rigorous use of infinitesimals and infinite elements to explore properties of the real numbers. I first define and explore first order logic, and model theory. Then, I prove the compact- ness theorem, and use this to form a nonstandard structure of the real numbers. Using this nonstandard structure, it it easy to to various proofs without the use of limits that would otherwise require their use. Contents 1 Introduction 2 2 An Introduction to First Order Logic 2 2.1 Propositional Logic . 2 2.2 Logical Symbols . 2 2.3 Predicates, Constants and Functions . 2 2.4 Well-Formed Formulas . 3 3 Models 3 3.1 Structure . 3 3.2 Truth . 4 3.2.1 Satisfaction . 5 4 The Compactness Theorem 6 4.1 Soundness and Completeness . 6 5 Nonstandard Analysis 7 5.1 Making a Nonstandard Structure . 7 5.2 Applications of a Nonstandard Structure . 9 6 Sources 10 1 1 Introduction The founders of modern calculus had a less than perfect understanding of the nuts and bolts of what made it work. Both Newton and Leibniz used the notion of infinitesimal, without a rigorous understanding of what they were. Infinitely small real numbers that were still not zero was a hard thing for mathematicians to accept, and with the rigorous development of limits by the likes of Cauchy and Weierstrass, the discussion of infinitesimals subsided. Now, using first order logic for nonstandard analysis, it is possible to create a model of the real numbers that has the same properties as the traditional conception of the real numbers, but also has rigorously defined infinite and infinitesimal elements. -
12 Propositional Logic
CHAPTER 12 ✦ ✦ ✦ ✦ Propositional Logic In this chapter, we introduce propositional logic, an algebra whose original purpose, dating back to Aristotle, was to model reasoning. In more recent times, this algebra, like many algebras, has proved useful as a design tool. For example, Chapter 13 shows how propositional logic can be used in computer circuit design. A third use of logic is as a data model for programming languages and systems, such as the language Prolog. Many systems for reasoning by computer, including theorem provers, program verifiers, and applications in the field of artificial intelligence, have been implemented in logic-based programming languages. These languages generally use “predicate logic,” a more powerful form of logic that extends the capabilities of propositional logic. We shall meet predicate logic in Chapter 14. ✦ ✦ ✦ ✦ 12.1 What This Chapter Is About Section 12.2 gives an intuitive explanation of what propositional logic is, and why it is useful. The next section, 12,3, introduces an algebra for logical expressions with Boolean-valued operands and with logical operators such as AND, OR, and NOT that Boolean algebra operate on Boolean (true/false) values. This algebra is often called Boolean algebra after George Boole, the logician who first framed logic as an algebra. We then learn the following ideas. ✦ Truth tables are a useful way to represent the meaning of an expression in logic (Section 12.4). ✦ We can convert a truth table to a logical expression for the same logical function (Section 12.5). ✦ The Karnaugh map is a useful tabular technique for simplifying logical expres- sions (Section 12.6). -
Chapter 13: Formal Proofs and Quantifiers
Chapter 13: Formal Proofs and Quantifiers § 13.1 Universal quantifier rules Universal Elimination (∀ Elim) ∀x S(x) ❺ S(c) Here x stands for any variable, c stands for any individual constant, and S(c) stands for the result of replacing all free occurrences of x in S(x) with c. Example 1. ∀x ∃y (Adjoins(x, y) ∧ SameSize(y, x)) 2. ∃y (Adjoins(b, y) ∧ SameSize(y, b)) ∀ Elim: 1 General Conditional Proof (∀ Intro) ✾c P(c) Where c does not occur outside Q(c) the subproof where it is introduced. ❺ ∀x (P(x) → Q(x)) There is an important bit of new notation here— ✾c , the “boxed constant” at the beginning of the assumption line. This says, in effect, “let’s call it c.” To enter the boxed constant in Fitch, start a new subproof and click on the downward pointing triangle ❼. This will open a menu that lets you choose the constant you wish to use as a name for an arbitrary object. Your subproof will typically end with some sentence containing this constant. In giving the justification for the universal generalization, we cite the entire subproof (as we do in the case of → Intro). Notice that although c may not occur outside the subproof where it is introduced, it may occur again inside a subproof within the original subproof. Universal Introduction (∀ Intro) ✾c Where c does not occur outside the subproof where it is P(c) introduced. ❺ ∀x P(x) Remember, any time you set up a subproof for ∀ Intro, you must choose a “boxed constant” on the assumption line of the subproof, even if there is no sentence on the assumption line. -
Self-Similarity in the Foundations
Self-similarity in the Foundations Paul K. Gorbow Thesis submitted for the degree of Ph.D. in Logic, defended on June 14, 2018. Supervisors: Ali Enayat (primary) Peter LeFanu Lumsdaine (secondary) Zachiri McKenzie (secondary) University of Gothenburg Department of Philosophy, Linguistics, and Theory of Science Box 200, 405 30 GOTEBORG,¨ Sweden arXiv:1806.11310v1 [math.LO] 29 Jun 2018 2 Contents 1 Introduction 5 1.1 Introductiontoageneralaudience . ..... 5 1.2 Introduction for logicians . .. 7 2 Tour of the theories considered 11 2.1 PowerKripke-Plateksettheory . .... 11 2.2 Stratifiedsettheory ................................ .. 13 2.3 Categorical semantics and algebraic set theory . ....... 17 3 Motivation 19 3.1 Motivation behind research on embeddings between models of set theory. 19 3.2 Motivation behind stratified algebraic set theory . ...... 20 4 Logic, set theory and non-standard models 23 4.1 Basiclogicandmodeltheory ............................ 23 4.2 Ordertheoryandcategorytheory. ...... 26 4.3 PowerKripke-Plateksettheory . .... 28 4.4 First-order logic and partial satisfaction relations internal to KPP ........ 32 4.5 Zermelo-Fraenkel set theory and G¨odel-Bernays class theory............ 36 4.6 Non-standardmodelsofsettheory . ..... 38 5 Embeddings between models of set theory 47 5.1 Iterated ultrapowers with special self-embeddings . ......... 47 5.2 Embeddingsbetweenmodelsofsettheory . ..... 57 5.3 Characterizations.................................. .. 66 6 Stratified set theory and categorical semantics 73 6.1 Stratifiedsettheoryandclasstheory . ...... 73 6.2 Categoricalsemantics ............................... .. 77 7 Stratified algebraic set theory 85 7.1 Stratifiedcategoriesofclasses . ..... 85 7.2 Interpretation of the Set-theories in the Cat-theories ................ 90 7.3 ThesubtoposofstronglyCantorianobjects . ....... 99 8 Where to go from here? 103 8.1 Category theoretic approach to embeddings between models of settheory . -
Monadic Decomposition
Monadic Decomposition Margus Veanes1, Nikolaj Bjørner1, Lev Nachmanson1, and Sergey Bereg2 1 Microsoft Research {margus,nbjorner,levnach}@microsoft.com 2 The University of Texas at Dallas [email protected] Abstract. Monadic predicates play a prominent role in many decid- able cases, including decision procedures for symbolic automata. We are here interested in discovering whether a formula can be rewritten into a Boolean combination of monadic predicates. Our setting is quantifier- free formulas over a decidable background theory, such as arithmetic and we here develop a semi-decision procedure for extracting a monadic decomposition of a formula when it exists. 1 Introduction Classical decidability results of fragments of logic [7] are based on careful sys- tematic study of restricted cases either by limiting allowed symbols of the lan- guage, limiting the syntax of the formulas, fixing the background theory, or by using combinations of such restrictions. Many decidable classes of problems, such as monadic first-order logic or the L¨owenheim class [29], the L¨ob-Gurevich class [28], monadic second-order logic with one successor (S1S) [8], and monadic second-order logic with two successors (S2S) [35] impose at some level restric- tions to monadic or unary predicates to achieve decidability. Here we propose and study an orthogonal problem of whether and how we can transform a formula that uses multiple free variables into a simpler equivalent formula, but where the formula is not a priori syntactically or semantically restricted to any fixed fragment of logic. Simpler in this context means that we have eliminated all theory specific dependencies between the variables and have transformed the formula into an equivalent Boolean combination of predicates that are “essentially” unary. -
Adding the Everywhere Operator to Propositional Logic
Adding the Everywhere Operator to Propositional Logic David Gries∗ and Fred B. Schneider† Computer Science Department, Cornell University Ithaca, New York 14853 USA September 25, 2002 Abstract Sound and complete modal propositional logic C is presented, in which 2P has the interpretation “ P is true in all states”. The interpretation is already known as the Carnapian extension of S5. A new axiomatization for C provides two insights. First, introducing an inference rule textual substitution allows seamless integration of the propositional and modal parts of the logic, giving a more practical system for writing formal proofs. Second, the two following approaches to axiomatizing a logic are shown to be not equivalent: (i) give axiom schemes that denote an infinite number of axioms and (ii) write a finite number of axioms in terms of propositional variables and introduce a substitution inference rule. 1Introduction Logic gives a syntactic way to derive or certify truths that can be expressed in the language of the logic. The expressiveness of the language impacts the logic’s utility —the more expressive the language, the more useful the logic (at least if the intended use is to prove theorems, as opposed to, say, studying logics). We wish to calculate with logic, much as one calculates in algebra to derive equations, and we find it useful for 2P to be a formula of the logic and have the meaning “ P is true in all states”. When a propositional logic extended with 2 is further extended to predicate logic and then to other theories, the logic can be used for proving theorems that could otherwise be ∗Supported by NSF grant CDA-9214957 and ARPA/ONR grant N00014-91-J-4123.