Observing the Polarized Microwave Sky Over the Puna

Total Page:16

File Type:pdf, Size:1020Kb

Observing the Polarized Microwave Sky Over the Puna Vol. 1, No. 4, September 2020 // pp. 47-65 / Vol. , No., Revised 20 September 2019 QUBIC: Observing the Polarized Microwave Sky QUBIC: observing the polarized microwave sky over the Puna over the Puna QUBIC Collaboration: Beatriz García Garc´ıa1,1 Diego, Diego Harari Harari2*, Claudia2*, Claudia Scóccola Scoccola´ 3, Peter3, PeterAde4, José Ade4 G., Jos Alberroe´ G.3 Alberro, Alejandro3, Alejandro Almela1, Giorgio Amico5, Horacio Arnaldi2, Didier Auguste6, Jonathan Aumont7, Susanna Azzoni8, Stefano Banfi9,10, Paola Battaglia11, Elia Battistelli 5,12, Alessandro Bau´ 9,10, Benoit Belier´ 13, David G. Bennett14, Laurent Berge´ 15, Jean-Philippe Bernard16, Marco Bersanelli17,18, Marie-Anne Bigot Sazy19, Nathan Bleurvacq19, Juan Bonaparte20, Julien Bonis6, Asdrubal´ Bottani3, Emory Bunn21, David Burke14, Daniele Buzi5, Alessandro Buzzelli22,23, Francesco Cavaliere17,18, Pierre Chanial19, Claude Chapron19, Romain Charlassier19, Fabio Columbro5,12, Gabriele Coppi24, Alessandro Coppolecchia5,12, Giuseppe D’Alessandro5,12, Paolo de Bernardis5,12, Giancarlo De Gasperis22,23, Stephane´ Dheilly19, Michele De Leo5,25, Marco De Petris5,12, Andres´ Di Donato20, Louis Dumoulin15, Alberto Etchegoyen1, Adrian´ Fasciszewski20, Luciano P. Ferreyro1, Diego Fracchia1, Cristian Franceschet17,18, Mart´ın Miguel Gamboa Lerena3, Kenneth Ganga19, Manuel E. Garc´ıa Redondo1, Michel Gaspard6, Amanda Gault26, Donnacha Gayer14, Massimo Gervasi 9,10, Martin Giard16, Valerio Gilles5, Yannick Giraud Heraud´ 19, Mariano Gomez´ Berisso2, Manuel Gonzalez´ 2, Marcin Gradziel14, Laurent Grandsire19, Jean-Christophe Hamilton19, Vic Haynes8, Sophie Henrot-Versille´ 6, Duc Thuong Hoang19,27, Federico Incardona17,18, Eric Jules6, Jean Kaplan19, Andrei Korotkov28, Christian Kristukat20,29, Luca Lamagna5,12, Sotiris Loucatos19, Thibaut Louis6, Raul´ Horacio Luterstein20, Bruno Maffei7, Stefanos Marnieros15, Silvia Masi,5,12, Angelo Mattei12, Andrew May8, Mark McCulloch8, Maria Clementina Medina30, Lorenzo Mele5, Simon J. Melhuish8, Aniello Mennella17,18, Ludovic Montier16, Louise Mousset19, Luis Mariano Mundo3, John Anthony Murphy14, James David Murphy14, Federico Nati9,10, Creidhe´ O’Sullivan14, Emiliano Olivieri15, Alessandro Paiella5,12, Franc¸ ois Pajot16, Andrea Passerini9,10, Hernan Pastoriza2, Alessandro Pelosi12, Camille Perbost19, Maurizio Perciballi12, Federico Pezzotta17,18, Francesco Piacentini5,12, Michel Piat19, Lucio Piccirillo8, Giampaolo Pisano4, Manuel Platino1, Gianluca Polenta31, Damien Preleˆ 19, Roberto Puddu32, Damien Rambaud16, Pablo Ringegni3, Gustavo E. Romero30, Maria Salatino33, Juan M. Salum1, Alessandro Schillaci34, Stephen P. Scully14,35, Sebastiano Spinelli9, Guillaume Stankowiak19, Michail Stolpovskiy19, Federico Suarez1, Andrea Tartari36, Jean Pierre Thermeau19, Peter Timbie26, Maurizio Tomasi17,18, Steve A. Torchinsky19, Matthieu Tristram6, Carole E. Tucker4, Gregory S. Tucker28, Sylvain Vanneste6, Daniele Vigano´ 17, Nicola Vittorio22,23, Fabrice Voisin19, Robert Watson8, Francois Wicek6, Mario Zannoni9,10 and Antonio Zullo12 1Instituto de Tecnolog´ıas en Deteccion´ y Astropart´ıculas (CNEA-CONICET-UNSAM), Buenos Aires B1650, Argentina 2Centro Atomico´ Bariloche and Instituto Balseiro, CNEA, San Carlos de Bariloche R8402AGP, Argentina 3Universidad Nacional de la Plata, La Plata B1900FWA, Argentina 4School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK 5Department of Physics, Universita` di Roma La Sapienza, 00185 Roma, Italy 6Laboratoire de l’Accel´ erateur´ Lineaire´ (CNRS-IN2P3), 91898 Orsay, France 7Institut d’Astrophysique Spatiale (CNRS-INSU), 91405 Orsay 8School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, UK 9Department of Physics, Universita` di Milano Bicocca, 20126 Milano, Italy 47 // Vol. 1, No. 4, September 2020 QUBIC: Observing the Polarized Microwave Sky over the Puna 10Istituto Nazionale di Fisica Nucleare Milano Bicocca Section, 20126 Milano, Italy 11Istituto Nazionale di Astrofisica/OAS Bologna, 40129 Bologna, Italy 12Istituto Nazionale di Fisica Nucleare Roma 1 Section, 00185 Roma, Italy 13Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France 14Department of Experimental Physics, National University of Ireland, Mariavilla, Maynooth 99MX+QH, Ireland 15Centre de Spectrometrie´ Nucleaire´ et de Spectrometrie´ de Masse (CNRS-IN2P3), 91405 Orsay, France 16Institut de Recherche en Astrophysique et Planetologie´ (CNRS-INSU), 31028 Toulouse, France 17Dipartimento di Fisica, Universita` degli Studi di Milano, 20133 Milano, Italy 18Istituto Nazionale di Fisica Nucleare Milano 1 Section, 20133 Milano, Italy 19AstroParticule et Cosmologie (CNRS-IN2P3), 75013 Paris, France 20Comision´ Nacional De Energia Atomica,´ C1429BNP Buenos Aires, Argentina 21Department of Physics, Richmond University, Richmond, VA 23173, USA 22Dipartimento di Fisica, Universita` di Roma Tor Vergata, 00133 Roma, Italy 23Istituto Nazionale di Fisica Nucleare Roma Tor Vergata section, 00133 Roma, Italy 24 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia 19104, USA 25Department of Physics, University of Surrey, Guildford GU2 7XH, UK 26Department of Physics, University of Wisconsin, Madison, WI 53706, USA 27 University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam 28Department of Physics, Brown University, Providence, RI 02912, USA 29 Escuela de Ciencia y Tecnolog´ıa, Universidad Nacional de San Mart´ın, San Martin 1650, Argentina 30Instituto Argentino de Radioastronom´ıa, Berazategui 1880, Argentina 31Agenzia Spaziale Italiana, 00133 Rome, Italy 32 Instituto de Astrof´ısica and Centro de Astro-Ingenier´ıa, Pontificia Universidad Catolica´ de Chile, Santiago 782046, Chile 33Kavli Institute for Particle Astrophysics and Cosmology and Physics Department, Stanford University, Stanford, CA 94305 USA 34 Department of Physics, California Institute of Technology, Pasadena, California 91125, USA 35Institute of Technology Carlow, Ireland 36Istituto Nazionale di Fisica Nucleare Pisa Section, 56127 Pisa, Italy *Correspondence: [email protected] Abstract QUBIC (Q&U(Q&U Bolometric Bolometric Interferometer Interferometer for Cosmology)for Cosmology) is an experi-is an experimentment designed designed to measure to measure the polarization the polarization of the cosmic of the microwave cosmic microwavebackground background (CMB), the relic(CMB), radiation the relic from radiation the Big-Bang. from Detailedthe Big- Bang.measurements Detailed ofmeasurements tiny temperature of tiny anisotropies temperature in the anisotropies CMB shaped in theour CMB understanding shaped our of understanding the early Universe. of theAccurate early Universe. measurements Accurate measurementsof its polarization of its may polarization reveal even may earlier reveal features, even earlier in particular features, inthe particular presence the of gravitationalpresence of wavesgravitational with primordial waves with origin. primordial Such origin.measurements Such measurements can probe inflationary can probe cosmological inflationary models, cosmological which models,postulate which that quantumpostulate effectsthat quantum during aneffects accelerated during an expansion accelerated at expansionthe earliest stagesat the afterearliest the Big-Bangstages after produced the Big-Bang gravitational produced waves gravitationalalong with the waves density along fluctuations with the that density later seededfluctuations galaxy that forma- later seededtion. QUBIC galaxy will formation. join other QUBIC international will join efforts other international currently pursuing efforts currentlythis goal usingpursuing a novel this goal approach, using a which novel combinesapproach, thewhich sensitivity combines of thebolometric sensitivity detectors of bolometric with the detectors control of with systematic the control effects of systematic provided effects provided by interferometry. After its current calibration phase by interferometry. After its current calibration phase is completed a is completed a technological demonstrator already constructed in technological demonstrator already constructed in European labo- European laboratories will be deployed in Alto Chorrillos, a site in ratories will be deployed in Alto Chorrillos, a site in the Puna near the Puna near San Antonio de los Cobres, Salta, Argentina. The San Antonio de los Cobres, Salta, Argentina. The complete first complete first module of the instrument is planned to be installed module of the instrument is planned to be installed during 2020. We during 2020. We review the scientific goals of the project, the review the scientific goals of the project, the instrument design and instrument design and its expected performance. its expected performance. Keywords: Keywords bolometric interferometry, cosmic microwave background, Bolometric Interferometry, Cosmic Microwave Background, Cosmol- cosmology, gravitational waves, polarization, transition-edge ogy, Gravitational Waves, Polarization, Transition-Edge Sensors sensors 48 QUBIC:// Science Observing Reviews. the Vol.Polarized , No., Microwave Sky over the PunaQUBIC: observing the polarized// Vol. microwave 1, No. 4, September sky over the 2020 Puna 10Istituto Nazionale di Fisica Nucleare Milano Bicocca Section, 20126 Milano, Italy Introduction 11Istituto Nazionale di Astrofisica/OAS Bologna, 40129 Bologna, Italy 12 Istituto Nazionale di Fisica Nucleare Roma 1 Section, 00185 Roma, Italy 1 The oldest light in the Universe is the Cosmic
Recommended publications
  • Analysis and Measurement of Horn Antennas for CMB Experiments
    Analysis and Measurement of Horn Antennas for CMB Experiments Ian Mc Auley (M.Sc. B.Sc.) A thesis submitted for the Degree of Doctor of Philosophy Maynooth University Department of Experimental Physics, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland. October 2015 Head of Department Professor J.A. Murphy Research Supervisor Professor J.A. Murphy Abstract In this thesis the author's work on the computational modelling and the experimental measurement of millimetre and sub-millimetre wave horn antennas for Cosmic Microwave Background (CMB) experiments is presented. This computational work particularly concerns the analysis of the multimode channels of the High Frequency Instrument (HFI) of the European Space Agency (ESA) Planck satellite using mode matching techniques to model their farfield beam patterns. To undertake this analysis the existing in-house software was upgraded to address issues associated with the stability of the simulations and to introduce additional functionality through the application of Single Value Decomposition in order to recover the true hybrid eigenfields for complex corrugated waveguide and horn structures. The farfield beam patterns of the two highest frequency channels of HFI (857 GHz and 545 GHz) were computed at a large number of spot frequencies across their operational bands in order to extract the broadband beams. The attributes of the multimode nature of these channels are discussed including the number of propagating modes as a function of frequency. A detailed analysis of the possible effects of manufacturing tolerances of the long corrugated triple horn structures on the farfield beam patterns of the 857 GHz horn antennas is described in the context of the higher than expected sidelobe levels detected in some of the 857 GHz channels during flight.
    [Show full text]
  • ELIA STEFANO BATTISTELLI Curriculum Vitae
    ELIA STEFANO BATTISTELLI Curriculum Vitae Place: Rome, Italy Date: 03/09/2019 Part I – General Information Full Name ELIA STEFANO BATTISTELLI Date of Birth 29/03/1973 Place of Birth Milan, Italy Citizenship Italian Work Address Physics Dep., Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy Work Phone Number +39 06 49914462 Home Address Via Romolo Gigliozzi, 173, scala B, 00128, Rome, Italy Mobile Phone Number +39 349 6592825 E-mail [email protected] Spoken Languages Italian (native), English (fluent), Spanish (fluent), French (basic) Part II – Education Type Year Institution Notes (Degree, Experience,..) University graduation 1999 Sapienza University (RM, IT) Physics 1996 University of Leeds, UK Erasmus project Post-graduate studies 2000 SIGRAV (CO, IT) Graduate School in Relativity 2000 INAF (Asiago, VI, IT) Scuola Nazionale Astrofisica 2001 INAF/INFN (FC, IT) Scuola Nazionale Astroparticelle 2004 Società Italiana Fisica (CO, IT) International Fermi School 2006 Princeton University (NJ,USA) Summer School on Gal. Cluster PhD 2004 Sapienza University (RM, IT) PhD in Astronomy (XV cycle) Training Courses 2007 University of British Columbia 40-hours course in precision (BC, CA) machining 2009 Programma Nazionale Ricerche 2 weeks training course for the in Antartide (PNRA) Antarctic activity in remote camps Qualification 2013 Ministero della Pubblica National scientific qualification for Istruzione Associate Professor 2012, SSD 02/C1 (ASN-2012) Part III – Appointments IIIA – Academic Appointments Start End Institution Position 11/2018 present Sapienza University of Rome, Physics Associate Professor;Physics Department Department (Rome, Italy) SSD 02/C1-FIS/05 (Astrophysics) 11/2015 11/2018 Sapienza University of Rome, Physics Tenure track assistant professor Department (Rome, Italy) (Ricercatore a Tempo Determinato RTD- B-type).
    [Show full text]
  • Cosmic Microwave Background Activities at IN2P3
    Cosmic Microwave Background activities at IN2P3 IN2P3 permanent researchers and research engineers APC: James G. Bartlett (Pr.-UPD – Planck), Pierre Binétruy (Pr.-UPD), Martin Bucher (DR2-CNRS – Planck), Jacques Delabrouille (DR2-CNRS – Planck), Ken Ganga (DR1-CNRS – Planck), Yannick Giraud- Héraud (DR1-CNRS - Planck/QUBIC), Laurent Grandsire (IR-CNRS – QUBIC), Jean-Christophe Hamilton (DR2-CNRS – QUBIC), Jean Kaplan (DR émérite-CNRS – Planck/QUBIC), Maude Le Jeune (IR-CNRS – Planck/POLARBEAR), Guillaume Patanchon (MCF-UPD – Planck), Michel Piat (Pr-UPD - Planck/QUBIC), Damien Prêle (IR-CNRS - QUBIC), Cayetano Santos (IR-CNRS, R&D mm), Radek Stompor (DR1-CNRS – Planck/POLARBEAR), Bartjan van Tent (MCF-UPS – Planck), Fabrice Voisin (IR-CNRS – QUBIC/R&D mm); CSNSM: Laurent Bergé (IR-CNRS – QUBIC/R&D mm), Louis Dumoulin (DR émérite-CNRS – QUBIC/R&D mm), Stefanos Marnieros (CR-CNRS – QUBIC/R&D mm); LAL: François Couchot (DR1- CNRS – Planck/QUBIC), Sophie Henrot-Versillé (CR1-CNRS – Planck/QUBIC), Olivier Perdereau (DR2- CNRS – Planck/QUBIC), Stéphane Plaszczynski (DR2-CNRS – Planck/QUBIC), Matthieu Tristram (CR1- CNRS – Planck/QUBIC); LPSC: Olivier Bourrion (IR1-CNRS – NIKA/NIKA2), Andrea Catalano (CR2-CNRS – Planck/NIKA/NIKA2), Céline Combet (CR2-CNRS – Planck), Juan Francisco Macías-Perez (DR2-CNRS – Planck/NIKA/NIKA2), Frédéric Mayet (MCF-UJF – NIKA/NIKA2), Laurence Perotto (CR1-CNRS – Planck/NIKA/NIKA2), Cécile Renault (CR1-CNRS – Planck), Daniel Santos (DR1-CNRS – Planck) IN2P3 Postdoctoral fellows and PhD students APC: Ranajoy Banerji
    [Show full text]
  • FOR the QUBIC CMB David G. Bennett B.Sc
    ___________________________________________________ DESIGN AND ANALYSIS OF A QUASI-OPTICAL BEAM COMBINER FOR THE QUBIC CMB INTERFEROMETER ___________________________________________________ David G. Bennett B.Sc. Research Supervisor: Dr. Créidhe O'Sullivan Head of Department: Prof. J.A. Murphy A thesis submitted for the degree of Doctor of Philosophy Sub-mm Optics Research Group Department of Experimental Physics National University of Ireland, Maynooth Co. Kildare Ireland 9th July 2014 Contents 1 The Cosmic Microwave Background 8 1.1 A signal from the early Universe . 8 1.2 A brief history of CMB observations . 9 1.3 Modern Cosmology and the CMB . 12 1.3.1 The Big Bang and the expanding Universe . 12 1.3.2 CMB temperature power spectra . 14 1.3.3 Primary temperature anisotropies . 18 1.3.4 Secondary anisotropies . 19 1.3.5 CMB Polarization . 21 1.3.6 The CMB and Inflation . 27 1.4 Recent CMB experiments . 28 1.5 The CMB and the cosmological parameters . 29 1.6 Conclusions . 33 2 QUBIC: An Experiment designed to measure CMB B-mode polarization 35 2.1 Introducing QUBIC . 35 2.2 Interferometry . 35 2.2.1 Interferometers in astronomy . 35 2.2.2 Radio receivers . 37 2.2.3 Additive Bolometric Interferometry . 39 2.3 The QUBIC experiment . 41 2.3.1 QUBIC specifications . 42 2.4 Phase Shifting and equivalent baselines . 49 2.5 Quasi optical analysis techniques . 55 2.5.1 Methods for the optical modeling of CMB experiments . 55 2.5.2 Geometrical optics . 58 2 2.5.3 Physical optics (PO) . 59 2.5.4 Quasi optics .
    [Show full text]
  • Kinetic Inductance Detectors for the OLIMPO Experiment: In–Flight Operation and Performance
    Prepared for submission to JCAP Kinetic Inductance Detectors for the OLIMPO experiment: in–flight operation and performance S. Masi,a;b;1 P. de Bernardis,a;b A. Paiella,a;b F. Piacentini,a;b L. Lamagna,a;b A. Coppolecchia,a;b P. A. R. Ade,c E. S. Battistelli,a;b M. G. Castellano,d I. Colantoni,d;e F. Columbro,a;b G. D’Alessandro,a;b M. De Petris,a;b S. Gordon, f C. Magneville,g P. Mauskopf, f;h G. Pettinari,d G. Pisano,c G. Polenta,i G. Presta,a;b E. Tommasi,i C. Tucker,c V. Vdovin,l;m A. Volpei and D. Yvong aDipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy bIstituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, 00185 Roma, Italy cSchool of Physics and Astronomy, Cardiff University, Cardiff CF24 3YB, UK dIstituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma, Italy ecurrent address: CNR-Nanotech, Institute of Nanotechnology c/o Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185, Roma, Italy f School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA gIRFU, CEA, Université Paris-Saclay, F-91191 Gif sur Yvette, France hDepartment of Physics, Arizona State University, Tempe, AZ 85257, USA iItalian Space Agency, Roma, Italy lInstitute of Applied Physics RAS, State Technical University, Nizhnij Novgorov, Russia mASC Lebedev PI RAS, Moscow, Russia E-mail: [email protected] Abstract. We report on the performance of lumped–elements Kinetic Inductance Detector (KID) arrays for mm and sub–mm wavelengths, operated at 0:3 K during the stratospheric flight of the OLIMPO payload, at an altitude of 37:8 km.
    [Show full text]
  • ABSTRACT BOOK – 17Th International Workshop on Low Temperature Detectors
    { ABSTRACT BOOK { 17th International Workshop on Low Temperature Detectors Kurume, Fukuoka, Japan June 28, 2017 Preface The International Workshop on Low Temperature Detectors (LTD) is the biennial meeting to present and discuss latest results on research and development of cryogenic detectors for radiation and particles, and on applications of those detectors. The 17-th workshop will be held at Kurume City Plaza in Kurume city, Fukuoka Japan from 17th of July through 21st. The workshop will be organized with the following six sessions: 1. Keynote talks 2. Sensor Physics & Developments, • TES, MMC, MKIDS, STJ, Semiconductors, Novel detectors, others 3. Readout Techniques & Signal processing • Electronics, Multiplexing, Filtering, Imaging, Microwave circuit, Data analysis, others 4. Fabrication & Implementation Techniques • Fabrication process, MEMS, Pixel array, Microwave wirings, others 5. Cryogenics and Components • Refrigerators, Window techniques, Optical Blocking Filters, others 6. Applications • Electromagnetic wave & photon (mm-wave, THZ, IR, Visible, X-ray, Gamma-ray), Particles, Neutrons, CMB, Dark Matter, Neutrinos, Particle & Nuclear Physics, Rare Event Search, Material Analysis & Life Science Kurume is a fabulous location for the workshop. It is known by good local foods and good Sake (Japanese rice wine), and also for traditional fabric called Kurume Gasuri. The LTD17 workshop provides you a wonderful opportunity to exchange your ideas and extend your experience on the low temperature detectors. We hope you will join and enjoy. LOC of 17th International Workshop on Low Temperature Detectors ii Contents Oral presentations 1 Keynote talks 2 O-1 Low Temperature Detectors (for Dark matter and Neutrinos) 30 Years ago. The Start of a new experimental Technology. (Franz von Feilitzsch) .............................
    [Show full text]
  • Cryogenic Half Wave Plate Rotator, Design and Performances
    Prepared for submission to JCAP QUBIC VI: cryogenic half wave plate rotator, design and performances G. D’Alessandro1,2 L. Mele1,2 F. Columbro1,2 G. Amico1 E.S. Battistelli1,2 P. de Bernardis1,2 A. Coppolecchia1,2 M. De Petris1,2 L. Grandsire3 J.-Ch. Hamilton3 L. Lamagna1,2 S. Marnieros4 S. Masi1,2 A. Mennella5,6 C. O’Sullivan7 A. Paiella1,2 F. Piacentini1,2 M. Piat3 G. Pisano8 G. Presta1,2 A. Tartari9 S.A. Torchinsky3,10 F. Voisin3 M. Zannoni11,12 P. Ade8 J.G. Alberro13 A. Almela14 L.H. Arnaldi15 D. Auguste4 J. Aumont16 S. Azzoni17 S. Banfi11,12 A. Baù11,12 B. Bélier18 D. Bennett7 L. Bergé4 J.-Ph. Bernard16 M. Bersanelli5,6 M.-A. Bigot-Sazy3 J. Bonaparte19 J. Bonis4 E. Bunn20 D. Burke7 D. Buzi1 F. Cavaliere5,6 P. Chanial3 C. Chapron3 R. Charlassier3 A.C. Cobos Cerutti14 G. De Gasperis21,22 M. De Leo1,23 S. Dheilly3 C. Duca14 L. Dumoulin4 A. Etchegoyen14 A. Fasciszewski19 L.P. Ferreyro14 D. Fracchia14 C. Franceschet5,6 M.M. Gamboa Lerena24,33 K.M. Ganga3 B. García14 M.E. García Redondo14 M. Gaspard4 D. Gayer7 M. Gervasi11,12 M. Giard16 V. Gilles1,25 Y. Giraud-Heraud3 M. Gómez Berisso15 M. González15 M. Gradziel7 M.R. Hampel14 D. Harari15 S. Henrot-Versillé4 F. Incardona5,6 E. Jules4 J. Kaplan3 C. Kristukat26 S. Loucatos3,27 T. Louis4 B. Maffei28 W. Marty16 A. Mattei2 A. May25 M. McCulloch25 D. Melo14 L. Montier16 L. Mousset3 L.M. Mundo13 J.A. Murphy7 J.D. Murphy7 F. Nati11,12 E. Olivieri4 C.
    [Show full text]
  • CMB Interferometry Clive Dickinson
    CMB interferometry Clive Dickinson∗† Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics & Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. E-mail: [email protected] Interferometry has been a very successful tool for measuring anisotropies in the cosmic mi- crowave background. Interferometers provided the first constraints on CMB anisotropies on small angular scales (ℓ ∼ 10000) in the 1980s and then in the late 1990s and early 2000s made ground- breaking measurements of the CMB power spectrum at intermediate and small angular scales covering the ℓ-range ≈ 100–4000. In 2002 the DASI made the first detection of CMB polariza- tion which remains a major goal for current and future CMB experiments. Interferometers have also made major contributions to the detection and surveying of the Sunyaev-Zel’dovich (SZ) effect in galaxy clusters. In this short review I cover the key aspects that made interferometry well-suited to CMB measure- ments and summarise some of the central observations that have been made. I look to the future and in particular to HI intensity mapping at high redshifts that could make use of the advantages of interferometry. arXiv:1212.1729v1 [astro-ph.CO] 7 Dec 2012 Resolving the Sky - Radio Interferometry: Past, Present and Future -RTS2012 April 17-20, 2012 Manchester, UK ∗Speaker. †CD acknowledges an STFC Advanced Fellowship and an EU Marie Curie IRG grant under the FP7. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ CMB interferometry Clive Dickinson Contents 1.
    [Show full text]
  • Phd Program in Astronomy, Astrophysics and Space Science XXXVII Cycle Available Theses @ Tor Vergata, Sapienza, INAF
    PhD program in Astronomy, Astrophysics and Space Science XXXVII cycle Available theses @ Tor Vergata, Sapienza, INAF 1 Contents 1 University of Rome Tor Vergata 6 1.1 Planetary habitability in the galactic context . 6 1.2 Physical Properties of Transiting Planetary Systems . 6 1.3 Observing gaseous exoplanets in formation around young stars 7 1.4 Witnessing the culmination of structure formation in the Uni- verse from X-ray observations of clusters of galaxies . 7 1.5 Millimetre observations of galaxy clusters . 8 1.6 Advanced X-ray modeling of quasar winds . 9 1.7 Illuminating the Universe with the Cosmic Microwave Back- ground . 9 1.8 Unveiling the accretion mechanisms of pulsating ultralumi- nous X-ray sources . 10 1.9 The PILOT balloon borne experiment: Measurement of po- larised emission of dust in the intergalactic medium at THz frequencies . 11 1.10 The early chemical enrichment of the Galactic Bulge using old stellar tracers . 11 1.11 Cosmic distance scale: from primary to secondary distance indicators . 12 1.12 Improving detection capabilities of coalescing compact binary systems in the next generation interferometric gravitational wave detector Einstein Telescope . 12 1.13 Fostering multimessenger techniques in the Einstein Telescope era . 13 1.14 The solar activity and Sun-Earth System . 14 1.15 The Sun: Magnetic Field and the Turbulent Convection . 14 1.16 Extreme Space Weather Events: Advances in Understanding and Forecasting . 15 1.17 Imaging Spectropolarimetric Instruments for Solar Physics . 15 2 Sapienza Universtity of Rome 17 2.1 Search for the origin of the cosmic neutrino flux with ANTARES and KM3NeT .
    [Show full text]
  • Buzi Daniele
    Polarization issues for CMB devices Observing the Universe with the Cosmic Microwave Background, 22-26 April 2014, L'Aquila, Dr. Daniele Buzi Outline Scientific target Cosmic Microwave Background Polarization B modes Experimental aspects QUBIC (Q & U Bolometric Interferometry for Cosmology) experiment Shields analysis with GRASP Anti Reflection Structures (ARS) Observing the Universe with the Cosmic Microwave Background, 22-26 April 2014, L'Aquila, Dr. Daniele Buzi Outline CMB CMB Polarisation QUBIC ARS Conclusions CMB Polarisation Differently by CMB temperature anisotropy, the polarization is generated only by scattering; when we observe the polarization we are looking directly at the so-called last scattering surface (LSS) of the photons direct probe of the Universe at the epoch of recombination • CMB Polarisation is due to the Thomson scattering of the radiation pattern at the recombination To obtain a net linear polarized signal, a local temperature quadrupole anisotropy pattern in the primordial plasma is needed Only about 10 % of the CMB is polarized few μK Observing the Universe with the Cosmic Microwave Background, 22-26 April 2014, L'Aquila, Dr. Daniele Buzi Outline CMB CMB Polarisation QUBIC ARS Conclusions CMB Polarisation W.Hu 3 Sources of the quadrupole temperature anisotropy @ recombination • Scalar Perturbations: density perturbations in the plasma symmetric quadrupole • Vector Perturbations: vorticity in the plasma (negligible @ recombination) • Tensor Perturbations: due to gravitational waves that stretch and squeeze space and λ of the CMB photons asymmetric quadrupole polarization pattern “handedness” Observing the Universe with the Cosmic Microwave Background, 22-26 April 2014, L'Aquila, Dr. Daniele Buzi Outline CMB CMB Polarisation QUBIC ARS Conclusions E and B modes CMB polarisation sky E>0 B<0 pattern can be E-mode gradient component (even) decomposed into 2 B-mode curl component (odd) components E<0 B>0 Observing the Universe with the Cosmic Microwave Background, 22-26 April 2014, L'Aquila, Dr.
    [Show full text]
  • Analysis of Quasi-Optical Components for Far-Infrared Astronomy
    Analysis of Quasi-Optical Components for Far-Infrared Astronomy Presented by Paul Kelly, B.Sc. A thesis submitted for Degree of Master of Science Department of Experimental Physics NUI Maynooth Co. Kildare Ireland May 2014 Head of Department Professor J. A. Murphy Research Supervisor Dr. Créidhe O'Sullivan Contents Contents ........................................................................................................................ i Abstract ....................................................................................................................... v Acknowledgements .................................................................................................... vi Chapter 1 Introduction .............................................................................................. 1 1.1 Introduction to Terahertz / Submillimetre Astronomy ........................................... 1 1.2 The Big Bang and the CMB ................................................................................... 4 1.2.1 The Big Bang ........................................................................................ 4 1.2.2 The Cosmic Microwave Background .................................................... 5 1.2.3 Temperature Anisotropies in the CMB ................................................. 6 1.2.4 CMB Polarization ................................................................................ 10 1.2.5 CMB Instrument Types ....................................................................... 13 1.2.6 CMB Experiments
    [Show full text]
  • BAYESIAN ANALYSIS of SYSTEMATIC EFFECTS in INTERFEROMETRIC OBSERVATIONS of the COSMIC MICROWAVE BACKGROUND POLARIZATION by Ata K
    BAYESIAN ANALYSIS OF SYSTEMATIC EFFECTS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION by Ata Karakci B.Sc., Bogazici University; Istanbul, Turkey, 2002 M.Sc., Bogazici University; Istanbul, Turkey, 2004 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics at Brown University Providence, Rhode Island May 2014 c Copyright 2014 by Ata Karakci This dissertation by Ata Karakci is accepted in its present form by the Department of Physics as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Gregory S. Tucker, Advisor Recommended to the Graduate Council Date Ian Dell'Antonio, Reader Date Savvas Koushiappas, Reader Approved by the Graduate Council Date Peter M. Weber, Dean of the Graduate School ii Vitae Ata Karakci was born in Odemi¸s,¨ Izmir,_ Turkey in 1980. He graduated from Istanbul's_ Bo~gazi¸ci Universitesi¨ in 2002 with a Bachelor of Science degree in physics. He received his Master of Science degree in physics from Bo~gazi¸ci Universitesi¨ in 2004. Publications: • Sutter, P. M., Wandelt, B. D., McEwen, J. D., Bunn, E. F., Karakci, A., Korotkov, A., Timbie, P., Tucker, G. S. and Zhang, L. (2013) Probabilistic image reconstruction for radio interferometers, to appear in MNRAS arXiv:1309.1469 • Karakci, A., Zhang, L., Sutter, P. M., Bunn, E. F., Korotkov, A., Timbie, P., Tucker, G. S. and Wandelt, B. D. (2013) Systematic Effects in Interferometric Observations of the CMB Polarization, ApJS 207 14, 2013 arXiv:1302.6608 • Karakci, A., Sutter, P. M., Zhang, L., Bunn, E.
    [Show full text]