Algal Flora of Korea

Total Page:16

File Type:pdf, Size:1020Kb

Algal Flora of Korea Algal Flora of Korea Volume 4, Number 2 Rhodophyta: Florideophyceae: Nemaliophycidae: Acrochaetiales, Colaconematales, Palmariales, Nemaliales Nemalian Red Algae Flora and Fauna of Korea National Institute of Biological Resources Ministry of Environment National Institute of Biological Resources Ministry of Environment Russia CB Chungcheongbuk-do CN Chungcheongnam-do HB GB Gyeongsangbuk-do China GG Gyeonggi-do YG GN Gyeongsangnam-do GW Gangwon-do HB Hamgyeongbuk-do JG HN Hamgyeongnam-do HWB Hwanghaebuk-do HN HWN Hwanghaenam-do PB JB Jeollabuk-do JG Jagang-do JJ Jeju-do JN Jeollanam-do PN PB Pyeonganbuk-do PN Pyeongannam-do YG Yanggang-do HWB HWN GW East Sea GG GB (Ulleung-do) Yellow Sea CB CN GB JB GN JN JJ South Sea Algal Flora of Korea Volume 4, Number 2 Rhodophyta: Florideophyceae: Nemaliophycidae: Acrochaetiales, Colaconematales, Palmariales, Nemaliales Nemalian Red Algae 2011 National Institute of Biological Resources Ministry of Environment Algal Flora of Korea Volume 4, Number 2 Rhodophyta: Florideophyceae: Nemaliophycidae: Acrochaetiales, Colaconematales, Palmariales, Nemaliales Nemalian Red Algae Il-Ki Hwang and Hyung-Seop Kim1 National Fisheries Research and Development Institute 1Gangneung-Wonju National University Copyright ⓒ 2011 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, Gyeongseo-dong, Seo-gu Incheon 404-708, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources. ISBN : 9788994555621-96470 Government Publications Registration Number 11-1480592-000163-01 Printed by Junghaengsa, Inc. in Korea on acid-free paper Publisher : Chong-chun Kim Project Staff : Hong-Yul Seo, Ye Eun, Joo-Lae Cho Published on February 28, 2011 The Flora and Fauna of Korea logo was designed to represent six major target groups of the project including vertebrates, invertebrates, insects, algae, fungi, and bacteria. The book cover and the logo were designed by Jee-Yeon Koo. Preface Biological resources are important elements encompassing organisms, genetic resources, and parts of organisms which provide potential values essential for human lives. The creation of high-valued products such as new varieties of organisms, new substances, and the development of new drugs by harnessing biological resources is now widely perceived to be one of the major indices of national competitiveness. In the wake of the “Convention of Biological Diversity”, which was adopted in 1992 in recognition of national sovereignty over indigenous biological and genetic resources, all the countries of the world are now concerting their efforts on the discovery of original materials for the bio-industry, initiating international competition in the 21st century. Competition among countries for biological resources is now entering an intense phase following the adoption of the ABS (Access to genetic resources and Benefit-Sharing) international regime in Nagoya in 2010. For this reason, the National Institute of Biological Resources of the Korean Ministry of Environment recognizes the preservation and management of the biological resources in Korea for the bio-industry as a first priority project for the future, and has begun publication of Flora and Fauna of Korea for the systematic preservation and efficient management of our biological resources. Korea has been acclaimed as a country with a high level of biological diversity, the total number of described species in Korea to date being about 37,000. Beginning in 2006, the National Institute of Biological Resources embarked on the publication of Flora and Fauna of Korea which, containing comprehensive and diverse information on our invaluable native species, has become the standard textbook of native species. The systematic survey of diverse taxa in all parts of Korea led by a group of professionals in the field of taxonomy over the past four years has finally come to fruition and culminated in the appearance of 16 monographs in the 2010 volumes of Flora and Fauna of Korea encompassing 1,037 species in 158 families belonging to 9 phyla, along with further volumes of Flora and Fauna of Korea encompassing 1,163 species in 112 families belonging to 7 phyla due to appear this year. This is the first volume of Flora and Fauna of Korea in which a taxon of organisms of the Korean Peninsula is extensively treated at the level of species. Flora and Fauna of Korea will contribute to raising the standard of Korean taxonomy and improve pride in the management of our biological resources through enhanced understanding of the true nature of our native species. In addition, I am confident that the ongoing publication of Flora and Fauna of Korea will significantly contribute to paving the way for sustainable, wise use of biological resources. I would like to express my sincerest gratitude to Dr. Il-Ki Hwang, National Fisheries Research and Development Institute and Professor Hyung-Seop Kim, Gangneung-Wonju National University, who are responsible for writing this publication of Flora and Fauna of Korea. This series will play a pivotal role in the census of native Korean species, which are estimated to number 100,000. By promoting innovative and taxonomic research for the identification of the totality of native Korean species and by continuously publishing such results in Flora and Fauna of Korea, I sincerely hope that a valuable foundation will be laid for the sustainable use of our national biological resources through the exten- sive research, development and for their profitable use by a prosperous bio-industry in the creation of high-valued products such as natural products, medicines, cosmetics and essential supplements in our country. Chong-chun Kim, Ph. D. President NIBR 1 Contents List of Taxa 2 Introduction 4 Materials and Methods 7 Taxonomic Notes 9 1. Acrochaetium canariense Børgesen 12 2. Acrochaetium catenulatum Howe 13 3. Acrochaetium densum (Drew) Papenfuss 15 4. Acrochaetium inkyui Lee 17 5. Acrochaetium microscopicum (Nägeli ex Kützing) Nägeli 19 6. Acrochaetium sancti-thomae Børgesen 22 7. Acrochaetium scapae (Lyle) Papenfuss 24 8. Acrochaetium secundatum (Lyngbye) Nägeli in Nägeli et Cramer 25 9. Acrochaetium terminale (Nakamura) Lee 28 10. Acrochaetium virgatulum (Harvey) Batters 30 11. Rhodochorton purpureum (Lightfoot) Rosenvinge 33 12. Colaconema bispora (Børgesen) Hwang et Kim, comb. nov. 37 13. Colaconema codicola (Børgesen) Stegenga, Bolton et Anderson 39 14. Colaconema codii (Crouan et Crouan) Hwang et Kim, comb. nov. 42 15. Colaconema compta (Børgesen) Hwang et Kim, comb. nov. 44 16. Colaconema daviesii (Dillwyn) Stegenga 47 17. Colaconema dictyotae (Collins) Hwang et Kim, comb. nov. 51 18. Colaconema elegans (Drew) Hwang et Kim, comb. nov. 54 19. Colaconema hyalosiphoniae (Nakamura) Hwang et Kim, comb. nov. 56 20. Colaconema infestans (Howe et Hoyt) Woelkerling 58 21. Colaconema pacificum (Kylin) Woelkerling 61 22. Colaconema thuretii (Bornet) Gabrielson in Gabrielson, Widdowson, Lindstrom, Hawkes et Scagel 64 23. Rhodonematella subimmersa (Setchell et Gardner) Clayden et Saunders 69 24. Actinotrichia fragilis (Forsskål) Børgesen 74 25. Dichotomaria apiculata (Kjellman) Kurihara et Masuda 76 26. Dichotomaria falcata (Kjellman) Kurihara et Masuda 79 27. Galaxaura rugosa (J. Ellis et Solander) J.V. Lamouroux 83 28. Tricleocarpa cylindrica (J. Ellis et Solander) Husiman et Borowitzka 84 29. Helminthocladia australis Harvey 88 30. Nemalion vermiculare Suringar 91 Literature Cited 94 Index to Korean Names 105 Index to Korean Names as Pronounced 106 Index to Scientific Names 108 2 List of Taxa Subclass Nemaliophycidae Christensen 1978 Order Acrochaetiales Feldmann emend. Harper et Saunders 2002 Family Acrochaetiaceae Fritsch emend. Harper et Saunders 2002 Genus Acrochaetium Nägeli enmed. Harper et Saunders 2002 Acrochaetium canariense Børgesen 1927 Acrochaetium catenulatum Howe 1914 Acrochaetium densum (Drew) Papenfuss 1945 Acrochaetium inkyui Lee 1987 Acrochaetium microscopicum (Nägeli ex Kützing) Nägeli 1861 Acrochaetium sancti-thomae Børgesen 1915 Acrochaetium scapae (Lyle) Papenfuss 1945 Acrochaetium secundatum (Lyngbye) Nägeli in Nägeli et Cramer 1858 Acrochaetium terminale (Nakamura) Lee 1987 Acrochaetium virgatulum (Harvey) Batters 1902 Genus Rhodochorton Nägeli emend. Harper et Saunders 2002 Rhodochorton purpureum (Lightfoot) Rosenvinge 1900 Order Colaconematales Harper et Saunders 2002 Family Colaconemataceae Harper et Saunders 2002 Genus Colaconema Batters enmend. Harper et Saunders 2002 Colaconema bispora (Børgesen) Hwang et Kim, comb. nov. Colaconema codicola (Børgesen) Stegenga, Bolton et Anderson 1997 Colaconema codii (Crouan et Crouan) Hwang et Kim, comb. nov. Colaconema compta (Børgesen) Hwang et Kim, comb. nov. Colaconema daviesii (Dillwyn) Stegenga 1985 Colaconema dictyotae (Collins) Hwang et Kim, comb. nov. Colaconema elegans (Drew) Hwang et Kim, comb. nov. Colaconema hyalosiphoniae (Nakamura) Hwang et Kim, comb. nov. Colaconema infestans (Howe et Hoyt) Woelkerling 1973 Colaconema pacificum (Kylin) Woelkerling 1971 Colaconema thuretii (Bornet) Gabrielson in Gabrielson, Widdowson, Lindstrom, Hawkes et Scagel 2000 Order Palmariales Guiry et Irvine in Guiry 1978 Famliy Rhodophysemataceae Saunders et McLachlan 1989 Genus Rhodonematella Clayden
Recommended publications
  • A Taxonomic Account of Non-Geniculate Coralline Algae (Corallinophycidae, Rhodophyta) from Shallow Reefs of the Abrolhos Bank, Brazil
    Research Article Algae 2016, 31(4): 317-340 https://doi.org/10.4490/algae.2016.31.11.16 Open Access A taxonomic account of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil Michel B. Jesionek1, Ricardo G. Bahia1, Jazmín J. Hernández-Kantún2, Walter H. Adey2, Yocie Yoneshigue-Valentin3, Leila L. Longo4 and Gilberto M. Amado-Filho1,* ¹Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Diretoria de Pesquisa Científica, Rua Pacheco Leão 915, Rio de Janeiro, RJ 22460-030, Brazil ²Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, USA ³Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Rio de Janeiro, RJ 21941-902, Brazil 4Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Vitória, ES 29075-910, Brazil The Abrolhos Continental Shelf (ACS) encompasses the largest and richest coral reefs in the southern Atlantic Ocean. A taxonomic study of non-geniculate coralline algae (NGCA) from the region was undertaken using both morpho-ana- tomical and molecular data. Specimens of NGCA were collected in 2012 and 2014 from shallow reefs of the ACS. Phylo- genetic analysis was performed using dataset of psbA DNA sequences from 16 specimens collected in the ACS and ad- ditional GenBank sequences of related NGCA species. Nine common tropical reef-building NGCA species were identified and described: Hydrolithon boergesenii, Lithophyllum kaiseri, Lithophyllum sp., Lithothamnion crispatum, Melyvonnea erubescens, Pneophyllum conicum, Porolithon onkodes, Sporolithon ptychoides, and Titanoderma prototypum. A key for species identification is also provided in this study.
    [Show full text]
  • Mitochondrial and Plastid Genomes from Coralline Red Algae Provide Insights Into the Incongruent Evolutionary Histories of Organelles
    GBE Mitochondrial and Plastid Genomes from Coralline Red Algae Provide Insights into the Incongruent Evolutionary Histories of Organelles JunMoLee1, Hae Jung Song1, Seung In Park1,YuMinLee1, So Young Jeong2,TaeOhCho2,JiHeeKim3, Han-Gu Choi3, Chang Geun Choi4, Wendy A. Nelson5,6, Suzanne Fredericq7, Debashish Bhattacharya8,and Hwan Su Yoon1,* 1Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea 2Department of Marine Life Science, Chosun University, Gwangju, Korea 3Division of Life Sciences, Korea Polar Research Institute, KOPRI, Incheon, Korea 4Department of Ecological Engineering, Pukyong National University, Busan, Korea 5National Institute for Water and Atmospheric Research, Wellington, New Zealand 6School of Biological Sciences, University of Auckland, New Zealand 7Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana 8Department of Biochemistry and Microbiology, Rutgers University *Corresponding author: E-mail: [email protected]. Accepted: September 27, 2018 Data deposition: All plastid genome sequences have been deposited as GenBank under Accession Numbers MH281621–MH281630. Abstract Mitochondria and plastids are generally uniparentally inherited and have a conserved gene content over hundreds of millions of years, which makes them potentially useful phylogenetic markers. Organelle single gene-based trees have long been the basis for elucidating interspecies relationships that inform taxonomy. More recently, high-throughput genome sequencing has enabled the construction of massive organelle
    [Show full text]
  • A Morphological and Phylogenetic Study of the Genus Chondria (Rhodomelaceae, Rhodophyta)
    Title A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) Author(s) Sutti, Suttikarn Citation 北海道大学. 博士(理学) 甲第13264号 Issue Date 2018-06-29 DOI 10.14943/doctoral.k13264 Doc URL http://hdl.handle.net/2115/71176 Type theses (doctoral) File Information Suttikarn_Sutti.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) 【紅藻ヤナギノリ属(フジマツモ科)の形態学的および系統学的研究】 Suttikarn Sutti Department of Natural History Sciences, Graduate School of Science Hokkaido University June 2018 1 CONTENTS Abstract…………………………………………………………………………………….2 Acknowledgement………………………………………………………………………….5 General Introduction………………………………………………………………………..7 Chapter 1. Morphology and molecular phylogeny of the genus Chondria based on Japanese specimens……………………………………………………………………….14 Introduction Materials and Methods Results and Discussions Chapter 2. Neochondria gen. nov., a segregate of Chondria including N. ammophila sp. nov. and N. nidifica comb. nov………………………………………………………...39 Introduction Materials and Methods Results Discussions Conclusion Chapter 3. Yanagi nori—the Japanese Chondria dasyphylla including a new species and a probable new record of Chondria from Japan………………………………………51 Introduction Materials and Methods Results Discussions Conclusion References………………………………………………………………………………...66 Tables and Figures 2 ABSTRACT The red algal tribe Chondrieae F. Schmitz & Falkenberg (Rhodomelaceae, Rhodophyta) currently
    [Show full text]
  • Audouinella Violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta)
    Proceedings of the Iowa Academy of Science Volume 84 Number Article 5 1977 A Floridean Red Alga New to Iowa: Audouinella violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta) Donald R. Roeder Iowa State University Let us know how access to this document benefits ouy Copyright ©1977 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Roeder, Donald R. (1977) "A Floridean Red Alga New to Iowa: Audouinella violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta)," Proceedings of the Iowa Academy of Science, 84(4), 139-143. Available at: https://scholarworks.uni.edu/pias/vol84/iss4/5 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Roeder: A Floridean Red Alga New to Iowa: Audouinella violacea (Kutz.) Ha A Floridean Red Alga New to Iowa: Audouinella violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta) DONALD R. ROEDER 1 D ONALD R. R OEDER (Department of Botany and Plant Pathology, Iowa dominant wi th Cladophora glomerata (L.) Kutz. The alga was morphologicall y State University, Ames, Iowa 50011 ). A floridean red alga new to Iowa: similar to the Chantransia -stage of Batrachospermum fo und elsewhere in Iowa. Audouinella violacea (Kutz.) Hamel (Acrochaetiaceae, Rhodophyta), Proc. However, because mature Batrachospermum pl ants were never encountered in IowaAcad. Sci. 84(4): 139- 143, 1977. the Skunk River over a five year period, the aJga was assumed to be an Audouinella violacea (Kutz.) Hamel, previously unreported from Iowa, was an independent entity.
    [Show full text]
  • Mitochondrial and Plastid Genomes from Coralline Red Algae Provide
    GBE Mitochondrial and Plastid Genomes from Coralline Red Algae Provide Insights into the Incongruent Evolutionary Histories Downloaded from https://academic.oup.com/gbe/article-abstract/10/11/2961/5145068 by SUNG KYUN KWAN UNIV SCIENCE LIB user on 21 November 2018 of Organelles JunMoLee1, Hae Jung Song1, Seung In Park1,YuMinLee1, So Young Jeong2,TaeOhCho2,JiHeeKim3, Han-Gu Choi3, Chang Geun Choi4, Wendy A. Nelson5,6, Suzanne Fredericq7, Debashish Bhattacharya8,and Hwan Su Yoon1,* 1Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea 2Department of Marine Life Science, Chosun University, Gwangju, Korea 3Division of Life Sciences, Korea Polar Research Institute, KOPRI, Incheon, Korea 4Department of Ecological Engineering, Pukyong National University, Busan, Korea 5National Institute for Water and Atmospheric Research, Wellington, New Zealand 6School of Biological Sciences, University of Auckland, New Zealand 7Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana 8Department of Biochemistry and Microbiology, Rutgers University *Corresponding author: E-mail: [email protected]. Accepted: September 27, 2018 Data deposition: All plastid genome sequences have been deposited as GenBank under Accession Numbers MH281621–MH281630. Abstract Mitochondria and plastids are generally uniparentally inherited and have a conserved gene content over hundreds of millions of years, which makes them potentially useful phylogenetic markers. Organelle single gene-based trees have long been the basis for elucidating interspecies relationships that inform taxonomy. More recently, high-throughput genome sequencing has enabled the construction of massive organelle genome databases from diverse eukaryotes, and these have been used to infer species relationships in deep evolutionary time. Here, we test the idea that despite their expected utility, conflicting phylogenetic signal may exist in mitochondrial and plastid genomes from the anciently diverged coralline red algae (Rhodophyta).
    [Show full text]
  • Keynote and Oral Papers1. Algal Diversity and Species Delimitation
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Keynote and Oral Papers To cite this article: (2015) Keynote and Oral Papers, European Journal of Phycology, 50:sup1, 22-120, DOI: 10.1080/09670262.2015.1069489 To link to this article: http://dx.doi.org/10.1080/09670262.2015.1069489 Published online: 20 Aug 2015. Submit your article to this journal Article views: 76 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [University of Kiel] Date: 22 September 2015, At: 02:13 Keynote and Oral Papers 1. Algal diversity and species delimitation: new tools, new insights 1KN.1 1KN.2 HOW COMPLEMENTARY BARCODING AND GENERATING THE DIVERSITY - POPULATION GENETICS ANALYSES CAN UNCOVERING THE SPECIATION HELP SOLVE TAXONOMIC QUESTIONS AT MECHANISMS IN FRESHWATER AND SHORT PHYLOGENETIC DISTANCES: THE TERRESTRIAL MICROALGAE EXAMPLE OF THE BROWN ALGA Š PYLAIELLA LITTORALIS Pavel kaloud ([email protected]) Christophe Destombe1 ([email protected]), Department of Botany, Charles Univrsity in Prague, Alexandre Geoffroy1 ([email protected]), Prague 12801, Czech Republic Line Le Gall2 ([email protected]), Stéphane Mauger3 ([email protected]) and Myriam Valero4 Species are one of the fundamental units of biology, ([email protected]) comparable to genes or cells. Understanding the general patterns and processes of speciation can facilitate the 1Station Biologique de Roscoff, Sorbonne Universités, formulation and testing of hypotheses in the most impor- Université Pierre et Marie Curie, CNRS, Roscoff tant questions facing biology today, including the fitof 29688, France; 2Institut de Systématique, Evolution, organisms to their environment and the dynamics and Biodiversité, UMR 7205 CNRS-EPHE-MNHN-UPMC, patterns of organismal diversity.
    [Show full text]
  • Kitayama, T., 2010. the Identity of the Endozoic Red Alga
    Bull. Natl. Mus. Nat. Sci., Ser. B, 35(4), pp. 183–187, December 22, 2009 The Identity of the Endozoic Red Alga Rhodochortonopsis spongicola Yamada (Acrochaetiales, Rhodophyta) Taiju Kitayama Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, 305–0005 Japan E-mail: [email protected] Abstract The identity and status of the unusual endozoic red alga, Rhodochortonopsis spongico- la Yamada (Acrochaetiales, Rhodophyta) was reassessed, by reexamining the type specimens (TNS). This species was originally described as the only representative of the monospecific genus Rhodochortonopsis by Yamada (1944), based on material collected by the Emperor Showa. Yama- da (1944) observed single stichidia (specialized branches bearing tetrasporangia) and considered them as the discriminant character to distinguish this genus from all the members of the order Acrochaetiales. This study shows that these specimens are actually belonging to the species Acrochaetium spongicola Weber-van Bosse. The presence of “stichidia” is actually an artifact, due to a cover of sponge spicules, forming bundles originally mistaken as part of the alga. Consequent- ly, the genus Rhodochortonopsis has no entity. Key words : Acrochaetiales, Acrochaetium spongicola, endozoic red alga, Rhodochortonopsis spongicola, Rhodophyta. and suggested a possible relationship of Introduction Rhodochortonopsis to the order Gigartinales (and Epizoic and endozoic marine algae (i.e. living not Acrochaetiales) because of the cystocarpic on or inside animal bodies) have been little stud- structures of the female plants and the presence ied. This is inherent to the difficulties of collect- of a structure similar to Yamada’s “stichidia”. In ing, isolating from the animal host (especially for this research the identity of this species is re- endozoic algae) and making voucher specimens assessed by examination of the type specimens.
    [Show full text]
  • Coralline Red Algae from the Silurian of Gotland Indicate That the Order Corallinales (Corallinophycidae, Rhodophyta) Is Much Older Than Previously Thought
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330432279 Coralline red algae from the Silurian of Gotland indicate that the order Corallinales (Corallinophycidae, Rhodophyta) is much older than previously thought Article in Palaeontology · January 2019 DOI: 10.1111/pala.12418 CITATIONS READS 4 487 3 authors: Sebastian Teichert William J. Woelkerling Friedrich-Alexander-University of Erlangen-Nürnberg La Trobe University 29 PUBLICATIONS 249 CITATIONS 149 PUBLICATIONS 4,804 CITATIONS SEE PROFILE SEE PROFILE Axel Munnecke Friedrich-Alexander-University of Erlangen-Nürnberg 201 PUBLICATIONS 5,073 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Cephalopod Taphonomy: from soft-tissues to shell material View project Reef recovery after the end-Ordovician extinction View project All content following this page was uploaded by Sebastian Teichert on 23 January 2019. The user has requested enhancement of the downloaded file. [Palaeontology, 2019, pp. 1–15] CORALLINE RED ALGAE FROM THE SILURIAN OF GOTLAND INDICATE THAT THE ORDER CORALLINALES (CORALLINOPHYCIDAE, RHODOPHYTA) IS MUCH OLDER THAN PREVIOUSLY THOUGHT by SEBASTIAN TEICHERT1 , WILLIAM WOELKERLING2 and AXEL MUNNECKE1 1Fachgruppe Pal€aoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universit€at Erlangen-Nurnberg€ (FAU), Erlangen, Germany; [email protected] 2Department of Ecology, Environment & Evolution, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3086, Australia Typescript received 30 August 2018; accepted in revised form 3 December 2018 Abstract: Aguirrea fluegelii gen. et sp. nov. (Corallinales, within the family Corallinaceae and order Corallinales. Corallinophycidae, Rhodophyta) is described from the mid- Extant evolutionary history studies of Corallinophycidae Silurian of Gotland Island, Sweden (Hogklint€ Formation, involving molecular clocks now require updating using new lower Wenlock).
    [Show full text]
  • Colaconemataceae, Rhodophyta)—A New Endophytic Filamentous Red Algal Species from Taiwan
    Journal of Marine Science and Engineering Article Molecular and Morphological Characterization of Colaconema formosanum sp. nov. (Colaconemataceae, Rhodophyta)—A New Endophytic Filamentous Red Algal Species from Taiwan Meng-Chou Lee 1,2,3 and Han-Yang Yeh 1,* 1 Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; [email protected] 2 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan 3 Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2462-2192 (ext. 5231) Abstract: The genus Colaconema, containing endophytic algae associated with economically important macroalgae, is common around the world, but has rarely been reported in Taiwan. A new species, C. formosanum, was found attached to an economically important local macroalga, Sarcodia suae, in southern Taiwan. The new species was confirmed based on morphological observations and molecular analysis. Both the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and cytochrome c oxidase subunit I (COI-5P) genes showed high genetic variation between our sample and related species. Anatomical observations indicated that the new species presents asexual Citation: Lee, M.-C.; Yeh, H.-Y. Molecular and Morphological reproduction by monospores, cylindrical cells, irregularly branched filaments, a single pyrenoid, and Characterization of Colaconema single parietal plastids. Our research supports the taxonomic placement of C. formosanum within the formosanum sp. nov. genus Colaconema. This study presents the third record of the Colaconema genus in Taiwan. (Colaconemataceae, Rhodophyta)—A New Endophytic Filamentous Red Keywords: Acrochaetioid; Colaconema formosanum; COI-5P; Endophytic alga; Nemaliophycidae; Algal Species from Taiwan.
    [Show full text]
  • The Red Algal Genus Audouinella Bory Nemaliales: Acrochaetiaceae) from North Carolina
    The Red Algal Genus Audouinella Bory Nemaliales: Acrochaetiaceae) from North Carolina SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES • NUMBER 22 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • A Possible Link Between Coral Reef Success, Crustose Coralline Algae and the Evolution of Herbivory
    www.nature.com/scientificreports OPEN A possible link between coral reef success, crustose coralline algae and the evolution of herbivory Sebastian Teichert 1*, Manuel Steinbauer 1,2 & Wolfgang Kiessling 1 Crustose coralline algae (CCA) play a key role in the consolidation of many modern tropical coral reefs. It is unclear, however, if their function as reef consolidators was equally pronounced in the geological past. Using a comprehensive database on ancient reefs, we show a strong correlation between the presence of CCA and the formation of true coral reefs throughout the last 150 million years. We investigated if repeated breakdowns in the potential capacity of CCA to spur reef development were associated with sea level, ocean temperature, CO2 concentration, CCA species diversity, and/or the evolution of major herbivore groups. Model results show that the correlation between the occurrence of CCA and the development of true coral reefs increased with CCA diversity and cooler ocean temperatures while the diversifcation of herbivores had a transient negative efect. The evolution of novel herbivore groups compromised the interaction between CCA and true reef growth at least three times in the investigated time interval. These crises have been overcome by morphological adaptations of CCA. Coral reefs support the biologically most diverse marine ecosystems and have done so over substantial parts of earth history, starting in the Late Triassic, when scleractinian corals became prolifc reef builders 1. Mitigating the threats to modern coral reef ecosystems will thus beneft from a better understanding of the underlying causes in the rise and fall of ancient coral reefs 2.
    [Show full text]
  • Reproduction of Rhodochorton Purpureum from Jeju Island, Korea and San Juan Island, Washington, USA in Laboratory Culture
    Algae Volume 21(1): 103-107, 2006 Reproduction of Rhodochorton purpureum from Jeju Island, Korea and San Juan Island, Washington, USA in Laboratory Culture Kathryn A. West1, John A. West1* and Yongpil Lee2 1School of Botany, University of Melbourne, Parkville VIC 3010, Australia 2Department of Life Science, Jeju National University, Jeju 690-756, Korea Rhodochorton purpureum 4187 from Jeju Island, Korea may have a sexual life history similar to that seen by other investigators working on other strains around the world. In culture short days (8:16, 11:13, 12:12 LD) at 10-15°C induced tetrasporogenesis. Discharged spores were observed with time lapse videomicroscopy. They showed a slight amoeboid movement for 2-3 minutes before rounding up and settling. Tetrasporelings develop into male and female gametophytes. No fertilisation was observed. Tetrasporangia often were borne on carpogonial clusters of females but no discharged spores were seen. Isolate 4241 from San Juan I., Washington, USA grew well in most conditions tested but did not reproduce in short days (8:16, 11:13, 12:12 LD) at 10-15°C. Key Words: Korea, USA, Rhodochorton purpureum, short-day-tetrasporogenesis, spore-motility, time lapse videomi- croscopy, unisexual 1987) but its reproduction had not been investigated. We INTRODUCTION wished to determine the optimum culture conditions for tetrasporogenesis and gametophyte development as well Rhodochorton purpureum (Lightfoot) Rosenvinge is a red as to determine if discharged spores and spermatia were alga (Florideophyceae, Acrochaetiales, Acrochaetiaceae) motile using time lapse videomicroscopy. that occurs in shaded upper intertidal marine habitats of temperate to cold water regions of the north and south MATERIALS AND METHODS hemispheres.
    [Show full text]