QUBIC V: Cryogenic System Design and Performance
Total Page:16
File Type:pdf, Size:1020Kb
Prepared for submission to JCAP QUBIC V: Cryogenic system design and performance S. Masi1;2 E.S. Battistelli1;2 P. de Bernardis1;2 C. Chapron3 F. Columbro1;2 A. Coppolecchia1;2 G. D'Alessandro1;2 M. De Petris1;2 L. Grandsire3 J.-Ch. Hamilton3 L. Lamagna1;2 S. Marnieros4 L. Mele1;2 A. May5 A. Mennella6;7 C. O'Sullivan8 A. Paiella1;2 F. Piacentini1;2 M. Piat3 L. Piccirillo5 G. Presta1;2 A. Schillaci1;9 A. Tartari10 J.-P. Thermeau3 S.A. Torchinsky3;11 F. Voisin3 M. Zannoni12;13 P. Ade14 J.G. Alberro15 A. Almela16 G. Amico1 L.H. Arnaldi17 D. Auguste4 J. Aumont18 S. Azzoni19 S. Banfi12;13 A. Ba`u12;13 B. B´elier20 D. Bennett8 L. Berg´e4 J.-Ph. Bernard18 M. Bersanelli6;7 M.-A. Bigot-Sazy3 J. Bonaparte21 J. Bonis4 E. Bunn22 D. Burke8 D. Buzi1 F. Cavaliere6;7 P. Chanial3 R. Charlassier3 A.C. Cobos Cerutti16 G. De Gasperis23;24 M. De Leo1;25 S. Dheilly3 C. Duca16 L. Dumoulin4 A. Etchegoyen16 A. Fasciszewski21 L.P. Ferreyro16 D. Fracchia16 C. Franceschet6;7 M.M. Gamboa Lerena26;27 K.M. Ganga3 B. Garc´ıa16 M.E. Garc´ıa Redondo16 M. Gaspard4 D. Gayer8 M. Gervasi12;13 M. Giard18 V. Gilles1;5 Y. Giraud-Heraud3 M. G´omezBerisso17 M. Gonz´alez17 M. Gradziel8 M.R. Hampel16 D. Harari17 S. Henrot-Versill´e4 F. Incardona6;7 E. Jules4 J. Kaplan3 C. Kristukat28 S. Loucatos3;29 T. Louis4 B. Maffei30 W. Marty18 A. Mattei2 M. McCulloch5 D. Melo16 L. Montier18 L. Mousset3 L.M. Mundo15 J.A. Murphy8 J.D. Murphy8 F. Nati12;13 E. Olivieri4 C. Oriol4 F. Pajot18 A. Passerini12;13 H. Pastoriza17 A. Pelosi2 C. Perbost3 M. Perciballi2 F. Pezzotta6;7 G. Pisano14 M. Platino16 G. Polenta1;31 D. Pr^ele3 R. Puddu32 D. Rambaud18 E. Rasztocky33 P. Ringegni15 33 16 26;27 8;34 arXiv:2008.10659v2 [astro-ph.IM] 25 Aug 2021 G.E. Romero J.M. Salum C.G. Sc´occola S. Scully S. Spinelli12 G. Stankowiak3 M. Stolpovskiy3 A.D. Supanitsky16 P. Timbie35 M. Tomasi6;7 C. Tucker14 G. Tucker36 D. Vigan`o6;7 N. Vittorio23 F. Wicek4 M. Wright5 and A. Zullo2 1Universit`adi Roma - La Sapienza, Roma, Italy 2INFN sezione di Roma, 00185 Roma, Italy 3Universit´ede Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France 4Laboratoire de Physique des 2 Infinis Ir`eneJoliot-Curie (CNRS-IN2P3, Universit´eParis- Saclay), France 5University of Manchester, UK 6Universit`adegli studi di Milano, Milano, Italy 7INFN sezione di Milano, 20133 Milano, Italy 8National University of Ireland, Maynooth, Ireland 9California Institute of Technology, USA 10INFN sezione di Pisa, 56127 Pisa, Italy 11Observatoire de Paris, Universit´eParis Science et Lettres, F-75014 Paris, France 12Universit`adi Milano - Bicocca, Milano, Italy 13INFN sezione di Milano - Bicocca, 20216 Milano, Italy 14Cardiff University, UK 15GEMA (Universidad Nacional de La Plata), Argentina 16Instituto de Tecnolog´ıas en Detecci´ony Astropart´ıculas (CNEA, CONICET, UNSAM), Argentina 17Centro At´omicoBariloche and Instituto Balseiro (CNEA), Argentina 18Institut de Recherche en Astrophysique et Plan´etologie,Toulouse (CNRS-INSU), France 19Department of Physics, University of Oxford, UK 20Centre de Nanosciences et de Nanotechnologies, Orsay, France 21Centro At´omicoConstituyentes (CNEA), Argentina 22University of Richmond, Richmond, USA 23Universit`adi Roma \Tor Vergata", Roma, Italy 24INFN sezione di Roma2, 00133 Roma, Italy 25University of Surrey, UK 26Facultad de Ciencias Astron´omicasy Geof´ısicas(Universidad Nacional de La Plata), Ar- gentina 27CONICET, Argentina 28Escuela de Ciencia y Tecnolog´ıa(UNSAM) and Centro At´omicoConstituyentes (CNEA), Argentina 29IRFU, CEA, Universit´eParis-Saclay, F-91191 Gif-sur-Yvette, France 30Institut d'Astrophysique Spatiale, Orsay (CNRS-INSU), France 31Italian Space Agency, Roma, Italy 32Pontificia Universidad Catolica de Chile, Chile 33Instituto Argentino de Radioastronom´ıa(CONICET, CIC, UNLP), Argentina 34Institute of Technology, Carlow, Ireland 35University of Wisconsin, Madison, USA 36Brown University, Providence, USA Abstract. Current experiments aimed at measuring the polarization of the Cosmic Mi- crowave Background (CMB) use cryogenic detector arrays with cold optical systems to boost their mapping speed. For this reason, large volume cryogenic systems with large optical windows, working continuously for years, are needed. The cryogenic system of the QUBIC (Q & U Bolometric Interferometer for Cosmology) experiment solves a combination of simul- taneous requirements: very large optical throughput (∼40 cm2sr), large volume (∼1 m3) and large mass (∼165 kg) of the cryogenic instrument. Here we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat that uses two pulse-tube refrigerators to cool the instrument to ∼3 K. The instrument includes the cryogenic polar- ization modulator, the corrugated feedhorn array, and the lower temperature stages: a 4He evaporator cooling the interferometer beam combiner to ∼1 K and a 3He evaporator cooling the focal-plane detector arrays to ∼0.3 K. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33 K, while the polarization modulator has operated at a ∼10 K base temperature. The system has been tilted to cover the boresight elevation range 20◦-90◦ without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes. Keywords: CMBR experiments, CMBR polarisation, CMBR detectors, Cryogenic Systems ArXiv ePrint: 2008.10659 Contents 1 Introduction1 2 Main cryostat3 2.1 General design3 2.2 Mechanical design5 2.2.1 Vacuum shell5 2.2.2 Minimization of induced vibrations6 2.2.3 40-K and 3-K stages and supports7 2.3 Thermal design8 2.3.1 Loads on the 40-K stage8 2.3.2 Loads on the 3-K stage 11 3 1-K and 0.3-K stages 12 3.1 1-K stage 12 3.1.1 Thermo-mechanical design 12 3.1.2 1-K evaporation refrigerator 13 3.2 0.3-K stage 15 3.2.1 Thermo-mechanical design 15 3.2.2 0.3-K evaporation refrigerator 16 4 Test and Validation 17 4.1 Performance of the 40-K and 3-K stages 17 4.1.1 Pre-cooling time 17 4.1.2 Response to non-static heat loads 18 4.2 Performance of the 1-K stage 18 4.3 Performance of the 0.3-K stage 20 4.4 Tilt tests 21 5 Conclusions 22 1 Introduction Cosmic Microwave Background (CMB) polarization is a very important tool for investigating several phases of the evolution of the universe, including the very early inflation phase (see e.g. [1]). For this reason, the search for CMB polarization is vigorously pursued by many experiments worldwide. The expected signal is very small, in the sub µKrms range, and large angular scales are involved. For these reasons CMB polarimeters must feature high sensitivity and, once the sensitivity is limited by photon noise, high mapping speed, combined with extremely demanding accuracy and stability. Most of the current experiments are scanning imagers (see e.g. [2{5] ). The Q & U Bolometric Interferometer for Cosmology (QUBIC) [6{8], is a bolometric interferometer, combining the high mapping speed of bolometer arrays with the beam purity and control of systematic effects of interferometers. A block-diagram of the instrument is shown in the top panel of figure1. The main characteristics are reported in table1. In order to achieve long integrations and minimize atmospheric emission and noise, { 1 { the instrument will operate from a site in the high Argentinean Andes, at an altitude of ∼ 5000m, exploiting its thin and cold atmosphere. As all modern CMB experiments using bolometer arrays, the detectors of QUBIC require a large sub-K cryogenic system to operate at the required level of sensitivity. The development of custom cryogenics for CMB receivers has a long history. The need of fast sky mapping, involving large fields of view and collecting areas, drove the development of increasingly large cryogenic systems (see e.g. [9{15]). Sub-K cooling can be obtained by means of simple sealed L4He and L3He evaporation refrigerators (EVRs, see e.g. [16{18]), if an operating temperature ∼300 mK is sufficient. The detectors of QUBIC operate in two bands, centered at 150 and 220 GHz, around the maximum brightness of the CMB. The bandpasses (130-170 GHz and 200-300 GHz) match the width of the atmospheric windows, exploiting the low emissivity (typically ∼ 2% and ∼ 4%, respectively) of the cold (∼240 K), rarefied atmosphere above the site. The integrated radiative load from the atmosphere, for single-mode detectors, is of the order of 2 and 10 pW at 150 and 220 GHz, respectively (assuming 40% globalp efficiency), and the photonp noise (neglecting turbulence) is of the order of 2 × 10−17 W= Hz and 7 × 10−17 W= Hz respec- tively. Similar additional loads (and photon noises) are expected fromp the optical window and the filter chain. This means that detectors with NEP ∼10−17 W= Hz can be used to obtain photon-noise-limited performance. Such an NEP can be achieved using TES detectors operating at 0.3 K (see [19]). Detector operation at lower temperatures would not signifi- cantly improve the overall performance of the instrument. This means that we can avoid the complexity of dilution and adiabatic demagnetization refrigerators, improving the reliability of the instrument. The 3He refrigerator is used to cool the detector arrays, while the 4He refrigerator is used to cool the optical beam combiner and the filter stack, reducing their radiative loading on the detectors. Due to the large optical throughput of the system, the volume of the 1-K section of the instrument is of the order of 1 m3.