Cumulative Report About Obtained Results at the Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Cumulative Report About Obtained Results at the Dissertation Influence of low intensity laser radiation on different biological systems Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Chemie der Philipps-Universität Marburg vorgelegt von Olga Tsivunchyk aus Grodno Marburg/Lahn 2003 Vom Fachbereich Chemie der Philipps-Universität Marburg als Dissertation am 15.1.2004 angenommen Erstgutachter: Prof. Dr. H. Bäßler Zweitgutachter: Prof. Dr. M. Hofrichter Tag der Disputation am 16.1.2004 2 Sincere Gratitude My work would be not done without support of these people and here I convey all my cordial gratitude to them. I am truly thankful to Prof. Dr. H. Bäßler for the given possibility to finish my work under his leadership; for used laser equipment and working place; for advising and help in preparing of discussion; for his understanding and taken responsibility at my Ph.D. work. I do consider my work under his supervision as a great honour for me and appreciate it very much to Prof. Dr. M. Hofrichter from Zittau for his agreement to take co-supervision at my work; for his advising concerning experiments and writing of thesis structure; for kind hospitality visiting Zittau to Prof. Dr. D. Gemsa for the given opportunity to work in his working team; for his leadership during my DAAD study in Philipps-University of Marburg and all help for it to Prof. Dr. L.-O. Essen for the help and advises in preparing of discussion topic and presentation of my thesis to Prof. Dr. P. Galland for the help and consulting in preparation of discussion topic to Dr. E. von Löw for the great help in laboratory work; for very nice and pleasant atmosphere in joint co-operation; for his help in literature study and friendly support to Dipl. Biol. R. Kottke for teaching and help in practical work in microbiological laboratory to Dr. T. Khomich for time of training in her working group in Institute of biochemistry; for advices in planning of experiments to Dr. K. Mandrik for teaching and help in work with plant tissues 3 to Irina Osakovich for her help in biochemical laboratory and work with experimental animals to Dmitry Zverev for his help in physical laboratory, with data processing and for our friendship to Dr. Y. Romanovsky for his help in work with laser equipment during experiments performance to Prof. Dr. A. Rubinov for his help in preparing of discussion topic to Prof. Dr. R. Frey from Brandenburg Technical University Cottbus, for his interest towards my work and help in continuation in Marburg to Claudia and Andreas Karber for their help in cases of technical PC-problems to my parents and family for possibility to study further more and make researches, especially to my father, who had shown me the world of science to my dear husband Andrei and our son Eugen for their great patience and understanding of my work; for lovely support and home feeling being far away from each other to my best friend Dr. R. Haas for the given power to finish this work; for his help overcoming difficulties and problems; for best and worst time that we have spent in fun and work together. 4 Index page Zusammenfassung 8 1 Introduction 9 1.1 Background 9 1.2 Lasers 9 1.2.1 General description 9 1.2.2 Quantum Properties of Light 11 1.2.3 Stimulated Emission 11 1.2.4 Characteristics of Laser Light 12 1.2.5 Kinds of lasers 13 1.3 Biological antioxidant system 14 1.3.1 General overview 14 1.3.2 Biological antioxidant system 15 2 Literature review: Physiological and biochemical effects of laser light 16 2.1 Effects of LILI in general 16 2.2 Influence of LILI on cell membrane 17 2.3 The mechanisms of photo- and biological LILI activation 18 2.4 Photoactivation of enzymes 20 2.5 Biostimulation 21 2.6 Biological responses on LILI and their application 24 2.7 Summary 25 3 Materials and methods 26 3.1 Lactic dehydrogenase activity determination 26 3.2 Succinate-dehydrogenase (succinic dehydrogenase system) activity detection 27 3.3 Glucose-6-phosphatase activity detection 28 3.4 Biuret – Method 29 3.5 Alpha-amylase activity detection 29 3.6 Determination of superoxide dismutase (SOD) activity 30 3.7 Electrophoresis of proteins 31 3.8 Detection of glutathione peroxidase activity in red cells 32 3.9 Detection of catalase activity 33 3.10 Detection of malonate dialdehyde (MDA) in red cells 34 5 page 3.11 Detection of Mg2+- ATPase activity in red blood cells 35 3.12 Method for the estimation of phosphate 36 3.13 Detection of Ca2+-ATPase activity 37 3.14 Detection of MnP activity 38 3.15 (Triphenyltetrazoliumchloride) TTC-test 39 3.16 Detection of glutathione reductase activity 40 3.17 Method of Lowry 40 4 Experiments 41 4.1 Investigations of the influence of low intensive laser irradiation (LILI) on the antioxidant system of animals 41 4.2 Low intensity laser irradiation (LILI) as a modulator of the antioxidant system of animals 42 4.3 Investigations of changing activity Ca2+-ATPase and Mg2+-ATPase of erythrocytes-membranes after LILI radiation in vitro experiments 43 4.4 Enzymatic response of animals' tissues on LILI in vitro experiments 44 4.5 Investigations of LILI influence of different energy on activity of alpha- amylase in grains 45 4.6 The possibilities to activate alpha-amylase in germinated grains 45 4.7 Changing of the activity of the exoenzyme Manganese peroxidase after laser radiation 46 4.8 Investigation of influence of LILI on biochemical properties of yeast 47 4.9 Investigation of influence of LILI on biochemical properties of bacteria 47 4.10 UV-Vis-Spectra of enzymes 48 5 Results 50 5.1 Investigations of the influence of low intensive laser irradiation (LILI) on the antioxidant system of animals 50 5.2 Low intensity laser irradiation (LILI) as a modulator of animal's antioxidant system 54 5.3 Investigations of changing activity Ca2+-ATPase and Mg2+-ATPase of erythrocytes-membranes after LILI radiation in vitro experiments 59 6 page 5.4 Enzymatic response of animals' tissues on LILI in vitro experiments 62 5.5 Investigations of LILI influence of different energy on activity of alpha- amylase in grains 67 5.6 The possibilities to activate alpha-amylase in germinated grains 70 5.7 Changing of the activity of the exoenzyme Manganese peroxidase after laser radiation 72 5.8 Investigation of influence of LILI on biochemical properties of yeast 75 5.9 Investigation of influence of LILI on biochemical properties of bacteria 76 5.10 Summary of Results 76 6 Discussion 81 7 Conclusions and outlook 87 8 References 88 9 Appendix 102 9.1 List of abbreviations and units 102 9.2 List of light sources 104 9.3 List of materials and equipment 105 9.4 List of chemicals 106 9.5 List of biological systems 108 9.6 UV-Vis Spectra 110 7 Zusammenfassung In der Literatur sind viele Beispiele des Einflusses von Laserbestrahlung mit geringer Energie (LILI) auf biologische Syteme beschreiben. Allerdings sind die Ergebnisse wiedersprüchlich. Ziel dieser Arbeit war es, mit verschiedenen Experimenten den Einfluß von LILI auf verschiedene biologische Systeme und Objekte detailliert zu untersuchen. Es wurden verschiedene Experimente mit folgenden biologischen Systemen und Objekten durchgeführt: * verschiedene Enzyme des Antioxidations-Systems von Tieren (Catalase, Superoxid- Dismutase, Glutathion-Peroxidase, Glutathion-Reductase) * Mg2+- und Ca2+-ATPase aus Membranen von menschlichen Erythrozyten und Erythrozyten von Ratten * Lactat- und Succinat-Dehydrogenase von Ratten aus Leber, Nieren, Gehirn, Muskel, Herz * alpha-Amylase aus trockenen und gekeimten Gerstekörnern * Mangan-Peroxidase aus Lignin-abbauenden Pilzen * Dehydrogenasen von Hefe * Dehydrogenasen von Bakterien. Folgende Laser wurden für die Versuche eingesetzt: YAG-Laser (355 nm und 533 nm), Argon-Laser (458 nm, 488 nm und 520 nm), Helium-Neon-Laser (632 nm) und CO2-Laser (10.6 µm). Nach Laserbestrahlung wurden bei verschiendenen Systemen sowohl Aktivitätserhöhung als auch Aktivitätsminderung beobachtet. Abhängigkeiten von der Bestrahlungszeit und Intensität der Bestrahlung wurden ebenfalls ermittelt. Verschiedene Antworten biologischer Systeme nach Laserbestrahlung hängen von den spezifischen Eigenschaften dieser Systeme ab. Unterschiedliche Reaktionen verschiedener biologischer Systeme wurden nach Bestrahlung mit verschiedenen Lasern detektiert. 8 1 Introduction 1.1 Background Scientific experiments at the theme of the Dissertation were started since 1999. At the beginning the theme of Dissertation was formulated as: "Investigations of the influence of low intensity laser irradiation (LILI) on the Antioxidant system of animals". Those investigations were done with the purposes to find out the effects of LILI of some kinds of lasers on the process of lipid peroxidation (LPO) and the activity of antioxidant system in some organs of animals and, at the first, in erythrocytes and in blood plasma. In literature sources the effects of LILI on antioxidant system (AOS) of organism with the most important components such as reduced glutathione (GSH) and the enzymes superoxide dismutase (SOD), catalase and glutathione peroxidase (GP) mostly have been described for He-Ne-laser irradiation. Since they are contradictory [1], the function investigations of the transport proteins of the erythrocytes' membranes which are responsible to keep the native structure of erythrocytes and ion balance in these cells had caused especial interest. The contradictory obtained results had made a basis to carry out additional researches concerning laser light influence on other enzymatic systems of animals, plants, mushrooms, yeast and bacteria. 1.2 Lasers 1.2.1 General description The light from lasers differs from ordinary light in several important aspects. Ordinary light from a light bulb travels randomly in all directions (unless the bulb is equipped with an integral reflector that directs the light). The light is thus incoherent.
Recommended publications
  • Chapter 2 Incandescent Light Bulb
    Lamp Contents 1 Lamp (electrical component) 1 1.1 Types ................................................. 1 1.2 Uses other than illumination ...................................... 2 1.3 Lamp circuit symbols ......................................... 2 1.4 See also ................................................ 2 1.5 References ............................................... 2 2 Incandescent light bulb 3 2.1 History ................................................. 3 2.1.1 Early pre-commercial research ................................ 4 2.1.2 Commercialization ...................................... 5 2.2 Tungsten bulbs ............................................. 6 2.3 Efficacy, efficiency, and environmental impact ............................ 8 2.3.1 Cost of lighting ........................................ 9 2.3.2 Measures to ban use ...................................... 9 2.3.3 Efforts to improve efficiency ................................. 9 2.4 Construction .............................................. 10 2.4.1 Gas fill ............................................ 10 2.5 Manufacturing ............................................. 11 2.6 Filament ................................................ 12 2.6.1 Coiled coil filament ...................................... 12 2.6.2 Reducing filament evaporation ................................ 12 2.6.3 Bulb blackening ........................................ 13 2.6.4 Halogen lamps ........................................ 13 2.6.5 Incandescent arc lamps .................................... 14 2.7 Electrical
    [Show full text]
  • The High Performance Home Manual
    THE HIGH PERFORMANCE HOME MANUAL THE HIGH PERFORMANCE HOME MANUAL This document, along with the detailed drawings, is presented to offer our clients a roadmap in developing an "High Performance" home. This is not necessarily a "Green" home and does not take into consideration air-quality. It focuses on resource efficiency, energy efficiency, water conservation, and "providing for the future"; all of which are a part of a “green” home design, but not exhaustive. In some instances, we have provided “preferred” options as well as less costly means of attaining a near "High Performance" home. IMPORTANT: It is important to note that this information (these parameters) and the related detailed drawings are specifically for homes that are to be built in Southwest Texas (primarily the "hill country" type climate). The Climate Zone is three (3). Site Design Features: • Heat Mitigation: a. Shade hardscape (drives, walks, etc.) with shade trees or such. b. Utilize turf pavers for drive and/or walks, patios, etc. Resource Efficiency: • Drip edge (eaves and gables): a. Minimizes wicking and water distribution off roof material, decking, and fascia. • Roof Water Discharge: a. Provide gutters and downspout system with splash blocks (or such) to carry water a minimum of five feet from foundation (or utilize water harvesting system – see below). • Finish Grade: a. Provide a minimum fall of six inches for each ten feet from edge of building. • Flashing (galvanized metal): a. Flash roof valleys. b. Flash deck/balcony to building intersections. c. Flash at roof-to-wall intersections and roof-to-chimney intersections. d. Provide a drip cap above windows and doors that are not flashed or protected by coverings like pent roofs or are recessed in the exterior wall at least 24 inches.
    [Show full text]
  • 357 Final PART 1/3 COMMISSION STAFF
    EUROPEAN COMMISSION Brussels, 1.10.2019 SWD(2019) 357 final PART 1/3 COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT Accompanying the document COMMISSION REGULATION (EU) .../... laying down ecodesign requirements for light sources and separate control gears pursuant to Directive 2009/125/EC of the European Parliament and of the Council and repealing Commission Regulations (EC) No 244/2009, (EC) No 245/2009 and (EU) No 1194/2012 and COMMISSION DELEGATED REGULATION (EU) .../... supplementing Regulation (EU) 2017/1369 of the European Parliament and of the Council with regard to energy labelling of light sources and repealing Commission Delegated Regulation (EU) No 874/2012 {C(2019) 1805 final} - {C(2019) 2121 final} - {SEC(2019) 340 final} - {SWD(2019) 358 final} EN EN Table of contents TABLE OF CONTENTS ..................................................................................................................................................................................................... 1 1. INTRODUCTION: POLITICAL AND LEGAL CONTEXT .................................................................................................................................. 2 1.1. Benefits of Ecodesign and Energy Labelling .......................................................................................................................................... 3 1.2. Legal framework ...................................................................................................................................................................................
    [Show full text]
  • An Overview Contents
    Neon An overview Contents 1 Overview 1 1.1 Neon .................................................. 1 1.1.1 History ............................................ 1 1.1.2 Isotopes ............................................ 2 1.1.3 Characteristics ........................................ 2 1.1.4 Occurrence .......................................... 3 1.1.5 Applications .......................................... 3 1.1.6 Compounds .......................................... 4 1.1.7 See also ............................................ 4 1.1.8 References .......................................... 4 1.1.9 External links ......................................... 5 2 Isotopes 6 2.1 Isotopes of neon ............................................ 6 2.1.1 Table ............................................. 6 2.1.2 References .......................................... 6 3 Miscellany 8 3.1 Neon sign ............................................... 8 3.1.1 History ............................................ 8 3.1.2 Fabrication .......................................... 9 3.1.3 Applications .......................................... 12 3.1.4 Images of neon signs ..................................... 13 3.1.5 See also ............................................ 13 3.1.6 References .......................................... 13 3.1.7 Further reading ........................................ 14 3.1.8 External links ......................................... 14 3.2 Neon lamp ............................................... 14 3.2.1 History ...........................................
    [Show full text]
  • Artificial Optical Radiation
    Cyan 100% Magenta 76% Yellow 0 Black 27% Guidance for Employers on the Control of Artifi cial Optical Radiation at Work Regulations 2010 Our vision: A national culture where all commit to safe and healthy workplaces and the safe and sustainable management of chemicals Contents Introduction 2 General background information 4 Purpose of the Regulations 5 Requirement of the Control of Artifi cial Optical Radiation at Work Regulations 2010 7 Annexes 14 Annex (A): List of safe light sources 14 Annex (B): Work activities which generate hazardous levels of intense light and the appropriate control measures for them 15 Annex (C): Hierarchical approach for more complex risk assessments 20 Annex (D): List of key safety signs 23 Annex (E): Personal Protective Equipment (PPE) 23 Annex (F): List of less common issues that may be relevant to your business 25 Annex (G): Sources of further Information 25 Published in 2010 by the Health and Safety Authority, The Metropolitan Building, James Joyce Street, Dublin 1. ©All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Health and Safety Authority. Introduction Artifi cial optical radiation exists in most It applies to all undertakings where workers workplaces. Many present little or no risk of may be exposed to artifi cial optical radiation. causing injury or ill health and some allow work It aims to lead users through a logical path for activities to be carried out safely.
    [Show full text]
  • How Do We Get Light from Matter: the Origin of Emis- Sion Lines
    1 How Do We Get Light from Matter: The Origin of Emis- sion Lines ORGANIZATION • Pre-Lab: \Origins of Lines" • Mode: inquiry, groups of 2 • Grading: lab notes and post-lab questions • Safety: no special requirements GOAL: To examine the relationship between electron transitions and emission of light from various sources. I: BACKGROUND See all pre-lab exercises to this point for background material. II: EXERCISES You will be moving between different stations to observe the profile of light emitted from different type of sources of light. You'll be observing these sources of light with your eye, with an Ocean Optics spectrophotometer using a fiber optic cable and a visible light detector, and/or with a handheld spectroscope, using your eye as the visible light detector. Please take a moment to read through the introductory material|it will reduce frustration and help you organize and plan your work. Part A: Stations You can move between the stations in any order, but here is the list of light sources you will be observing. c 2016 Advanced Instructional Systems, Inc. dba WebAssign, a Virginia Corporation and Cengage Company, and San Francisco State University Department of Chemistry and Biochemistry Faculty, Fall 2016 Update by Nancy Gerber 2 • Station A: Everyday Sources of Light|light bulbs, CFLs (compact fluorescent lamps), overhead fluorescent lights, sunlight, light emitted from a computer screen. • Station B: Semiconductor Sources of Light|light emitting diodes (LEDs). • Station C: Atomic Sources of Light|gas-discharge lamps As you observe the profiles of these different sources of light, consider the following questions.
    [Show full text]
  • HANDBOOK of OPTICAL FILTERS for FLUORESCENCE MICROSCOPY
    CHROMA TECHNOLOGY CORP HANDBOOK of OPTICAL FILTERS for FLUORESCENCE MICROSCOPY by JAY REICHMAN HB2.0/May 2012 CHROMA TECHNOLOGY CORP AN INTRODUCTION TO HANDBOOK of FLUORESCENCE MICROSCOPY 2 OPTICAL FILTERS Excitation and emission spectra for FLUORESCENCE Brightness of the fluorescence signal The fluorescence microscope MICROSCOPY Types of filters used in fluorescence microscopy The evolution of the fluorescence microscope by JAY REICHMAN A GENERAL DISCUSSION OF OPTICAL FILTERS 8 Terminology Available products Colored filter glass Thin-film coatings Acousto-optical filters Liquid Crystal Tunable Filters DESIGNING FILTERS FOR FLUORESCENCE MICROSCOPY 14 Image Contrast Fluorescence spectra Light sources Detectors Beamsplitters Optical quality Optical quality parameters Optical quality requirements for wide-field microscopy FILTER SETS FOR SUB-PIXEL REGISTRATION 24 FILTERS FOR CONFOCAL MICROSCOPY 25 Optical quality requirements Nipkow-disk scanning Laser scanning Spectral requirements Nipkow-disk scanning Laser scanning FILTERS FOR MULTIPLE PROBE APPLICATIONS 29 REFERENCES 30 GLOSSARY 31 Fluorescence microscopy requires optical filters that have demanding spectral and physical characteristics. These performance requirements can vary greatly depending on the specific type of microscope and the specific application. Although they are relatively minor components of a complete microscope system, optimally designed filters can produce quite dramatic benefits, so it is useful to have a working knowledge of the principles of optical filtering as applied to fluorescence microscopy. This guide is a compilation of the principles and know-how that the engineers at Chroma Technology Corp use to design filters for a variety of fluorescence microscopes and applications, including wide-field microscopes, confocal microscopes, and applications involving simultaneous detection of multiple fluorescent probes.
    [Show full text]
  • Primary ENGLISH Boek
    e-learning for primary teachers A step-by-step guide to improving teaching and learning in your classroom This Comenius multilateral project has been funded with the support from the European Commission / Project number 517726-LLP-1-2011-1-BE-COMENIUS-CMP TACCLE2 e-learning for primary teachers A step-by-step guide to improving teaching and learning in your classroom Jenny hughes, nicholas daniels, Editors Jens vermeersch, Project coordinator Fernando Albuquerque Costa, Jan Bierweiler, Linda Castañeda, Nicholas Daniels, Kylene De Angelis, Giulio Gabbianelli, Bruna Durazzi, Mattia Crivellini, Koen DePryck, Gabriela Grosseck, Isabel Gutiérrez Porlán, Jenny Hughes, Laura Malita, Cidalia Marques, Paz Prendes, Pedro Reis, Carla Rodriguez, Mar Sánchez, Carine Schepers, Katleen Vanden Driessche, Authors tACCLe2 - e-LeArning for primAry teachers A step-by-step guide to improving teaching and learning in your classroom Brussels, go! onderwijs van de vlaamse gemeenschap, 2013 If you have any questions regarding this book or the project from which it originated: Jens Vermeersch GO! Onderwijs van de Vlaamse Gemeenschap Internationalisation department Brussels E-mail: [email protected] Jenny Hughes, Nicholas Daniels [Eds.] 76 pp. – 29,7 cm. D/2014/8479/001 ISBN 9789078398134 The editing of this book was finished on 28th of February 2013. Cover-design and layout: Bart Vliegen (www.watchitproductions.be) projeCt website: www.taccle2.eu This Comenius multilateral project has been funded with support from the European Commission Project NUMBER: 517726-LLP-1-2011-1-BE-COMENIUS-CMP. This book reflects the views only of the authors, and the Commission cannot be held responsible for any use that may be made of the information contained therein.
    [Show full text]
  • LED Light Meter
    R8140 LED Light Meter Instruction Manual www.REEDINSTRUMENTS.com Find Quality Products Online at: www.GlobalTestSupply.com [email protected] Table of Contents Introduction ................................................................................................ 3 Product Quality ........................................................................................... 3 Safety ......................................................................................................... 3 Features ...................................................................................................... 3 Included ...................................................................................................... 3 Specifications ............................................................................................. 4 Instrument Description ............................................................................... 5 Display Description .................................................................................... 5 Application Notes and User Tips ................................................................ 6 Protective Cap ...................................................................................... 6 Adjustable Sensor ................................................................................ 6 Operating Instructions .............................................................................6-8 Power On/Off (Automatic Zero Adjustment) .......................................... 6 Unit of Measure
    [Show full text]
  • Nightup Castelldefels Materials I Activitats Per Docents
    NIGHTUP CASTELLDEFELS MATERIALS I ACTIVITATS PER DOCENTS PER QUÈ CONTAMINACIÓ LUMÍNICA? Segurament has anat algun dia al camp o a la muntanya, lluny de les grans ciutats, i t’ha sorprès la gran quantitat d’estrelles que podies observar en el cel durant la nit. Però si mires el cel des d’una ciutat te n’adones que pràcticament no en pots veure cap. Aquest és l’efecte més evident de la contaminació lumínica, que és deguda a la llum artificial que hi ha per tot arreu a les ciutats i altres indrets. Les conseqüències de la contaminació lumínica van més enllà de no poder veure les estrelles: canvis en el comportament dels animals, desordres del son, diferents malalties, desequilibris dels ecosistemes... Tot i això, entre els diferents problemes mediambientals que patim actualment, el de la contaminació lumínica és un dels més senzills de solucionar. Per entendre millor aquest problema, l’ICFO està coordinant el projecte NightUp Castelldefels, un experiment col·laboratiu per investigar la importància del color en la contaminació lumínica. Els participants han de fer fotografies a fonts de llum artificial que troben al carrer a través de la web app del projecte (nightup.icfo.eu). Després, aquestes fotografies seran analitzades amb l’objectiu de realitzar un mapa del color de la il·luminació artificial que pugui ajudar els científics a entendre millor l’impacte de la contaminació lumínica. ICFO I CIÈNCIA CIUTADANA L’ICFO és un centre de recerca que té com a objectiu fer avançar els límits del coneixement de la fotònica, la ciència i la tecnologia de la llum i que està situat al Parc Mediterrani de la Tecnologia de Castelldefels.
    [Show full text]
  • Lasers As Weapons Y 9 Fictional Predictions Y 10 See Also Y 11 Notes and References Y 12 Further Reading Y 13 External Links
    Laser From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see Laser (disambiguation). Laser United States Air Force laser experiment Inventor Charles Hard Townes Launch year 1960 Available? Worldwide Laser beams in fog, reflected on a car windshield Light Amplification by Stimulated Emission of Radiation (LASER or laser) is a mechanism for emitting electromagnetic radiation, often visible light, via the process of stimulated emission. The emitted laser light is (usually) a spatially coherent, narrow low-divergence beam, that can be manipulated with lenses. In laser technology, "coherent light" denotes a light source that produces (emits) light of in-step waves of identical frequency, phase,[1] and polarization. The laser's beam of coherent light differentiates it from light sources that emit incoherent light beams, of random phase varying with time and position. Laser light is generally a narrow-wavelengthelectromagnetic spectrum monochromatic light; yet, there are lasers that emit a broad spectrum of light, or emit different wavelengths of light simultaneously. Contents [hide] y 1 Terminology y 2 Design y 3 Laser physics o 3.1 Modes of operation 3.1.1 Continuous wave operation 3.1.2 Pulsed operation 3.1.2.1 Q-switching 3.1.2.2Modelocking 3.1.2.3 Pulsed pumping y 4 History o 4.1 Foundations o 4.2 Maser o 4.3 Laser o 4.4 Recent innovations y 5 Types and operating principles o 5.1 Gas lasers 5.1.1 Chemical lasers 5.1.2Excimer lasers o 5.2 Solid-state lasers 5.2.1Fiber-hosted lasers 5.2.2 Photonic crystal lasers 5.2.3 Semiconductor lasers o 5.3 Dye lasers o 5.4 Free electron lasers o 5.5 Exotic laser media y 6 Uses o 6.1 Examples by power o 6.2 Hobby uses y 7 Laser safety y 8 Lasers as weapons y 9 Fictional predictions y 10 See also y 11 Notes and references y 12 Further reading y 13 External links Terminology From left to right: gamma rays, X-rays, ultraviolet rays, visible spectrum, infrared, microwaves, radio waves.
    [Show full text]
  • HANDBOOK of OPTICAL FILTERS for FLUORESCENCE MICROSCOPY
    CHROMA TECHNOLOGY CORP HANDBOOK of OPTICAL FILTERS for FLUORESCENCE MICROSCOPY by JAY REICHMAN HB2.0/June 2017 CHROMA TECHNOLOGY CORP AN INTRODUCTION TO HANDBOOK of FLUORESCENCE MICROSCOPY 2 OPTICAL FILTERS Excitation and emission spectra for FLUORESCENCE Brightness of the fluorescence signal The fluorescence microscope MICROSCOPY Types of filters used in fluorescence microscopy The evolution of the fluorescence microscope by JAY REICHMAN A GENERAL DISCUSSION OF OPTICAL FILTERS 8 Terminology Available products Colored filter glass Thin-film coatings Acousto-optical filters Liquid Crystal Tunable Filters DESIGNING FILTERS FOR FLUORESCENCE MICROSCOPY 14 Image Contrast Fluorescence spectra Light sources Detectors Beamsplitters Optical quality Optical quality parameters Optical quality requirements for wide-field microscopy FILTER SETS FOR SUB-PIXEL REGISTRATION 24 FILTERS FOR CONFOCAL MICROSCOPY 25 Optical quality requirements Nipkow-disk scanning Laser scanning Spectral requirements Nipkow-disk scanning Laser scanning FILTERS FOR MULTIPLE PROBE APPLICATIONS 29 REFERENCES 30 GLOSSARY 31 Fluorescence microscopy requires optical filters that have demanding spectral and physical characteristics. These performance requirements can vary greatly depending on the specific type of microscope and the specific application. Although they are relatively minor components of a complete microscope system, optimally designed filters can produce quite dramatic benefits, so it is useful to have a working knowledge of the principles of optical filtering as applied to fluorescence microscopy. This guide is a compilation of the principles and know-how that the engineers at Chroma Technology Corp use to design filters for a variety of fluorescence microscopes and applications, including wide-field microscopes, confocal microscopes, and applications involving simultaneous detection of multiple fluorescent probes.
    [Show full text]