The QUBIC Experiment

Total Page:16

File Type:pdf, Size:1020Kb

The QUBIC Experiment BS -1 BS 0 BS 1 BS 2 10 10 10 10 2.5 5 2.5 2.5 5 5 2.0 5 The5 QUBIC Experiment 4 2.0 2.0 1.5 0 3 0 0 1.5 0 1.5 1.0 2 A1.0 bolometric interferometer1.0 to measure -5 -5 -5 -5 0.5 1 0.5 0.5 -10 0 -10 0.0 -10 the0.0 -10B modes of 0.0 the polarized CMB fluctuations -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 BS 3 BS 4 BS 5 Resulting signal 10 10 10 10 8 2.5 2.5 2.5 5 5 5 5 6 2.0 2.0 2.0 0 1.5 0 1.5 0 1.5 0 4 1.0 1.0 1.0 -5 -5 -5 -5 2 0.5 0.5 0.5 Romain Charlassier (APC Paris) -10 0.0 -10 0.0 -10 0.0 -10 0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 on behalf of the QUBIC collaboration BS -1 BS 0 BS 1 BS 2 10 10 10 10 2.5 5 2.5 2.5 5 5 2.0 5 5 4 2.0 2.0 1.5 0 3 0 0 1.5 0 1.5 1.0 2 Getting1.0 the1.0 B modes will be very hard... -5 -5 -5 -5 0.5 1 0.5 0.5 -10 0 -10 0.0 -10 0.0 -10 0.0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 BS 3 BS 4 BS 5 Resulting signal wmap5y + quad (ade et al. 2007) 10 10 10 10 8 100.000 2.5 2.5 2.5 5 5 5 5 6 2.0 2.0 2.0 tt 0 1.5 0 1.5 0 1.5 0 4 c 1.0 1.0 1.0 -5 -5 -5 -5 2 10.000 0.5 0.5 0.5 -10 0.0 -10 0.0 -10 • Detecting 0.0 -10 B modes requires:0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 te c k] - A very high statistical sensitivity µ 1.000 ) [ π An extremely good control of cee - BICEP 2009 systematics t/s=0.1 0.100 - A reliable foreground subtraction sqrt(l(l+1)cl/2 t/s=0.01 (true for all-sky but what about a cbb t/s=0.001 clean small field ?) 0.010 cbb lensing 0.001 1 10 100 1000 ell Romain Charlassier - The QUBIC Collaboration - Rencontres de Moriond on Cosmology 2010 BS -1 BS 0 BS 1 BS 2 10 10 10 10 2.5 5 2.5 2.5 5 5 2.0 5 5 4 2.0 2.0 1.5 0 3 0 0 1.5 0 1.5 1.0 2 Current1.0 and1.0 future B-mode experiments -5 -5 -5 -5 0.5 1 0.5 0.5 -10 0 -10 0.0 -10 0.0 -10 0.0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 • Imagers (Bolometric: BICEP, EBEX, PolarBear, Spider..; BS 3 BS 4 BS 5 Resulting signal 10 10 10 10 8 2.5 2.5 Heterodyne:2.5 QUIET): 5 5 5 5 6 2.0 2.0 2.0 0 1.5 0 1.5 0 - Very1.5 0 good sensitivity 4 with large bolometers arrays, large 1.0 1.0 1.0 -5 -5 -5 -5 2 0.5 0.5 bandwidth0.5 + very well known technology -10 0.0 -10 0.0 -10 0.0 -10 0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 - Systematics handling ? HWP + scan. • Heterodyne interferometers (CHIP project) - Worked by the past (VSA, CBI, DASI) - Not very scalable (NxN correlator very expensive) ? HEMTs not competitive in space - Better for systematics Bolometric interferometer (QUBIC): Could combine the advantages of both techniques ? Romain Charlassier - The QUBIC Collaboration - Rencontres de Moriond on Cosmology 2010 BS -1 BS 0 BS 1 BS 2 10 10 10 10 2.5 5 2.5 2.5 5 5 2.0 5 5 4 2.0 2.0 1.5 0 3 0 0 The1.5 0 QUBIC 1.5 collaboration 1.0 2 1.0 1.0 -5 -5 -5 A-5 merging of MBI (USA/UK) with BRAIN (France/Italy/UK) 0.5 1 0.5 0.5 -10 0 -10 0.0 -10 0.0 -10 0.0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 BS 3 BS 4 BS 5 Resulting signal 10 10 10 10 8 2.5 2.5 2.5 5 5 5 5 6 2.0 2.0 2.0 0 1.5 0 1.5 0 1.5 0 4 1.0 1.0 1.0 -5 -5 -5 -5 2 0.5 0.5 0.5 -10 0.0 -10 0.0 -10 0.0 -10 0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 APC Paris, France IAS Orsay, France CSNSM Orsay, France CESR Toulouse, France IUCAA, Pune, India Maynooth University, Ireland Universita di Milano-Bicocca, Italy Universita La Sapienza, Roma, Italy University of Manchester, UK Richmond University, USA Brown University, USA University of Wisconsin, USA Romain Charlassier - The QUBIC Collaboration - Rencontres de Moriond on Cosmology 2010 BS -1 BS 0 BS 1 BS 2 10 10 10 10 2.5 5 2.5 2.5 5 5 2.0 5 5 4 2.0 2.0 incoming 1.5 0 3 0 0 1.5 0 1.5 1.0 The QUBIC instrument concept radiation 2 1.0 1.0 -5 -5 -5 -5 0.5 1 0.5 0.5 -10 0 -10 0.0 -10 0.0 -10 0.0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 Sky BS 3 BS 4 BS 5 Resulting signal ~35 cm 10 10 10 10 8 2.5 2.5 2.5 horns 5 5 5 5 6 4K 2.0 2.0 2.0 0 1.5 0 1.5 0 1.5 0 4K4 switches ? 1.0 1.0 1.0 -5 -5 -5 -5 2 0.5 0.5 0.5 back 4K -10 0.0 -10 0.0 -10 0.0 -10 0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 horns Half-Wave Plate 4K ~60 cm ~40 cm ~10 cm 4K Polarization sensitive detectors 300 mK Cryostat ~70 cm Romain Charlassier - The QUBIC Collaboration - Rencontres de Moriond on Cosmology 2010 BS -1 BS 0 BS 1 BS 2 10 10 10 10 2.5 5 2.5 2.5 5 5 2.0 5 5 4 2.0 2.0 incoming 1.5 0 3 0 0 1.5 0 1.5 1.0 The QUBIC instrument concept radiation 2 1.0 1.0 -5 -5 -5 -5 0.5 1 0.5 0.5 -10 0 -10 0.0 -10 0.0 -10 0.0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 Sky BS 3 BS 4 BS 5 Resulting signal ~35 cm 10 10 10 10 8 2.5 2.5 2.5 horns 5 5 5 5 6 4K 2.0 2.0 2.0 0 1.5 0 1.5 0 1.5 0 4K4 switches ? 1.0 1.0 1.0 -5 -5 -5 -5 2 0.5 0.5 0.5 back 4K -10 0.0 -10 0.0 -10 0.0 -10 0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 horns Half-Wave Plate 4K ~60 cm ~40 cm ~10 cm 4K Polarization sensitive detectors 300 mK Cryostat ~70 cm Romain Charlassier - The QUBIC Collaboration - Rencontres de Moriond on Cosmology 2010 BS -1 BS 0 BS 1 BS 2 10 10 10 10 2.5 5 2.5 2.5 5 5 2.0 5 5 4 2.0 2.0 incoming 1.5 0 3 0 0 1.5 0 1.5 1.0 The QUBIC instrument concept radiation 2 1.0 1.0 -5 -5 -5 -5 0.5 1 0.5 0.5 -10 0 -10 0.0 -10 0.0 -10 0.0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 Sky BS 3 BS 4 BS 5 Resulting signal ~35 cm 10 10 10 10 8 2.5 2.5 2.5 horns 5 5 5 5 6 4K 2.0 2.0 2.0 0 1.5 0 1.5 0 1.5 0 4K4 switches ? 1.0 1.0 1.0 -5 -5 -5 -5 2 0.5 0.5 0.5 back 4K -10 0.0 -10 0.0 -10 0.0 -10 0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 horns Half-Wave Plate 4K ~60 cm ~40 cm ~10 cm 4K Polarization sensitive detectors 300 mK Cryostat ~70 cm Romain Charlassier - The QUBIC Collaboration - Rencontres de Moriond on Cosmology 2010 BS -1 BS 0 BS 1 BS 2 10 10 10 10 2.5 5 2.5 2.5 5 5 2.0 5 5 4 2.0 2.0 incoming 1.5 0 3 0 0 1.5 0 1.5 1.0 The QUBIC instrument concept radiation 2 1.0 1.0 -5 -5 -5 -5 0.5 1 0.5 0.5 -10 0 -10 0.0 -10 BS -1 BS -1 0.0 -10 BS 0 0.0 BS 0 BS 1 BS 1 BS 2 BS 2 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 10 10 10 10 10 10 10 10 2.5 2.5 Sky 5 5 2.5 2.5 2.5 2.5 5 5 5 5 2.0 5 2.0 5 5 5 BS 3 BS 4 BS 5 Resulting signal ~35 cm 4 4 2.0 2.0 2.0 2.0 10 10 10 10 8 1.5 1.5 2.5 2.5 2.5 0 0 3 0 3 0 0 0 1.5 0 1.5 0 horns 1.5 1.5 5 5 5 5 6 4K 2.0 2.0 2.0 1.0 1.0 2 2 1.0 1.0 1.0 1.0 0 1.5 0 1.5 0 1.5 0 4 -5 -5 -5 -5 4K -5 -5 -5 -5 0.5 0.5 switches ? 1.0 1.0 1.0 1 1 0.5 0.5 0.5 0.5 -5 -5 -5 -5 2 0.5 -100.5 -10 0.5 0 -10 0 -10 0.0 -10 0.0 -10 0.0 -10 0.0 -10 4K0.0 0.0 -10 -5 -100 -55 100 5 10 -10 -5 -100 -55 100 5 10 -10 -5 -100 -55 100 5 10 -10 -5 -100 back-55 100 5 10 -10 0.0 -10 0.0 -10 0.0 -10 0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 horns Half-Wave Plate 4K BS -1 BS BS-1 3 BS BS-1 3 BS 0 BSBS 0 4 BSBS 0 4 BS 1 BSBS 1 5 BSBS 1 5 BS 2 ResultingBS 2 signalResultingBS 2 signal 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 8 2.5 2.5 2.5 5 5 2.5 5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.0 5 5 5 5 5 ~60 5cm 5 5 5 5 2.0 5 5 52.0 5 5 5 5 5 5 5 6 6 4 4 2.0 4 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 0 0 0 0 0 3 0 3 1.5 0 03 1.5 0 0 0 1.5 0 0 1.5 0 0 1.5 0 1.5 1.5 0 01.5 1.5 0~40 0 1.5cm 1.5 4 1.5 4 1.0 1.0 1.0 2 2 1.0 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 2 2 0.5 0.5 0.5 1 1 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -10 -10 -10 -10 -10 0 1 horn-10 0 0.0 -10 -10 0 0.01 baseline-10 -10 0.0 -10 0.0 0.01 baseline-10 -10 0.0 0.0 -10 -10 0.0 1 baseline-10 0.0 0.0 -10 -10 0.0 0.0 total-10 -10 signal0.0 0.0 0 0.0 0 -10 -5 -100 -10 -55 -5 -10100 -10 0 -55 -55 100 -10 100 5 -55 10 -100 10 -10 -55 -5 -10100 -10 0 -55 -55 100 -10 100 5 -55 10 -100 10 -10 -55 -5 -10100 -10 0 -55 -55 100 -10 100 5 -55 10 -100 10 -10 -55 -5 -10100 -10 0 -55 -55 100 100 5 5 10 10 4K ~10 cm BS 3 BS 3 BS 3 BS 4 BS 4 BS 4 BS 5 BS 5 BS 5 Resulting signalResulting signal Resulting signal Polarization sensitive 10 10 10 10 10 10 detectors 10 10 10 10 10 Cryostat10 8 8 8 300 mK 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0 0 0 1.5 0 1.5 0 1.5 0 1.5 0 1.5 0~701.5 cm0 1.5 0 1.5 0 1.5 0 4 4 4 1.0 Romain Charlassier1.0 - 1.0The QUBIC Collaboration1.0 - 1.0Rencontres 1.0de Moriond on 1.0Cosmology 20101.0 1.0 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 2 2 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -10 -10 -10 0.0 -10 0.0 -10 0.0 -10 0.0 -10 0.0 -10 0.0 -10 0.0 -10 0.0 -10 0.0 -10 0 0 0 -10 -5 -100 -55 -10100 -55 100 -10 5 -5 10 -100 -55 -10100 -55 100 -10 5 -5 10 -100 -55 -10100 -55 100 -10 5 -5 10 -100 -55 -10100 -55 100 5 10 BS -1 BS -1 BS 0 BS 0 BS 1 BS 1 BS 2 BS 2 10 10 10 10 10 10 10 10 2.5 2.5 BS -1 BS 0 BS 1 BS 2 10 10 10 5 10 5 2.5 2.5 2.5 2.5 2.5 5 5 5 5 2.0 5 2.0 5 5 5 5 2.5 2.5 4 4 2.0 2.0 2.0 2.0 5 5 2.0 5 5 4 2.0 2.0 1.5 1.5 1.5 0 0 3 0 3 0 0 0 1.5 0 1.5 0 1.5 1.5 0 3 0 0 1.5 0 1.5 1.0 1.0 1.0 Dirty2 2 image on the focal 1.0plane1.0 1.0 1.0 2 1.0 1.0 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 0.5 0.5 0.5 1 10.5 1 0.5 0.5 0.5 0.5 0.5 -10 0 -10 0.0-10 -10 -10 00.0 -10 -10 0 -10 0.0 0.0 -10 0.0 -10 0.0 -10 0.0 -10 0.0 0.0 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 -100 -55 100 5 10 -10 -5 -100 -55 100 5 10 -10 -5 -100 -55 100 5 10 -10 -5 -100 -55 100 5 10 • Image in focal plane = filtered sky (baselines modes only) BS 3 BS 4 BS 5 Resulting signal 10 10 10 10 8 BS -1 BS BS-1 3 BS BS-1 3 BS 0 BSBS 0 4 BS BS 0 4 = “dirtyBS 1 image”BSBS 1 5 BSBS 1in 5 interferometryBS 2 ResultingBS 2 signalResultingBS 2 signal 2.5 10 10 2.510 10 10 10 2.5 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 8 2.5 2.5 2.5 5 5 5 5 6
Recommended publications
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Survey strategy optimization for the Atacama Cosmology Telescope De Bernardis, F., Stevens, J., Hasselfield, M., Alonso, D., Bond, J. R., et al. F. De Bernardis, J. R. Stevens, M. Hasselfield, D. Alonso, J. R. Bond, E. Calabrese, S. K. Choi, K. T. Crowley, M. Devlin, J. Dunkley, P. A. Gallardo, S. W. Henderson, M. Hilton, R. Hlozek, S. P. Ho, K. Huffenberger, B. J. Koopman, A. Kosowsky, T. Louis, M. S. Madhavacheril, J. McMahon, S. Næss, F. Nati, L. Newburgh, M. D. Niemack, L. A. Page, M. Salatino, A. Schillaci, B. L. Schmitt, N. Sehgal, J. L. Sievers, S. M. Simon, D. N. Spergel, S. T. Staggs, A. van Engelen, E. M. Vavagiakis, E. J. Wollack, "Survey strategy optimization for the Atacama Cosmology Telescope," Proc. SPIE 9910, Observatory Operations: Strategies, Processes, and Systems VI, 991014 (15 July 2016); doi: 10.1117/12.2232824 Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Oct 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Survey strategy optimization for the Atacama Cosmology Telescope F. De Bernardisa, J. R. Stevensa, M. Hasselfieldb,c, D. Alonsod, J. R. Bonde, E. Calabresed, S. K. Choif, K. T. Crowleyf, M. Devling, J. Dunkleyd, P. A. Gallardoa, S. W. Hendersona, M. Hiltonh, R. Hlozeki, S. P. Hof, K. Huffenbergerj, B. J. Koopmana, A. Kosowskyk, T. Louisl, M. S. Madhavacherilm, J. McMahonn, S. Naessd, F. Natig, L. Newburghi, M. D. Niemacka, L. A. Pagef, M. Salatinof, A.
    [Show full text]
  • Analysis and Measurement of Horn Antennas for CMB Experiments
    Analysis and Measurement of Horn Antennas for CMB Experiments Ian Mc Auley (M.Sc. B.Sc.) A thesis submitted for the Degree of Doctor of Philosophy Maynooth University Department of Experimental Physics, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland. October 2015 Head of Department Professor J.A. Murphy Research Supervisor Professor J.A. Murphy Abstract In this thesis the author's work on the computational modelling and the experimental measurement of millimetre and sub-millimetre wave horn antennas for Cosmic Microwave Background (CMB) experiments is presented. This computational work particularly concerns the analysis of the multimode channels of the High Frequency Instrument (HFI) of the European Space Agency (ESA) Planck satellite using mode matching techniques to model their farfield beam patterns. To undertake this analysis the existing in-house software was upgraded to address issues associated with the stability of the simulations and to introduce additional functionality through the application of Single Value Decomposition in order to recover the true hybrid eigenfields for complex corrugated waveguide and horn structures. The farfield beam patterns of the two highest frequency channels of HFI (857 GHz and 545 GHz) were computed at a large number of spot frequencies across their operational bands in order to extract the broadband beams. The attributes of the multimode nature of these channels are discussed including the number of propagating modes as a function of frequency. A detailed analysis of the possible effects of manufacturing tolerances of the long corrugated triple horn structures on the farfield beam patterns of the 857 GHz horn antennas is described in the context of the higher than expected sidelobe levels detected in some of the 857 GHz channels during flight.
    [Show full text]
  • Maturity of Lumped Element Kinetic Inductance Detectors For
    Astronomy & Astrophysics manuscript no. Catalano˙f c ESO 2018 September 26, 2018 Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz A. Catalano1,2, A. Benoit2, O. Bourrion1, M. Calvo2, G. Coiffard3, A. D’Addabbo4,2, J. Goupy2, H. Le Sueur5, J. Mac´ıas-P´erez1, and A. Monfardini2,1 1 LPSC, Universit Grenoble-Alpes, CNRS/IN2P3, 2 Institut N´eel, CNRS, Universit´eJoseph Fourier Grenoble I, 25 rue des Martyrs, Grenoble, 3 Institut de Radio Astronomie Millim´etrique (IRAM), Grenoble, 4 LNGS - Laboratori Nazionali del Gran Sasso - Assergi (AQ), 5 Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, bat 104 - 108, 91405 Orsay Campus Preprint online version: September 26, 2018 ABSTRACT This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (∆ν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches.
    [Show full text]
  • CMB Telescopes and Optical Systems to Appear In: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation
    CMB Telescopes and Optical Systems To appear in: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation Shaul Hanany ([email protected]) University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA, Michael Niemack ([email protected]) National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA, and Lyman Page ([email protected]) Princeton University, Department of Physics, Princeton NJ, USA. March 26, 2012 Abstract The cosmic microwave background radiation (CMB) is now firmly established as a funda- mental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB ob- servations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by arXiv:1206.2402v1 [astro-ph.IM] 11 Jun 2012 the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We con- clude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.
    [Show full text]
  • CMB S4 Stage-4 CMB Experiment
    Cosmic Microwave Background past and future June 3rd, 2016 28th Rencontres de Blois Akito KUSAKA Lawrence Berkeley National Laboratory Light New TeV Particle? Higgs 5th force? Yukawa Inflation n Dark Dark Energy 퐵 /퐵 Matter My summary of “Snowmass Questions” 2014 2.7K blackbody What is CMB? Light from Last Scattering Surface LSS: Boundary between plasma and neutral H COBE/FIRAS Mather et. al. (1990) Planck Collaboration (2014) The Universe was 1100 times smaller Fluctuations seeding “us” 2015 Planck Collaboration (2015) Wk = 0 0.005 (w/ BAO) Gaussian Planck Collaboration (2014) Polarization Quadrupole anisotropy creates linear polarization via Thomson scattering http://background.uchicago.edu/~whu/polar/webversion/polar.html Polarization – E modes and B modes E modes: curl free component 푘 B modes: divergence free component 푘 CMB Polarization Science Inflation / Gravitational Waves Gravitational Lensing / Neutrino Mass Light Relativistic Species And more… B-mode from Inflation It’s about the stuff here A probe into the Early Universe Hot High Energy ~3000K (~0.25eV) Photons 1016 GeV ? ~1010K (~1MeV) Neutrinos Gravitational waves Sound waves Source of GW? : inflation Inflation › Rapid expansion of universe Quantum fluctuation of metric during inflation › Off diagonal component (T) primordial gravitational waves Unique probe into gravity quantum mechanics connection Ratio to S (on-diagonal): r=T/S Lensing B-mode Deflection by lensing (Nearly) Gaussian Non-Gaussian (Nearly) pure E modes Non-zero B modes It’s about the stuff here Lensing B-mode Abazajian et. al. (2014) Deflection by lensing (Nearly) Gaussian Non-Gaussian (Nearly) pure E modes Non-zero B modes Accurate mass measurement may resolve neutrino mass hierarchy.
    [Show full text]
  • ELIA STEFANO BATTISTELLI Curriculum Vitae
    ELIA STEFANO BATTISTELLI Curriculum Vitae Place: Rome, Italy Date: 03/09/2019 Part I – General Information Full Name ELIA STEFANO BATTISTELLI Date of Birth 29/03/1973 Place of Birth Milan, Italy Citizenship Italian Work Address Physics Dep., Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy Work Phone Number +39 06 49914462 Home Address Via Romolo Gigliozzi, 173, scala B, 00128, Rome, Italy Mobile Phone Number +39 349 6592825 E-mail [email protected] Spoken Languages Italian (native), English (fluent), Spanish (fluent), French (basic) Part II – Education Type Year Institution Notes (Degree, Experience,..) University graduation 1999 Sapienza University (RM, IT) Physics 1996 University of Leeds, UK Erasmus project Post-graduate studies 2000 SIGRAV (CO, IT) Graduate School in Relativity 2000 INAF (Asiago, VI, IT) Scuola Nazionale Astrofisica 2001 INAF/INFN (FC, IT) Scuola Nazionale Astroparticelle 2004 Società Italiana Fisica (CO, IT) International Fermi School 2006 Princeton University (NJ,USA) Summer School on Gal. Cluster PhD 2004 Sapienza University (RM, IT) PhD in Astronomy (XV cycle) Training Courses 2007 University of British Columbia 40-hours course in precision (BC, CA) machining 2009 Programma Nazionale Ricerche 2 weeks training course for the in Antartide (PNRA) Antarctic activity in remote camps Qualification 2013 Ministero della Pubblica National scientific qualification for Istruzione Associate Professor 2012, SSD 02/C1 (ASN-2012) Part III – Appointments IIIA – Academic Appointments Start End Institution Position 11/2018 present Sapienza University of Rome, Physics Associate Professor;Physics Department Department (Rome, Italy) SSD 02/C1-FIS/05 (Astrophysics) 11/2015 11/2018 Sapienza University of Rome, Physics Tenure track assistant professor Department (Rome, Italy) (Ricercatore a Tempo Determinato RTD- B-type).
    [Show full text]
  • Clover: Measuring Gravitational-Waves from Inflation
    ClOVER: Measuring gravitational-waves from Inflation Executive Summary The existence of primordial gravitational waves in the Universe is a fundamental prediction of the inflationary cosmological paradigm, and determination of the level of this tensor contribution to primordial fluctuations is a uniquely powerful test of inflationary models. We propose an experiment called ClOVER (ClObserVER) to measure this tensor contribution via its effect on the geometric properties (the so-called B-mode) of the polarization of the Cosmic Microwave Background (CMB) down to a sensitivity limited by the foreground contamination due to lensing. In order to achieve this sensitivity ClOVER is designed with an unprecedented degree of systematic control, and will be deployed in Antarctica. The experiment will consist of three independent telescopes, operating at 90, 150 or 220 GHz respectively, and each of which consists of four separate optical assemblies feeding feedhorn arrays arrays of superconducting detectors with phase as well as intensity modulation allowing the measurement of all three Stokes parameters I, Q and U in every pixel. This project is a combination of the extensive technical expertise and experience of CMB measurements in the Cardiff Instrumentation Group (Gear) and Cavendish Astrophysics Group (Lasenby) in UK, the Rome “La Sapienza” (de Bernardis and Masi) and Milan “Bicocca” (Sironi) CMB groups in Italy, and the Paris College de France Cosmology group (Giraud-Heraud) in France. This document is based on the proposal submitted to PPARC by the UK groups (and funded with 4.6ML), integrated with additional information on the Dome-C site selected for the operations. This document has been prepared to obtain an endorsement from the INAF (Istituto Nazionale di Astrofisica) on the scientific quality of the proposed experiment to be operated in the Italian-French base of Dome-C, and to be submitted to the Commissione Scientifica Nazionale Antartica and to the French INSU and IPEV.
    [Show full text]
  • Arxiv:1412.0626V1 [Astro-Ph.CO] 1 Dec 2014 Versity, 3400 N
    Draft: December 2, 2014 Preprint typeset using LATEX style emulateapj v. 05/12/14 THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION Alexander van Engelen1,2, Blake D. Sherwin3, Neelima Sehgal2, Graeme E. Addison4, Rupert Allison5, Nick Battaglia6, Francesco de Bernardis7, J. Richard Bond1, Erminia Calabrese5, Kevin Coughlin8, Devin Crichton9, Rahul Datta8, Mark J. Devlin10, Joanna Dunkley5, Rolando Dunner¨ 11, Emily Grace12, Megan Gralla9, Amir Hajian1, Matthew Hasselfield13,4, Shawn Henderson7, J. Colin Hill14, Matt Hilton15, Adam D. Hincks4, Renee´ Hlozek13, Kevin M. Huffenberger16, John P. Hughes17, Brian Koopman7, Arthur Kosowsky18, Thibaut Louis5, Marius Lungu10, Mathew Madhavacheril2, Lo¨ıc Maurin11, Jeff McMahon8, Kavilan Moodley15, Charles Munson8, Sigurd Naess5, Federico Nati19, Laura Newburgh20, Michael D. Niemack7, Michael R. Nolta1, Lyman A. Page12, Christine Pappas12, Bruce Partridge21, Benjamin L. Schmitt10, Jonathan L. Sievers22,23,12, Sara Simon12, David N. Spergel13, Suzanne T. Staggs12, Eric R. Switzer24,1, Jonathan T. Ward10, Edward J. Wollack24 Draft: December 2, 2014 ABSTRACT We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with Cosmic Infrared Background (CIB) fluctu- ations measured using the Planck satellite. Using an overlap area of 206 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of 4:5σ. Combining both CMB temperature and polarization data gives a lensing detection at 9:1σ sig- nificance. A B-mode polarization lensing signal is present with a significance of 3:2σ.
    [Show full text]
  • Cosmic Microwave Background Activities at IN2P3
    Cosmic Microwave Background activities at IN2P3 IN2P3 permanent researchers and research engineers APC: James G. Bartlett (Pr.-UPD – Planck), Pierre Binétruy (Pr.-UPD), Martin Bucher (DR2-CNRS – Planck), Jacques Delabrouille (DR2-CNRS – Planck), Ken Ganga (DR1-CNRS – Planck), Yannick Giraud- Héraud (DR1-CNRS - Planck/QUBIC), Laurent Grandsire (IR-CNRS – QUBIC), Jean-Christophe Hamilton (DR2-CNRS – QUBIC), Jean Kaplan (DR émérite-CNRS – Planck/QUBIC), Maude Le Jeune (IR-CNRS – Planck/POLARBEAR), Guillaume Patanchon (MCF-UPD – Planck), Michel Piat (Pr-UPD - Planck/QUBIC), Damien Prêle (IR-CNRS - QUBIC), Cayetano Santos (IR-CNRS, R&D mm), Radek Stompor (DR1-CNRS – Planck/POLARBEAR), Bartjan van Tent (MCF-UPS – Planck), Fabrice Voisin (IR-CNRS – QUBIC/R&D mm); CSNSM: Laurent Bergé (IR-CNRS – QUBIC/R&D mm), Louis Dumoulin (DR émérite-CNRS – QUBIC/R&D mm), Stefanos Marnieros (CR-CNRS – QUBIC/R&D mm); LAL: François Couchot (DR1- CNRS – Planck/QUBIC), Sophie Henrot-Versillé (CR1-CNRS – Planck/QUBIC), Olivier Perdereau (DR2- CNRS – Planck/QUBIC), Stéphane Plaszczynski (DR2-CNRS – Planck/QUBIC), Matthieu Tristram (CR1- CNRS – Planck/QUBIC); LPSC: Olivier Bourrion (IR1-CNRS – NIKA/NIKA2), Andrea Catalano (CR2-CNRS – Planck/NIKA/NIKA2), Céline Combet (CR2-CNRS – Planck), Juan Francisco Macías-Perez (DR2-CNRS – Planck/NIKA/NIKA2), Frédéric Mayet (MCF-UJF – NIKA/NIKA2), Laurence Perotto (CR1-CNRS – Planck/NIKA/NIKA2), Cécile Renault (CR1-CNRS – Planck), Daniel Santos (DR1-CNRS – Planck) IN2P3 Postdoctoral fellows and PhD students APC: Ranajoy Banerji
    [Show full text]
  • FOR the QUBIC CMB David G. Bennett B.Sc
    ___________________________________________________ DESIGN AND ANALYSIS OF A QUASI-OPTICAL BEAM COMBINER FOR THE QUBIC CMB INTERFEROMETER ___________________________________________________ David G. Bennett B.Sc. Research Supervisor: Dr. Créidhe O'Sullivan Head of Department: Prof. J.A. Murphy A thesis submitted for the degree of Doctor of Philosophy Sub-mm Optics Research Group Department of Experimental Physics National University of Ireland, Maynooth Co. Kildare Ireland 9th July 2014 Contents 1 The Cosmic Microwave Background 8 1.1 A signal from the early Universe . 8 1.2 A brief history of CMB observations . 9 1.3 Modern Cosmology and the CMB . 12 1.3.1 The Big Bang and the expanding Universe . 12 1.3.2 CMB temperature power spectra . 14 1.3.3 Primary temperature anisotropies . 18 1.3.4 Secondary anisotropies . 19 1.3.5 CMB Polarization . 21 1.3.6 The CMB and Inflation . 27 1.4 Recent CMB experiments . 28 1.5 The CMB and the cosmological parameters . 29 1.6 Conclusions . 33 2 QUBIC: An Experiment designed to measure CMB B-mode polarization 35 2.1 Introducing QUBIC . 35 2.2 Interferometry . 35 2.2.1 Interferometers in astronomy . 35 2.2.2 Radio receivers . 37 2.2.3 Additive Bolometric Interferometry . 39 2.3 The QUBIC experiment . 41 2.3.1 QUBIC specifications . 42 2.4 Phase Shifting and equivalent baselines . 49 2.5 Quasi optical analysis techniques . 55 2.5.1 Methods for the optical modeling of CMB experiments . 55 2.5.2 Geometrical optics . 58 2 2.5.3 Physical optics (PO) . 59 2.5.4 Quasi optics .
    [Show full text]
  • Design and Performance of the Spider Instrument
    Design and performance of the Spider instrument M. C. Runyana, P.A.R. Adeb, M. Amiric,S.Bentond, R. Biharye,J.J.Bocka,f,J.R.Bondg, J.A. Bonettif, S.A. Bryane, H.C. Chiangh, C.R. Contaldii, B.P. Crilla,f,O.Dorea,f,D.O’Deai, M. Farhangd, J.P. Filippinia, L. Fisseld, N. Gandilod, S.R. Golwalaa, J.E. Gudmundssonh, M. Hasselfieldc,M.Halpernc, G. Hiltonj, W. Holmesf,V.V.Hristova, K.D. Irwinj,W.C.Jonesh , C.L. Kuok,C.J.MacTavishl,P.V.Masona,T.A.Morforda, T.E. Montroye, C.B. Netterfieldd, A.S. Rahlinh, C.D. Reintsemaj, J.E. Ruhle, M.C. Runyana,M.A.Schenkera, J. Shariffd, J.D. Solerd, A. Trangsruda, R.S. Tuckera,C.Tuckerb,andA.Turnerf aDivision of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA, USA; bSchool of Physics and Astronomy, Cardiff University, Cardiff, UK; cDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; dDepartment of Physics, University of Toronto, Toronto, ON, Canada; eDepartment of Physics, Case Western Reserve University, Cleveland, OH, USA; fJet Propulsion Laboratory, Pasadena, CA, USA; gCanadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, Canada; hDepartment of Physics, Princeton University, Princeton, NJ, USA; iDepartment of Physics, Imperial College, University of London, London, UK; jNational Institute of Standards and Technology, Boulder, CO, USA; kDepartment of Physics, Stanford University, Stanford, CA, USA; lKavli Institute for Cosmology, University of Cambridge, Cambridge, UK ABSTRACT Here we describe the design and performance of the Spider instrument. Spider is a balloon-borne cosmic microwave background polarization imager that will map part of the sky at 90, 145, and 280 GHz with sub- degree resolution and high sensitivity.
    [Show full text]
  • Kinetic Inductance Detectors for the OLIMPO Experiment: In–Flight Operation and Performance
    Prepared for submission to JCAP Kinetic Inductance Detectors for the OLIMPO experiment: in–flight operation and performance S. Masi,a;b;1 P. de Bernardis,a;b A. Paiella,a;b F. Piacentini,a;b L. Lamagna,a;b A. Coppolecchia,a;b P. A. R. Ade,c E. S. Battistelli,a;b M. G. Castellano,d I. Colantoni,d;e F. Columbro,a;b G. D’Alessandro,a;b M. De Petris,a;b S. Gordon, f C. Magneville,g P. Mauskopf, f;h G. Pettinari,d G. Pisano,c G. Polenta,i G. Presta,a;b E. Tommasi,i C. Tucker,c V. Vdovin,l;m A. Volpei and D. Yvong aDipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy bIstituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, 00185 Roma, Italy cSchool of Physics and Astronomy, Cardiff University, Cardiff CF24 3YB, UK dIstituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma, Italy ecurrent address: CNR-Nanotech, Institute of Nanotechnology c/o Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185, Roma, Italy f School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA gIRFU, CEA, Université Paris-Saclay, F-91191 Gif sur Yvette, France hDepartment of Physics, Arizona State University, Tempe, AZ 85257, USA iItalian Space Agency, Roma, Italy lInstitute of Applied Physics RAS, State Technical University, Nizhnij Novgorov, Russia mASC Lebedev PI RAS, Moscow, Russia E-mail: [email protected] Abstract. We report on the performance of lumped–elements Kinetic Inductance Detector (KID) arrays for mm and sub–mm wavelengths, operated at 0:3 K during the stratospheric flight of the OLIMPO payload, at an altitude of 37:8 km.
    [Show full text]