Artificial Optical Radiation

Total Page:16

File Type:pdf, Size:1020Kb

Artificial Optical Radiation Cyan 100% Magenta 76% Yellow 0 Black 27% Guidance for Employers on the Control of Artifi cial Optical Radiation at Work Regulations 2010 Our vision: A national culture where all commit to safe and healthy workplaces and the safe and sustainable management of chemicals Contents Introduction 2 General background information 4 Purpose of the Regulations 5 Requirement of the Control of Artifi cial Optical Radiation at Work Regulations 2010 7 Annexes 14 Annex (A): List of safe light sources 14 Annex (B): Work activities which generate hazardous levels of intense light and the appropriate control measures for them 15 Annex (C): Hierarchical approach for more complex risk assessments 20 Annex (D): List of key safety signs 23 Annex (E): Personal Protective Equipment (PPE) 23 Annex (F): List of less common issues that may be relevant to your business 25 Annex (G): Sources of further Information 25 Published in 2010 by the Health and Safety Authority, The Metropolitan Building, James Joyce Street, Dublin 1. ©All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Health and Safety Authority. Introduction Artifi cial optical radiation exists in most It applies to all undertakings where workers workplaces. Many present little or no risk of may be exposed to artifi cial optical radiation. causing injury or ill health and some allow work It aims to lead users through a logical path for activities to be carried out safely. assessing the risk from exposure of workers to artifi cial optical radiation. All workers are exposed to artifi cial optical radiation. One of the challenges is to ensure The objective of the Guide is to give practical that sources that may present a risk of exposing assistance for the prevention of occupational workers to levels in excess of the exposure limit accidents or ill health associated with sources of values are adequately assessed without the artifi cial optical radiation. It is not intended as a burden of having to assess the majority of legal interpretation of the legislation. sources that do not present a risk under This Guide should be read in conjunction with reasonably foreseeable circumstances – the the Control of Artifi cial Optical Radiation at so-called ‘safe light’ sources. Work Regulations 2010. If you require a more The Health and Safety Authority has produced in-depth understanding, you are advised to this Guide to help businesses satisfy themselves consult the guide produced by the EU entitled A that they are protecting their workers from Non-Binding Guide to the Artifi cial Optical harm associated with very intense light. Radiation Directive 2006/25/EC available at www.hse.gov.uk This Guide aims to give employers guidance on the Control of Artifi cial Optical Radiation at The Regulations transpose Directive 2006/25/ Work Regulations 2010 (S.I. No. 176 of 2010) EC of the European Parliament and Council of available at www.deti.ie 5 April 2006 on the minimum health and safety requirements regarding the exposure of The Regulations lay down the minimum safety workers to risks arising from physical agents requirements for the exposure of workers to (artifi cial optical radiation). risks arising from artifi cial optical radiation. The Regulations do not provide a defi nition of This Guide is primarily intended to assist artifi cial optical radiation. Natural sources such employers, and in particular small and as volcanic eruptions, the sun and refl ected medium-sized enterprises. 2 Guidance for Employers on the Control of Artifi cial Optical Radiation at Work Regulations 2010 Cyan 100% Magenta 76% Yellow 0 Black 27% Introduction solar radiation from, for example, the moon, of other specifi c applications; to present an are clearly excluded. assessment methodology; and also, in some cases, to suggest that further assistance should Optical radiation is a form of non-ionising be sought. radiation and should not be confused with ionising radiation, which is potentially much There are a number of applications of artifi cial more harmful than non-ionising radiation. optical radiation which require direct exposure of employees at levels that may The Regulations do not specifi cally exclude any exceed the exposure limit values. These include artifi cial optical radiation source. However, many some entertainment and medical applications. sources, such as indicator lights on electrical Such applications will need thorough risk equipment, are trivial sources of optical assessments to ensure that the exposure limit radiation. This Guide provides a list of ‘safe values are not exceeded. light’ sources that can be generically assessed as not likely to exceed the exposure limit values The Regulations came into effect on 29 April contained within Schedule 11 of the 2010. Regulations. This guidance includes: There will be some worker exposure scenarios • a list of light sources that are considered which are very intricate and therefore beyond ‘safe light’ sources that will not cause the scope of this Guide. You should seek further harm during their normal use advice on assessing intricate exposure scenarios. (see Annex (A)) and The Regulations cover all artifi cial sources of • examples of work activities which optical radiation from a humble light bulb to a generate hazardous levels of intense light Class 4 laser. Since the Regulations are so and suggested appropriate control all-embracing there is a need to identify measures (see Annex (B)). applications of artifi cial optical radiation that are so insignifi cant with regard to health, that no further assessment is required. This Guide is intended to give an indication of such ‘safe light’ sources; to provide guidance for a number Guidance for Employers on the Control of Artifi cial Optical Radiation at Work Regulations 2010 3 Cyan 100% Magenta 76% Yellow 0 Black 27% General background information What is artifi cial optical radiation? Health effects of exposure to optical radiation Optical radiation is another term for light, covering ultraviolet (UV) radiation, visible light Optical radiation is absorbed in the outer layers and infrared radiation. of the body and, therefore, its biological effects are mostly confi ned to the skin and eyes. Any man-made source of light, whether visible or invisible, is considered to be artifi cial optical The risk posed by optical radiation depends on radiation. Offi ce lighting, computer displays, the type of radiation, its intensity and the part blowtorches, welding arcs and stage lighting are of the body that is exposed to it. The symptoms all examples of typical artifi cial optical radiation of excessive exposure are well defi ned and the sources. The majority of light sources in most areas of the body most at risk are the skin and workplaces are considered trivial and do not the eyes. present any signifi cant optical risk to workers. Exposure of the eyes to optical radiation can damage the cornea and lens, and produce pain and symptoms similar to that of sand in the eye. The effects on the skin range from redness, burning and blistering and accelerated ageing through to various types of skin cancer. These adverse effects are rare as artifi cial sources of optical radiation are well controlled. The misuse of powerful lasers can cause serious damage to the eye, including blindness, as well as producing skin burns. 4 Guidance for Employers on the Control of Artifi cial Optical Radiation at Work Regulations 2010 Cyan 100% Magenta 76% Yellow 0 Black 27% Purpose of the Regulations Why are the Regulations needed? Whether optical radiation is produced deliberately for use or as an unintended A small number of intense sources of light at by-product of a process, it is still necessary work can damage your eyes and skin, and need to control it. to be managed properly. Adherence to these Regulations will ensure that all workers at risk Artifi cially generated optical radiation is present of exposure to artifi cial optical radiation are in most workplaces, but certain workplaces protected. contain more hazardous sources than others. What work activities are likely to be Examples of hazardous sources of very intense affected by the Regulations? light that pose a risk of harm to the eyes and skin of workers which require control measures It is diffi cult to think of an occupation that does include: not involve, at some point, exposure to artifi cially generated optical radiation. Everyone • metal working involving welding (both arc who works in an indoor environment is likely to and oxy-fuel) and plasma cutting, be exposed to optical emissions from lighting • pharmaceuticals and research , where UV and computer screens. Outdoor workers may fl uorescence and sterilisation may be in use, require some form of task lighting when natural illumination is insuffi cient. • hot industries, such as glass and metal working, where furnaces emit infrared Apart from ever-present sources, such as radiation, lighting and computer screens, artifi cial optical radiation may be produced either deliberately, • print industries, where inks and paints are as a necessary part of some process, or else as often set by the process of photo-induced an unwanted by-product. For example, in order polymerisation, to induce fl uorescence in a penetrant dye, it is • motor vehicle repairs, where paints can be necessary to produce UV radiation and expose UV cured, the dye to it. On the other hand, the production of copious UV
Recommended publications
  • Observation of Strong Nonlinear Interactions in Parametric Down
    Observation of strong nonlinear interactions in parametric down- conversion of x-rays into ultraviolet radiation Authors: S. Sofer1*, O. Sefi1*, E. Strizhevsky1, S.P. Collins2, B. Detlefs3, Ch.J. Sahle3, and S. Shwartz1 *S. Sofer and O. Sefi contributed equally to this work. Affiliations: 1Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900 Israel 2 Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom 3 ESRF – The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France. Summary: Nonlinear interactions between x-rays and long wavelengths can be used as a powerful atomic scale probe for light-matter interactions and for properties of valence electrons. This probe can provide novel microscopic information in solids that existing methods cannot reveal, hence to advance the understanding of many phenomena in condensed matter physics. However, thus far, reported x-ray nonlinear effects were very small and their observations required tremendous efforts. Here we report the observation of unexpected strong nonlinearities in parametric down-conversion (PDC) of x-rays to long wavelengths in gallium arsenide (GaAs) and in lithium niobate (LiNbO3) crystals, with efficiencies that are about 4 orders of magnitude stronger than the efficiencies measured in any material studied before. These strong nonlinearities cannot be explained by any known theory and indicate on possibilities for the development of a new spectroscopy method that is orbital and band selective. In this work we demonstrate the ability to use PDC of x-rays to investigate the spectral response of materials in a very broad range of wavelengths from the infrared regime to the soft x-ray regime.
    [Show full text]
  • Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids
    energies Article Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids Michał Kozioł Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland; [email protected] Received: 26 March 2020; Accepted: 29 April 2020; Published: 1 May 2020 Abstract: This article presents the results of the analysis of energy distribution of optical radiation emitted by electrical discharges in insulating liquids, such as synthetic ester, natural ester, and mineral oil. The measurements of optical radiation were carried out on a system of needle–needle type electrodes and on a system for surface discharges, which were immersed in brand new insulating liquids. Optical radiation was recorded using optical spectrophotometry method. On the basis of the obtained results, potential possibilities of using the analysis of the energy distribution of optical radiation as an additional descriptor for the recognition of individual sources of electric discharges were indicated. The results can also be used in the design of various types of detectors, as well as high-voltage diagnostic systems and arc protection systems. Keywords: optical radiation; electrical discharges; insulating liquids; energy distribution 1. Introduction One of the characteristic features of electrical discharges is the emission to the space in which they occur, an electromagnetic wave with a very wide range. Such typical ranges of emitted radiation include ionizing radiation, such as X-rays, optical radiation, acoustic emission, and radio wave emission. Based on most of these emitted ranges, diagnostic methods were developed, which enables the detection and location of the source of electrical discharges, which is a great achievement in the diagnostics of high-voltage electrical insulating devices [1–4].
    [Show full text]
  • Protecting Workers from Ultraviolet Radiation
    Protecting Workers from Ultraviolet Radiation Editors: Paolo Vecchia, Maila Hietanen, Bruce E. Stuck Emilie van Deventer, Shengli Niu International Commission on Non-Ionizing Radiation Protection In Collaboration with: International Labour Organization World Health Organization ICNIRP 14/2007 International Commission on Non-Ionizing Radiation Protection ICNIRP Cataloguing in Publication Data Protecting Workers from Ultraviolet Radiation Protection ICNIRP 14/2007 1. Ultraviolet Radiation 2. Biological effects 3. Non-Ionizing Radiation ISBN 978-3-934994-07-2 The International Commission on Non-Ionizing Radiation Protection welcomes requests for permission to reproduce or translate its publications, in part or full. Applications and enquiries should be addressed to the Scientific Secretariat, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. © International Commission on Non-Ionizing Radiation Protection 2007 Publications of the International Commission on Non-Ionizing Radiation Protection enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. ICNIRP Scientific Secretary Dr. G. Ziegelberger Bundesamt für Strahlenschutz Ingolstädter Landstraße 1 85764 Oberschleißheim Germany Tel: (+ 49 1888) 333 2156 Fax: (+49 1888) 333 2155 e-mail: [email protected] www.icnirp.org Printed by DCM, Meckenheim International Commission on Non-Ionizing Radiation Protection The International Commission on Non-Ionizing Radiation Protection (ICNIRP) is an independent scientific organization whose aims are to provide guidance and advice on the health hazards of non-ionizing radiation exposure. ICNIRP was established to advance non-ionizing radiation protection for the benefit of people and the environment.
    [Show full text]
  • A High-Power Source of Optical Radiation with Microwave Excitation
    ISBN: 978-84-9048-719-8 DOI: http://dx.doi.org/10.4995/Ampere2019.2019.9761 A HIGH-POWER SOURCE OF OPTICAL RADIATION WITH MICROWAVE EXCITATION G. Churyumov1, 2, A. Denisov1, T. Frolova2, N. Wang1, J. Qiu1 11Harbin Institute of Technology, 92, West Dazhi Street, Nan Gang District, Harbin, China 2 Kharkiv National University of Radio Electronics, 14, Nauky Ave., 61166, Kharkiv, Ukraine [email protected] Keywords: microwave heating, magnetron, electrodeless sulfur lamp, plasma, microwave excitation 1. Introduction For more than 50 years, interest to the microwave heating technology has not weakened. In addition to the traditional areas of its application, which described in detail in [1], recently there has been an expansion of technological possibilities for the use of microwave energy associated with the impact of electromagnetic waves of the microwave range on various materials (sintering of metal and ceramic powders) and media, including plasma [2]. One such new direction is the creation of high-power and environmentally friendly sources of optical radiation on the basis of the electrodeless sulfur lamp with microwave excitation [2, 3]. As it is known, Michael Ury and his associates at Fusion Systems invented this radically new lamp in 1990, but the lamp was not ideal because of the complexity of its design [4]. Therefore, it was not put into production. However, every year the scientific interest was growing. An analysis of scientific publications shows that every 5 years a new country is joined to this issue. Now more than in 10 countries of all would including USA, Great Britain, South Korea, Netherlands, Germany, Russia, and so on where there are research teams that are carried out an investigation concerning the electrodeless lamps with microwave excitation.
    [Show full text]
  • Chapter 37: Artificial Optical Radiation
    37 Artificial Optical Radiation Safety Scope 1 Artificial optical radiation (AOR) is electromagnetic radiation emitted by non-natural sources in the wavelength range 100 nm to 1 mm. It includes coherent (laser) and non- coherent (broadband) optical radiation but not all of this radiation is in the visible region1. Hazards from exposure to optical radiation are wavelength dependent, and it is convenient to breakdown the spectrum broadly into three regions namely ultra-violet (UV) radiation; visible radiation; and infra-red (IR) radiation. Both the UV and IR regions may be further broken down into 3 subdivisions. This Chapter details the requirements for the keeping, using and disposal of equipment emitting AOR, or equipment containing components which emit AOR. Table 1 Optical radiation wavelength regions Optical radiation wavelength regions CIE Definition ICNIRP/IEC/ACGIH definition Region λ(nm) λ (nm) UV-C 100 - 280 180 - 280 UV-B 280 - 315 280 - 315 UV-A 315 - 380 315 - 400 Visible 380 - 760 400 - 700 IR-A 760 - 1400 700 - 1400 IR-B 1400 - 3000 1400 - 3000 IR-C 3000 - 1000000 3000 - 1000000 NOTES (1) CIE - International Commission on Illumination. (2) ICNIRP - International Commission on Non Ionising Radiation Protection. (3) IEC - International Electro-technical Committee. (4) ACGIH - American Congress of Government Industrial Hygienists. 1 Generally, AOR is not considered to be a type of ionising radiation. However, parts of the ultraviolet (UV) spectrum furthest from the visible region have some ionising properties. 1 JSP 392 Pt 2 Chapter 37 (V1.1 Dec 2020) Statutory Requirements 2 The Control of Artificial Optical Radiation at Work Regulations 2010 (CAOR 10) applies directly.
    [Show full text]
  • HHE Report No. HETA-98-0224-2714, the Trane
    ThisThis Heal Healthth Ha Hazzardard E Evvaluaaluationtion ( H(HHHEE) )report report and and any any r ereccoommmmendendaatitonsions m madeade herein herein are are f orfor t hethe s sppeeccifiicfic f afacciliilityty e evvaluaaluatedted and and may may not not b bee un univeriverssaalllyly appappliliccabable.le. A Anyny re reccoommmmendaendatitoionnss m madeade are are n noot tt oto be be c consonsideredidered as as f ifnalinal s statatetemmeenntsts of of N NIOIOSSHH po polilcicyy or or of of any any agen agenccyy or or i ndindivivididuualal i nvoinvolvlved.ed. AdditionalAdditional HHE HHE repor reportsts are are ava availilabablele at at h htttptp:/://ww/wwww.c.cddcc.gov.gov/n/nioiosshh/hhe/hhe/repor/reportsts ThisThis HealHealtthh HaHazzardard EEvvaluaaluattionion ((HHHHEE)) reportreport andand anyany rreeccoommmmendendaattiionsons mmadeade hereinherein areare fforor tthehe ssppeecciifficic ffaacciliilittyy eevvaluaaluatteded andand maymay notnot bbee ununiiververssaallllyy appappapplililicccababablle.e.le. A AAnynyny re rerecccooommmmmmendaendaendattitiooionnnsss m mmadeadeade are areare n nnooott t t totoo be bebe c cconsonsonsiideredderedidered as asas f fifinalnalinal s ssttataatteteemmmeeennnttstss of ofof N NNIIOIOOSSSHHH po popolliilccicyyy or oror of ofof any anyany agen agenagencccyyy or oror i indndindiivviviiddiduuualalal i invonvoinvollvvlved.ed.ed. AdditionalAdditional HHEHHE reporreporttss areare avaavaililabablele atat hhtttpp::///wwwwww..ccddcc..govgov//nnioiosshh//hhehhe//reporreporttss This Health Hazard Evaluation (HHE) report and any recommendations made herein are for the specific facility evaluated and may not be universally applicable. Any recommendations made are not to be considered as final statements of NIOSH policy or of any agency or individual involved. Additional HHE reports are available at http://www.cdc.gov/niosh/hhe/reports HETA 98–0224–2714 The Trane Company Ft.
    [Show full text]
  • The Eye and Electromagnetic Radiation
    The Eye and Electromagnetic Radiation Patrick D. Yoshinaga, OD, MPH, FAAO Author’s Bio Dr. Pat Yoshinaga is an Assistant Professor at the Marshall B. Ketchum University, Southern California College of Optometry and teaches in the areas of ophthalmic optics, public health, and low vision. He is a Fellow of the American Academy of Optometry and a Diplomate in the Academy’s Public Health and Environmental Vision Section. Previously he has worked in private practice and has served as Director of Contact Lens Services at the University of Southern California Doheny Eye Institute. ________________________________________________________________________________________________ Throughout our lifetimes we are all exposed to sunlight, which includes a broad section of the electromagnetic spectrum. Included in this section are ultraviolet light (UV), with wavelengths from approximately 295 nm to 400 nm, visible light (400-800 nm) and infrared (800-1200 nm) [1]. Sunlight and UV radiation can have both beneficial and detrimental effects on humans. Detrimental effects include aging of the skin, sunburn, skin cancer and cataracts. However, sunlight and UV exposure are beneficial for vitamin D development, which can affect bone health. Additionally, sunlight affects melatonin and serotonin production, which help regulate the body’s circadian rhythm and may also contribute to overall health [2]. When considering UV rays we understand that the UV spectrum is divided into UVC rays (100-280 nm), UVB rays (280-315 nm), and UVA rays (315-400 nm). It has been well documented that UV radiation can damage the eye. Factors that affect the damage that the eye may incur include the wavelength of light, the intensity, duration of exposure, cumulative effect, angle of incidence, solar elevation in the sky, ground reflection, altitude, and the anatomy of the eyebrow and eyelids [1, 3].
    [Show full text]
  • Terahertz Waves for Communications and Sensing
    M. J. FITCH AND R. OSIANDER Terahertz Waves for Communications and Sensing Michael J. Fitch and Robert Osiander The development of technology in the THz frequency band has seen rapid progress recently. Considered as an extension of the microwave and millimeter wave bands, the THz frequency offers greater communications bandwidth than is available at microwave frequencies. The development of sources and detectors for this frequency range has been driven by other applications such as spectroscopy, imaging, and impulse ranging. Only recently modulators and fi lters have been added to enable the development of communi- cations applications. APL’s contributions to date in THz research have been primarily in the areas of spectroscopy and imaging. This article gives an overview of THz technology for communications and sensing applications, with some discussion of the sources, detec- tors, and modulators needed for a practical THz communications system. INTRODUCTION Until recently, the THz (1012 Hz) region of the elec- the development of effi cient sources, sensitive detectors, tromagnetic spectrum from about 100 GHz to 10 THz and suitable modulators in this range. has been almost inaccessible because of the lack of effi - The electromagnetic spectrum is shown in Fig. 1. For cient sources and detectors in this “THz gap.” Beginning the lower frequencies, including RFs for AM and FM in the 1960s, the main interest in developing detectors radio as well as microwaves, the sources are based on in this frequency range was motivated by astrophys- electric generation governed by the classical transport ics, since the rotational spectra of some gases of astro- of electrons.
    [Show full text]
  • Lasers and Optical Radiation
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of either the World Health Organization, the United Nations Environment Programme, or the International Radiation Protection As- sociation, Environmental Health Criteria 23 LASERS AND OPTICAL RADIATION Published under the joint sponsorship of the United Nations Environment Programme, the World Health Organization, and the International Radiation Protection Association 4 World Health Organization -re- Geneva, 1982 ISBN 92 4 1540834 © World Health Organization 1982 Publications of the World Health Organization enjoy copyright protec- tion in accordance with the provisions of Protocol 2 of the Universal Copy- right Convention. For rights of reproduction or translation of WHO publica- tions, In part or in toto, application should be made to the Office of Publica- tions, World Health Organization, Geneva, Switzerland. The World Health Organization welcomes such applications. The designations employed and the presentation of the material in this publication dor6f4mply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any eotit4territory, city or area or of its authorities, or concerning the delimitatien,of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in Preference to others of a similar oature that are not men- tioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital Letters. PRINTED IN FINLAND 33 5635 VAMMALA 7 5i) -3- CONTENTS ENVIRONMENTAL HEALTH CRITERIA FOR LASERS AND OPTICAL RADIATION .......................
    [Show full text]
  • Theory of Nonlinear Interactions Between X Rays and Optical Radiation in Crystals
    PHYSICAL REVIEW RESEARCH 1, 033133 (2019) Theory of nonlinear interactions between x rays and optical radiation in crystals R. Cohen and S. Shwartz Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel (Received 17 December 2018; published 27 November 2019) We show that the nonlinear interactions between x rays and longer wavelengths in crystals depend strongly on the band structure and related properties. Consequently, these types of interactions can be used as a powerful probe for fundamental properties of crystalline bulk materials. In contrast to previous work that highlighted that these types of nonlinear interactions can provide microscopic information on the valence electrons at the atomic scale resolution, we show that these interactions also contain information that is related to the periodic potential of the crystal. We explain how it is possible to distinguish between the two contributions. Our work indicates on the possibility for the development of novel multidimensional pump-probe metrology techniques that will provide spectroscopic information combined with structural information including ultrafast dynamics at the atomic scale. DOI: 10.1103/PhysRevResearch.1.033133 I. INTRODUCTION matching). The use of the reciprocal lattice vector also pro- vides the atomic scale resolution, which can be achieved by The possibility to utilize nonlinear interactions between measuring the efficiencies of the effect for many reciprocal x rays and radiation at wavelengths ranging from infrared lattice vectors and by using Fourier analysis [3]. Since the (IR) to ultraviolet (UV) as an atomic-scale probe for inter- goal of the measurements is to probe microscopic informa- molecular interactions and for properties of valence electrons tion, the use of crystals introduces a new challenge for the has been discussed in several publications [1–9].
    [Show full text]
  • Chapter 2 Incandescent Light Bulb
    Lamp Contents 1 Lamp (electrical component) 1 1.1 Types ................................................. 1 1.2 Uses other than illumination ...................................... 2 1.3 Lamp circuit symbols ......................................... 2 1.4 See also ................................................ 2 1.5 References ............................................... 2 2 Incandescent light bulb 3 2.1 History ................................................. 3 2.1.1 Early pre-commercial research ................................ 4 2.1.2 Commercialization ...................................... 5 2.2 Tungsten bulbs ............................................. 6 2.3 Efficacy, efficiency, and environmental impact ............................ 8 2.3.1 Cost of lighting ........................................ 9 2.3.2 Measures to ban use ...................................... 9 2.3.3 Efforts to improve efficiency ................................. 9 2.4 Construction .............................................. 10 2.4.1 Gas fill ............................................ 10 2.5 Manufacturing ............................................. 11 2.6 Filament ................................................ 12 2.6.1 Coiled coil filament ...................................... 12 2.6.2 Reducing filament evaporation ................................ 12 2.6.3 Bulb blackening ........................................ 13 2.6.4 Halogen lamps ........................................ 13 2.6.5 Incandescent arc lamps .................................... 14 2.7 Electrical
    [Show full text]
  • The High Performance Home Manual
    THE HIGH PERFORMANCE HOME MANUAL THE HIGH PERFORMANCE HOME MANUAL This document, along with the detailed drawings, is presented to offer our clients a roadmap in developing an "High Performance" home. This is not necessarily a "Green" home and does not take into consideration air-quality. It focuses on resource efficiency, energy efficiency, water conservation, and "providing for the future"; all of which are a part of a “green” home design, but not exhaustive. In some instances, we have provided “preferred” options as well as less costly means of attaining a near "High Performance" home. IMPORTANT: It is important to note that this information (these parameters) and the related detailed drawings are specifically for homes that are to be built in Southwest Texas (primarily the "hill country" type climate). The Climate Zone is three (3). Site Design Features: • Heat Mitigation: a. Shade hardscape (drives, walks, etc.) with shade trees or such. b. Utilize turf pavers for drive and/or walks, patios, etc. Resource Efficiency: • Drip edge (eaves and gables): a. Minimizes wicking and water distribution off roof material, decking, and fascia. • Roof Water Discharge: a. Provide gutters and downspout system with splash blocks (or such) to carry water a minimum of five feet from foundation (or utilize water harvesting system – see below). • Finish Grade: a. Provide a minimum fall of six inches for each ten feet from edge of building. • Flashing (galvanized metal): a. Flash roof valleys. b. Flash deck/balcony to building intersections. c. Flash at roof-to-wall intersections and roof-to-chimney intersections. d. Provide a drip cap above windows and doors that are not flashed or protected by coverings like pent roofs or are recessed in the exterior wall at least 24 inches.
    [Show full text]