Presentation

Total Page:16

File Type:pdf, Size:1020Kb

Presentation 12/19/2019 Head and Brain Head and Brain Injuries Mehdi Shafieian Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) 29th International Course on Transport Planning and Safety December 2019 Traumatic Brain Injuries Physical force causes nerve cells to stretch, tear and pull apart, therefore the brain is unable to relay messages Injury to brain cells affects processing: TBI in the thinking United States remembering seeing control & coordination mood TBI in the world Causes of TBI ADULTS AGED 75 YEARS AND OLDER HAVE THE HIGHEST RATES OF TBI-RELATED HOSPITALIZATION AND DEATH ANNUALLY, AN ESTIMATED THE YEARLY 10 MILLION PEOPLE SUFFER AGGREGATE A TBI EVENT WORLDWIDE INCIDENCE OF TBI HOSPITALIZATION ALMOST HALF A MILLION AND FATALITIES IS EMERGENCY DEPARTMENT VISITS ESTIMATED AT FOR TBI ARE MADE ANNUALLY BY 235 PER 100,000 CHILDREN AGED 0 TO 14 POPULATION 1 12/19/2019 Head Anatomy Skull Scalp Macroscopic Anatomy of Head and Brain Meninges Cerebrum Dura Mater Frontal lobe Microscopic Anatomy Arachnoid Temporal of Head and Brain Pia Mater Lobe Parietal Lobe Mechanisms of Occipital Lobe Traumatic Brain Injury Cerebellum Criteria for Brain Injury Brain Stem Spinal Cord Solid Model of Head/Brain A bit more details Frontal Bone Based on CT and MRI 1 cerebral hemisphere, 2 corpus callosum Parietal Parietal 3 ventricle Bone 4 fornix Bones 5 thalamus 6 pituitary gland 7 pons Temporal 8 medulla oblongata Bone 9 spinal cord 10 cerebellum Sphenoid Occipital 11 midbrain Bone Bone Dura and Brain Brain (Sagittal Section) Frontal Lobe Occipital Lobe Lateral Ventricle Midbrain Cerebellum Temporal Lobe Brain Stem 2 12/19/2019 Meninges and Superficial Cerebral Veins CSF Facts (Coronal Section) Superior Sagittal Sinus 1.The total volume of CSF is 125-150 ml. Scalp 2.Normal resting pressure of the CSF is between 150-180 mm H2O (11-13 mm Hg). Bridging Skull 3.Total production of CSF is about 400-500 ml/day (about .36 Veins Dura Mater ml/min) Arachnoid Mater Pia Mater Note: Blood Pressure (Artery): 100 mm Hg = 13 kPa = 1.9 PSI CSF Pressure: 12 mm Hg = 1.6 kPa = 0.2 PSI Brain Falx Cerebri Subarachnoid Space: Filled by CSF (11-13 mmHg) CSF Functions Vasculature Contribution to Brain Material Properties 1. Protection: the CSF protects the brain from damage by "buffering" the brain. In other words, the CSF acts to cushion a blow to the head and lessen the impact. 2. Buoyancy: because the brain is immersed in fluid, the net weight of the brain is reduced from about 1,400 gm to about 50 gm. Therefore, pressure at the base of the brain is reduced. 3. Excretion of waste products: the one-way flow from the CSF to the blood takes potentially harmful metabolites, drugs and other substances away from the brain. 4. Endocrine medium for the brain: the CSF serves to transport hormones to other areas of the brain. Hormones released into the CSF can be carried to remote sites of the brain where they may act. BBB (The Blood-Brain-Barrier) Brain is ANISOTROPIC Corona Radiata In the brain, the endothelial cells fit tightly together and substances cannot pass out of the bloodstream The BBB is semi-permeable; that is, it allows some materials to cross, but prevents others from crossing. 3 12/19/2019 Brain Facts Weight of the human head? Weight of human brain? Microscopic Anatomy of Head and Brain Axon - the long extension of a neuron that carries Neuron nerve impulses away from the body of the cell Cell Body - the cell body of the neuron; it contains Axon Terminals - the hair-like ends of the axon the nucleus (also called the soma) 4 12/19/2019 Dendrites - the branching structure of a neuron Myelin Sheath - the fatty substance that surrounds that receives messages (attached to the cell body) and protects some nerve fibers Node of Ranvier - one of the many gaps in the Nucleus - the organelle in the cell body of the myelin sheath neuron that contains the genetic material of the cell Schwann's Cells - cells that produce myelin - they Neuron Facts are located within the myelin sheath. How many neurons in an adult human brain? Size of the Cell body 15 m 5 12/19/2019 Gray Matter, White Matter Glial Cells Functions Astrocyte (Astroglia) Star-shaped cells that provide physical and nutritional support for neurons: 1) clean up brain "debris"; 2) transport nutrients to neurons; 3) hold neurons in place; 4) digest parts of dead neurons; 5) regulate content of extracellular space Microglia like astrocytes, microglia digest parts of dead neurons. OligodendrogliaNumber of provideneurons the insulation compared (myelin) to to glialneurons cells? in the central nervous system. Satellite Cells provide physical support to neurons in the peripheral nervous system. Schwann Cells Provide the insulation (myelin) to neurons in the peripheral nervous system. Oligodendrocyte Macroscopic Anatomy of Head and Brain Microscopic Anatomy of Head and Brain Mechanisms of Traumatic Brain Injury Criteria for Brain Injury TBI Brain Injuries Severity depends on amount of Primary and Secondary brain injury Main cause of Secondary injury = hypoxia TBI ranges from mild to severe: Categories: Open or Closed degree of force Forces: multiple trauma Shearing and Compression neurological complications speed of assistance 6 12/19/2019 Severity of Brain Injuries Mild TBI 41 yr old Mike Hill Head injury graded on: Attacked from behind length of unconsciousness Full recovery after removal length of amnesia No infection Both caused by sudden trauma and nerve cell tearing Left hospital one week after Brain cannot maintain functioning and shuts down either: removal fully (unconsciousness) or partially (dazed) Mild TBI refers to loss of consciousness for 30 mins or less Mild TBI Concussion vs Coma Unconscious Concussion: May be defined as Amnesia Any of these brief unconsciousness. Altered consciousness Indicate Mild TBI neurological deficits Coma: May be defined as unconsciousness. MBI can result in life changing consequences Coma can result from: Glasgow Coma Scale diffuse axonal injury The Glasgow Coma Scale (GCS) is the most common AIS Scales for Brain Injury neurological scoring system used to describe the level of AIS 3: Brain contusion (open) consciousness in a person following a traumatic brain injury. brainstem injury AIS 4: Subdural hematoma, small AIS 5: Diffuse axonal injury It is based on 3 functions: AIS 6: Brain stem transection Eye opening bilateral hemispheric damage Verbal response Motor response 7 12/19/2019 Severe TBI Severe TBI Best Eye Best Verbal Best Motor TBI is a process, not an event! Response Response Response 1. No eye opening 1. No verbal 1. No motor Secondary injury can be more damaging than primary injury. 2. Eye opening to response response pain 2. Incomprehensible 2. Extension to pain Main cause of Secondary injury: hypoxia 3. Eye opening to sounds 3. Flexion to pain verbal 3. Inappropriate 4. Withdrawal from command words pain 4. Eye opening 4. Confused words 5. Localizing to pain spontaneously 5. Appropriate 6. Obeys verbal responses commands Head trauma associated with a Glasgow Coma Brain Injury: Major Mechanisms Types of Brain Injury Direct contusion from skull deformation and/or fracture Contusion from internal movements Focal brain injury: a lesion causing local damage which can be seen by the naked eye. Indirect contusion or contrecoup Reduced blood flow Tissue stress and strain Diffuse brain injury : is associated with global disruption of brain tissue usually and is invisible. Edema and Interstitial Pressure Focal injuries Diffuse Injuries Subdural hematoma (SDH) Concussion The most common mechanism :tearing of veins that bridge the subdural space. The mortality rate is greater than 30 %. The most common head injury diagnosis, involves immediate loss of Epidural hematoma (EDH) consciousness following injury. 95 % recover at the end of 1 month. It occurs as a result of trauma to the skull and the underlying meningeal vessels and may not be associated with brain injury. Contusions Diffuse axonal injury (DAI) It consists of heterogeneous areas of necrosis, pulping, infarction, hemorrhage and edema. Mechanical disruption of many axons in the cerebral hemispheres and Generally occurs at the site of impact (coup: blow) and at remote sites from the impact (contrecoup: can be more significant) subcortical white matter. Involves immediate loss of consciousness lasting Intracerebral hematomas (ICH) for days to weeks. 55% are likely to have died at the end of 1 month. Homogeneous collections of blood within the cerebral parenchyma. Most commonly caused by sudden acceleration/deceleration of the head. Other causes are penetrating wounds and blows to the head. 8 12/19/2019 Proposed In Vivo Injury Mechanisms Mechanism 1: Focal Brain Contusion A brain contusion is defined by cell death accompanied by hemorrhage (leakage of blood). The soft brain tissue is vulnerable to contusion in head trauma. The contusion often occurs at a site distant from the point of Pressure causes a change in Deformation causes extension, impact www.pathology.vcu.edu tissue volume, thereby causing shear and/ or compression of damage tissue, causing primary damage Coup - Contrecoup Injury Impact Location and Contusion 83% 7% 10% 79% 14% 7% 50% 10% 40% LifeArt: Williams & Wilkins http://www.lifeart.com Mechanism 2: Increase in ICP Mechanism 2: Increase in ICP Intracranial Contents: Important Point: The intracranial vault is a fixed volume since 80% brain tissue 10% blood bone does not expand! 10% cerebrospinal fluid An increase in the volume of any of these intracranial contents ICP greater than 20mmHg, there is a high chance of Injury. causes increased intracranial pressure: 1.The brain can swell (edema) 2.Excess blood can accumulate due to hemorrhage 3.Cerebrospinal fluid can accumulate due to blockage of outflow 9 12/19/2019 Mechanism 2: Increase in ICP Mechanism 2: Increase in ICP Important Point: There is only one way out of the intracranial vault Herniation: When the brain is squeezed through the foramen magnum, the brainstem is compressed.
Recommended publications
  • The Strain Rates in the Brain, Brainstem, Dura, and Skull Under Dynamic Loadings
    Mathematical and Computational Applications Article The Strain Rates in the Brain, Brainstem, Dura, and Skull under Dynamic Loadings Mohammad Hosseini-Farid 1,2,* , MaryamSadat Amiri-Tehrani-Zadeh 3, Mohammadreza Ramzanpour 1, Mariusz Ziejewski 1 and Ghodrat Karami 1 1 Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58104, USA; [email protected] (M.R.); [email protected] (M.Z.); [email protected] (G.K.) 2 Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA 3 Department of Computer Science, North Dakota State University, Fargo, ND 58104, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-7012315859 Received: 7 March 2020; Accepted: 5 April 2020; Published: 7 April 2020 Abstract: Knowing the precise material properties of intracranial head organs is crucial for studying the biomechanics of head injury. It has been shown that these biological tissues are significantly rate-dependent; hence, their material properties should be determined with respect to the range of deformation rate they experience. In this paper, a validated finite element human head model is used to investigate the biomechanics of the head in impact and blast, leading to traumatic brain injuries (TBI). We simulate the head under various directions and velocities of impacts, as well as helmeted and unhelmeted head under blast shock waves. It is demonstrated that the strain rates for the brain 1 are in the range of 36 to 241 s− , approximately 1.9 and 0.86 times the resulting head acceleration under impacts and blast scenarios, respectively. The skull was found to experience a rate in the range 1 of 14 to 182 s− , approximately 0.7 and 0.43 times the head acceleration corresponding to impact and blast cases.
    [Show full text]
  • Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers
    International Journal of Molecular Sciences Review Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers Mariana Castro Dias *, Josephine A. Mapunda, Mykhailo Vladymyrov and Britta Engelhardt * Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; [email protected] (J.A.M.); [email protected] (M.V.) * Correspondence: [email protected] (M.C.D.); [email protected] (B.E.) Received: 14 October 2019; Accepted: 26 October 2019; Published: 29 October 2019 Abstract: The homeostasis of the central nervous system (CNS) is ensured by the endothelial, epithelial, mesothelial and glial brain barriers, which strictly control the passage of molecules, solutes and immune cells. While the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) have been extensively investigated, less is known about the epithelial and mesothelial arachnoid barrier and the glia limitans. Here, we summarize current knowledge of the cellular composition of the brain barriers with a specific focus on describing the molecular constituents of their junctional complexes. We propose that the brain barriers maintain CNS immune privilege by dividing the CNS into compartments that differ with regard to their role in immune surveillance of the CNS. We close by providing a brief overview on experimental tools allowing for reliable in vivo visualization of the brain barriers and their junctional complexes and thus the respective CNS compartments. Keywords: brain barriers; blood-brain barrier; neurovascular unit; blood-cerebrospinal fluid barrier; arachnoid barrier; glia limitans; tight junctions; adherens junctions 1. Introduction The brain barriers established by the endothelial blood-brain barrier (BBB), the epithelial blood-cerebrospinal fluid barrier (BCSFB), the meningeal brain barriers and the blood spinal cord barrier are essential for maintaining central nervous system (CNS) homeostasis [1].
    [Show full text]
  • Lecture 4: the Meninges And
    1/1/2016 Introduction • Protection of the brain – Bone (skull) The Nervous System – Membranes (meninges) – Watery cushion (cerebrospinal fluid) – Blood-brain barrier (astrocytes) Meninges CSF The Meninges The Meninges • Series of membranes • Three layers • Cover and protect the CNS – Dura mater • Anchor and cushion the brain – Arachnoid mater – • Contain cerebrospinal fluid (CSF) Pia mater The Meninges • Dura mater – “Tough mother” Skin of scalp Periosteum – Strongest meninx Bone of skull Periosteal Dura – Fibrous connective tissue Meningeal mater Superior Arachnoid mater – sagittal sinus Pia mater Limit excessive movement of the brain Subdural Arachnoid villus – space Blood vessel Forms partitions in the skull Subarachnoid Falx cerebri space (in longitudinal fissure only) Figure 12.24 1 1/1/2016 Superior The Meninges sagittal sinus Falx cerebri • Arachnoid mater – “Spider mother” Straight sinus – Middle layer with weblike extensions Crista galli – Separated from the dura mater by the subdural space of the Tentorium ethmoid cerebelli – Subarachnoid space contains CSF and blood vessels bone Falx Pituitary cerebelli gland (a) Dural septa Figure 12.25a The Meninges • Pia mater – “Gentle mother” – Connected to the dura mater by projections from the arachnoid mater – Layer of delicate vascularized connective tissue – Clings tightly to the brain T Meningitis TT121212 Ligamentum flavumflavumflavum L • LL555 Lumbar puncture Inflammation of meninges needle entering subarachnoid • May be bacterial or viral spacespacespace LLL444 • Diagnosed by
    [Show full text]
  • Meningioma ACKNOWLEDGEMENTS
    AMERICAN BRAIN TUMOR ASSOCIATION Meningioma ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Meningioma Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit advocacy organization dedicated solely to brain tumor research. For nearly 45 years, the ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Santosh Kesari, MD, PhD, FANA, FAAN chair of department of translational neuro- oncology and neurotherapeutics, and Marlon Saria, MSN, RN, AOCNS®, FAAN clinical nurse specialist, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA; and Albert Lai, MD, PhD, assistant clinical professor, Adult Brain Tumors, UCLA Neuro-Oncology Program, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2017 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Meningioma INTRODUCTION Although meningiomas are considered a type of primary brain tumor, they do not grow from brain tissue itself, but instead arise from the meninges, three thin layers of tissue covering the brain and spinal cord.
    [Show full text]
  • Spinal Meninges Neuroscience Fundamentals > Regional Neuroscience > Regional Neuroscience
    Spinal Meninges Neuroscience Fundamentals > Regional Neuroscience > Regional Neuroscience SPINAL MENINGES GENERAL ANATOMY Meningeal Layers From outside to inside • Dura mater • Arachnoid mater • Pia mater Meningeal spaces From outside to inside • Epidural (above the dura) - See: epidural hematoma and spinal cord compression from epidural abscess • Subdural (below the dura) - See: subdural hematoma • Subarachnoid (below the arachnoid mater) - See: subarachnoid hemorrhage Spinal canal Key Anatomy • Vertebral body (anteriorly) • Vertebral arch (posteriorly). • Vertebral foramen within the vertebral arch. MENINGEAL LAYERS 1 / 4 • Dura mater forms a thick ring within the spinal canal. • The dural root sheath (aka dural root sleeve) is the dural investment that follows nerve roots into the intervertebral foramen. • The arachnoid mater runs underneath the dura (we lose sight of it under the dural root sheath). • The pia mater directly adheres to the spinal cord and nerve roots, and so it takes the shape of those structures. MENINGEAL SPACES • The epidural space forms external to the dura mater, internal to the vertebral foramen. • The subdural space lies between the dura and arachnoid mater layers. • The subarachnoid space lies between the arachnoid and pia mater layers. CRANIAL VS SPINAL MENINGES  Cranial Meninges • Epidural is a potential space, so it's not a typical disease site unless in the setting of high pressure middle meningeal artery rupture or from traumatic defect. • Subdural is a potential space but bridging veins (those that pass from the subarachnoid space into the dural venous sinuses) can tear, so it is a common site of hematoma. • Subarachnoid space is an actual space and is a site of hemorrhage and infection, for example.
    [Show full text]
  • The Choroid Plexus: a Comprehensive Review of Its History, Anatomy, Function, Histology, Embryology, and Surgical Considerations
    Childs Nerv Syst (2014) 30:205–214 DOI 10.1007/s00381-013-2326-y REVIEW PAPER The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations Martin M. Mortazavi & Christoph J. Griessenauer & Nimer Adeeb & Aman Deep & Reza Bavarsad Shahripour & Marios Loukas & Richard Isaiah Tubbs & R. Shane Tubbs Received: 30 September 2013 /Accepted: 11 November 2013 /Published online: 28 November 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Keywords Choroid plexus . Anatomy . Neurosurgery . Introduction The role of the choroid plexus in cerebrospinal Hydrocephalus fluid production has been identified for more than a century. Over the years, more intensive studies of this structure has lead to a better understanding of the functions, including brain Introduction immunity, protection, absorption, and many others. Here, we review the macro- and microanatomical structure of the Around the walls of the ventricles, folds of pia mater form choroid plexus in addition to its function and embryology. vascularized layers named choroid plexus. This vasculature Method The literature was searched for articles and textbooks along with the overlying ependymal lining of the ventricles for data related to the history, anatomy, physiology, histology, forms the tela choroidea. Sometimes, however, the term embryology, potential functions, and surgical implications of choroid plexus is used to describe the entire structure [1]. The the choroid plexus. All were gathered and summarized narrow cleft, to which the choroids plexus is attached in the comprehensively. ventricles, is defined as the choroidal fissure. [2] The discovery Conclusion We summarize the literature regarding the choroid of the choroid plexus is attributed to Herophilus, who named it plexus and its surgical implications.
    [Show full text]
  • The Role of the Pia Mater in Controlling Brain and Spinal Cord Intraparenchymal Pressure Daniel Harwell MD; Justin Louis Gibson; Richard D
    The Role of the Pia Mater in Controlling Brain and Spinal Cord Intraparenchymal Pressure Daniel Harwell MD; Justin Louis Gibson; Richard D. Fessler MD; Jeffrey R. Holtz P.A.-C.; David B. Pettigrew MS PhD; Charles Kuntz, IV MD Department of Neurosurgery, University of Cincinnati and The Mayfield Clinic Introduction Conclusions Figure 2 Several multicenter randomized control trials have shown that decompression with The simulated edema model has durotomy/duroplasty significantly differential effects on brain and decreases intracranial pressure (ICP), spinal cord IPP. Brain IPP increased improving mortality. Currently, only slightly, consistent with the decompressive craniectomy combined with Figure 1 augmentative duraplasty is widely model that increased intracranial performed and is recommended by most pressure is primarily due to authors. However, there is a paucity of evidence regarding the effectiveness of constraints imposed by the cranium decompression of the spinal cord by and dura mater. In contrast, spinal Peak IPP, Final IPP after 5 days, Post- meningoplasty. cord IPP increased substantially. piotomy IPP. Key: left frontal (FL), right Piotomy immediately and frontal (FR), left parietal (PL), right parietal Methods (PR) lobes. Cervical (C) and thoracic (T) dramatically reduced spinal cord The supratentorial brain and spinal cord spinal cord. Bars: mean + standard were carefully removed from four fresh IPP. These data are consistent with deviation. * indicates statistical significance cadavers. The dura and arachnoid mater the hypothesis that intramedullary compared with FL, FR, PL, and PR peak investments were removed. ICP monitors IPP. were placed bilaterally in the frontal and pressure is primarily due to An example of one representative parietal lobes, as well as the cervical and constraints imposed by the pia preparation at baseline (A) and after (B) 5 Figure 3 thoracic spinal cord.
    [Show full text]
  • Basic Stroke for the New Recruit
    Basic Stroke for the New Recruit Authors • Erin Conahan MSN, RN, ACNS-BC, CNRN, SCRN • Julie Fussner BSN, RN, CPHQ, SCRN • The authors have nothing to disclose. 1 Objectives • List causes of small vessel stroke vs large vessel stroke and differences in treatment • Describe inclusion/exclusion criteria for tPA and endovascular treatment • List elements of acute stroke work-up to identify risk factors Stroke Facts • Each year 795,000 strokes occur in the United States • Stroke is the 5th leading cause of death in the United States • Stroke is the leading cause of adult disability • Up to 80% of strokes are preventable • During a stroke ~32,000 brain cells are lost per second… ~2 million brain cells lost per minute. • The brain ages 3.6 years for each hour untreated… •Time is Brain 2 What is stroke? Stroke occurs when a blood vessel to the brain is blocked or ruptured causing brain cells in the blood vessel territory to die . What does it look like? • Ischemic Stroke • Hemorrhagic Stroke 3 Cerebral Circulation • Circle of Willis • Located at the base of the skull • Provides collateral circulation • Anterior Circulation • Carotid arteries • Anterior cerebral • Middle cerebral • Anterior communicating • Posterior Circulation • Vertebral • Basilar • Posterior cerebral • Posterior communicating http://www.merckmanuals.com/professional/neurologic_disorders/stroke_cva/overview_of_stroke.html 5 Stroke Syndromes 1. Left Hemisphere 2. Right Hemisphere 3. Cerebellar 4. Brainstem 5. Hemorrhage 4 Left Hemisphere Signs: • Aphasia • Right side weakness • Right side sensory loss • Right visual field cut • Left gaze Right Hemisphere Signs: • Neglect • Left side weakness • Left side sensory loss • Left visual field cut • Right gaze 5 Cerebellar Signs: • Ataxia • Gait disturbance • Vertigo • Nystagmus • Ipsilateral Findings Brainstem Retrieved on 9/25/15 from: http://biology.clc.uc.edu/fankhauser/Labs/Anatomy_&_Physiology/A&P202/202_lecture_notes/05_Mesencephalon_Diencephalon.Jan12.
    [Show full text]
  • The Meninges As Barriers and Facilitators for the Movement of Fluid, Cells and Pathogens Related to the Rodent and Human CNS
    The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS Weller, Roy O.; Sharp, Matthew M.; Christodoulides, Myron; Carare, Roxana O.; Møllgård, Kjeld Published in: Acta Neuropathologica DOI: 10.1007/s00401-018-1809-z Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O., & Møllgård, K. (2018). The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathologica, 135(3), 363-385. https://doi.org/10.1007/s00401-018-1809-z Download date: 28. Sep. 2021 Acta Neuropathologica (2018) 135:363–385 https://doi.org/10.1007/s00401-018-1809-z REVIEW The meninges as barriers and facilitators for the movement of fuid, cells and pathogens related to the rodent and human CNS Roy O. Weller1 · Matthew M. Sharp1 · Myron Christodoulides2 · Roxana O. Carare1 · Kjeld Møllgård3 Received: 5 November 2017 / Revised: 2 January 2018 / Accepted: 15 January 2018 / Published online: 24 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Meninges that surround the CNS consist of an outer fbrous sheet of dura mater (pachymeninx) that is also the inner peri- osteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilita- tors in the foetal CNS.
    [Show full text]
  • Skull, Brain and Cranial Nerves
    Skull, Brain and Cranial Nerves Head and Neck Continued Skull Part of Axial Skeleton Cranial bones = cranium Enclose and protect brain Attachment for head + neck muscles pg 149 Facial bones =framework of face Form cavities for sense organs Opening for air + food passage Hold teeth Anchor face muscles Bones of Skull Flat bones: thin, flattened, some curve Sutures: immovable joints joining bones Calvaria = Skullcap =Vault Superior, Lateral, Posterior part of skull Floor = Base Inferior part of skull 85 openings in skull Spinal cord, blood vessels, nerves Cranial Fossae Created by bony ridges Supports, encircles brain 3 Fossae Anterior Middle Posterior Other small cavities in skull Middle Ear, Inner Ear Nasal Orbit pg 153 Skull through Life Ossifies late in 2nd month of development Frontal + Mandible start as 2 halves-then fuse Skull bones separated by unossified membranes = Fontanels Allow compression of skull during delivery Mostly replaced w/bone after 1st year Growth of Skull ½ adult size by age 9 months ¾ adult size by 2 years 100% adult size by 8-9 years Face enlarges between ages 6-13 years The Brain 4 Parts Cerebrum Diencephalon Brain Stem Pons Medulla Midbrain Cerebellum Gray matter surrounded by White matter pg 348 Meninges: 3 membranes around brain and spinal cord Made of Connective tissue Functions Cover, Protect CNS Enclose, protect blood vessels supplying CNS Contain CSF 3 Layers Dura Mater (external) Arachnoid Mater (middle) pg 375 Pia Mater (internal) Meninges (continued) Dura mater Strongest,
    [Show full text]
  • Fig. 13.1 Copyright © Mcgraw-Hill Education
    Fig. 13.1 Copyright © McGraw-Hill Education. Permission required for reproduction or display. C1 Cervical Cervical enlargement spinal nerves C7 Dural sheath Subarachnoid space Thoracic spinal Spinal cord nerves Vertebra (cut) Lumbar Spinal nerve enlargement T12 Spinal nerve rootlets Medullary cone Posterior median sulcus Lumbar Subarachnoid space Cauda equina spinal nerves Epidural space Posterior root ganglion L5 Rib Arachnoid mater Terminal Sacral Dura mater filum spinal nerves S5 Col (b) (a) 1 Fig. 13.2 Copyright © McGraw-Hill Education. Permission required for reproduction or display. Posterior Spinous process of vertebra Meninges: Dura mater (dural sheath) Arachnoid mater Fat in epidural space Pia mater Subarachnoid space Spinal cord Denticulate ligament Posterior root ganglion Spinal nerve Vertebral body (a) Spinal cord and vertebra (cervical) Anterior Posterior Gray matter: Central canal median sulcus White matter: Posterior horn Posterior column Gray commissure Lateral column Lateral horn Anterior column Anterior horn Posterior root of spinal nerve Posterior root ganglion Spinal nerve Anterior median fissure Anterior root of spinal nerve Meninges: Pia mater Arachnoid mater Dura mater (dural sheath) (b) Spinal cord and meninges (thoracic) (c) Lumbar spinal cord c: ©Ed Reschke/Getty Images 2 Table 13.1 3 Fig. 13.4 Copyright © McGraw-Hill Education. Permission required for reproduction or display. Ascending Descending tracts tracts Posterior column: Gracile fasciculus Cuneate fasciculus Anterior corticospinal tract Lateral Posterior spinocerebellar tract corticospinal tract Lateral reticulospinal tract Anterior spinocerebellar tract Tectospinal tract Anterolateral system (containing Medial reticulospinal tract spinothalamic and spinoreticular tracts) Lateral vestibulospinal tract Medial vestibulospinal tract 4 Fig. 13.5 Copyright © McGraw-Hill Education. Permission required for reproduction or display.
    [Show full text]
  • Tumors of the Meninges and Related Tissues: Meningiomas and Sarcomas
    CHAPTER 30 Tumors of the Meninges and Related Tissues: Meningiomas and Sarcomas Kimberly P. Cockerham, John S. Kennerdell, Joseph C. Maroon, and Ghassan K. Bejjani ANATOMY OFTHE MENINGES Associations Dura Mater Diagnosis Arachnoid Treatment Pia Mater Adjuvant Therapy MENINGIOMAS Clinical Characteristics by Location Histogenesis SARCOMAS OFTHE MENINGES AND BRAIN Incidence Chondrosarcoma Pathology Osteogenic Sarcoma Cytogenetics Primary Sarcoma of the Meninges and Brain Endocrinology Rhabdomyosarcoma ANATOMY OF THE MENINGES The meninges of the brain and spinal cord consist of three into several freely communicating compartments. They in- different layers: the dura mater, arachnoid (tela arach- clude the falx cerebri, the tentorium cerebelli, the falx cere- noidea), and pia mater. Considerable anatomic differences belli, and the diaphragma sellae. exist among these structures, and these differences influence The falx cerebri, so named because of its sickle-like form, the nature, location, and spread of tumors that arise from is a fixed, arched process that descends vertically in the them. longitudinal fissure between the cerebral hemispheres (Fig. 30.2). The tentorium cerebelli is an arched lamina that is DURA MATER elevated in its midportion and inclines downward toward its peripheral attachments on both sides. It covers the superior The dura mater, typically referred to as the dura, is a thick surface of the cerebellum and supports the occipital lobes membrane that is adjacent to the inner table of the skull and (Fig. 30.2). The falx cerebelli is a small triangular process acts both as the functional periosteum of the skull and the of dura mater that lies beneath the tentorium cerebelli in outermost membrane of the brain (Fig.
    [Show full text]