Rhythm Alternation Using Interval Sets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unified Music Theories for General Equal-Temperament Systems
Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories. -
An Exploration of the Relationship Between Mathematics and Music
An Exploration of the Relationship between Mathematics and Music Shah, Saloni 2010 MIMS EPrint: 2010.103 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 An Exploration of ! Relation"ip Between Ma#ematics and Music MATH30000, 3rd Year Project Saloni Shah, ID 7177223 University of Manchester May 2010 Project Supervisor: Professor Roger Plymen ! 1 TABLE OF CONTENTS Preface! 3 1.0 Music and Mathematics: An Introduction to their Relationship! 6 2.0 Historical Connections Between Mathematics and Music! 9 2.1 Music Theorists and Mathematicians: Are they one in the same?! 9 2.2 Why are mathematicians so fascinated by music theory?! 15 3.0 The Mathematics of Music! 19 3.1 Pythagoras and the Theory of Music Intervals! 19 3.2 The Move Away From Pythagorean Scales! 29 3.3 Rameau Adds to the Discovery of Pythagoras! 32 3.4 Music and Fibonacci! 36 3.5 Circle of Fifths! 42 4.0 Messiaen: The Mathematics of his Musical Language! 45 4.1 Modes of Limited Transposition! 51 4.2 Non-retrogradable Rhythms! 58 5.0 Religious Symbolism and Mathematics in Music! 64 5.1 Numbers are God"s Tools! 65 5.2 Religious Symbolism and Numbers in Bach"s Music! 67 5.3 Messiaen"s Use of Mathematical Ideas to Convey Religious Ones! 73 6.0 Musical Mathematics: The Artistic Aspect of Mathematics! 76 6.1 Mathematics as Art! 78 6.2 Mathematical Periods! 81 6.3 Mathematics Periods vs. -
Mto.99.5.2.Soderberg
Volume 5, Number 2, March 1999 Copyright © 1999 Society for Music Theory Stephen Soderberg REFERENCE: MTO Vol. 4, No. 3 KEYWORDS: John Clough, Jack Douthett, David Lewin, maximally even set, microtonal music, hyperdiatonic system, Riemann system ABSTRACT: This article is a continuation of White Note Fantasy, Part I, published in MTO Vol. 4, No. 3 (May 1998). Part II combines some of the work done by others on three fundamental aspects of diatonic systems: underlying scale structure, harmonic structure, and basic voice leading. This synthesis allows the recognition of select hyperdiatonic systems which, while lacking some of the simple and direct character of the usual (“historical”) diatonic system, possess a richness and complexity which have yet to be fully exploited. II. A Few Hypertonal Variations 5. Necklaces 6. The usual diatonic as a model for an abstract diatonic system 7. An abstract diatonic system 8. Riemann non-diatonic systems 9. Extension of David Lewin’s Riemann systems References 5. Necklaces [5.1] Consider a symmetric interval string of cardinality n = c+d which contains c interval i’s and d interval j’s. If the i’s and j’s in such a string are additionally spaced as evenly apart from one another as possible, we will call this string a “necklace.” If s is a string in Cn and p is an element of Cn, then the structure ps is a “necklace set.” Thus <iijiij>, <ijijij>, and <ijjijjjijjj> are necklaces, but <iijjii>, <jiijiij>, and <iijj>, while symmetric, are not necklaces. i and j may also be equal, so strings of the 1 of 18 form <iii...> are valid necklaces. -
Program and Abstracts for 2005 Meeting
Music Theory Society of New York State Annual Meeting Baruch College, CUNY New York, NY 9–10 April 2005 PROGRAM Saturday, 9 April 8:30–9:00 am Registration — Fifth floor, near Room 5150 9:00–10:30 am The Legacy of John Clough: A Panel Discussion 9:00–10:30 am TextMusic Relations in Wolf 10:30–12:00 pm The Legacy of John Clough: New Research Directions, Part I 10:30am–12:00 Scriabin pm 12:00–1:45 pm Lunch 1:45–3:15 pm Set Theory 1:45–3:15 pm The Legacy of John Clough: New Research Directions, Part II 3:20–;4:50 pm Revisiting Established Harmonic and Formal Models 3:20–4:50 pm Harmony and Sound Play 4:55 pm Business Meeting & Reception Sunday, 10 April 8:30–9:00 am Registration 9:00–12:00 pm Rhythm and Meter in Brahms 9:00–12:00 pm Music After 1950 12:00–1:30 pm Lunch 1:30–3:00 pm Chromaticism Program Committee: Steven Laitz (Eastman School of Music), chair; Poundie Burstein (ex officio), Martha Hyde (University of Buffalo, SUNY) Eric McKee (Pennsylvania State University); Rebecca Jemian (Ithaca College), and Alexandra Vojcic (Juilliard). MTSNYS Home Page | Conference Information Saturday, 9:00–10:30 am The Legacy of John Clough: A Panel Discussion Chair: Norman Carey (Eastman School of Music) Jack Douthett (University at Buffalo, SUNY) Nora Engebretsen (Bowling Green State University) Jonathan Kochavi (Swarthmore, PA) Norman Carey (Eastman School of Music) John Clough was a pioneer in the field of scale theory. -
1 a NEW MUSIC COMPOSITION TECHNIQUE USING NATURAL SCIENCE DATA D.M.A Document Presented in Partial Fulfillment of the Requiremen
A NEW MUSIC COMPOSITION TECHNIQUE USING NATURAL SCIENCE DATA D.M.A Document Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Musical Arts in the Graduate School of The Ohio State University By Joungmin Lee, B.A., M.M. Graduate Program in Music The Ohio State University 2019 D.M.A. Document Committee Dr. Thomas Wells, Advisor Dr. Jan Radzynski Dr. Arved Ashby 1 Copyrighted by Joungmin Lee 2019 2 ABSTRACT The relationship of music and mathematics are well documented since the time of ancient Greece, and this relationship is evidenced in the mathematical or quasi- mathematical nature of compositional approaches by composers such as Xenakis, Schoenberg, Charles Dodge, and composers who employ computer-assisted-composition techniques in their work. This study is an attempt to create a composition with data collected over the course 32 years from melting glaciers in seven areas in Greenland, and at the same time produce a work that is expressive and expands my compositional palette. To begin with, numeric values from data were rounded to four-digits and converted into frequencies in Hz. Moreover, the other data are rounded to two-digit values that determine note durations. Using these transformations, a prototype composition was developed, with data from each of the seven Greenland-glacier areas used to compose individual instrument parts in a septet. The composition Contrast and Conflict is a pilot study based on 20 data sets. Serves as a practical example of the methods the author used to develop and transform data. One of the author’s significant findings is that data analysis, albeit sometimes painful and time-consuming, reduced his overall composing time. -
Appendix A: Mathematical Preliminaries
Appendix A: Mathematical Preliminaries Definition A1. Cartesian Product Let X and Y be two non-empty sets. The Cartesian product of X and Y, denoted X Â Y, is the set of all ordered pairs, a member of X followed by a member of Y. That is, ÈÉ X Â Y ¼ ðÞx, y x 2 X, y ∈ Y : Example A2. Let X ¼ {0, 1}, Y ¼ {x, y, z}. Then the Cartesian product X Â Y of X and Y is fgðÞ0, x ,0,ðÞy ,0,ðÞz ,1,ðÞx ,1,ðÞy ,1,ðÞz : Definition A3. Relation Let X and Y be two non-empty sets. A subset of X Â Y is a relation from X to Y; a subset of X Â X is a relation in X. Example A4. Let X ¼ {0, 1}, Y ¼ {x, y, z}. Then ÈÉÀ Á À Á À Á R ¼ ðÞ0, x , 1, x , 1, y , 1, z , R0 ¼ ∅, are relations from X to Y.(R0 is a relation because the empty set ∅ is a subset of every set.) Moreover, R00 ¼ fgðÞ0, 0 ,1,0ðÞ,1,1ðÞ is a relation in X. Definition A5. Function Let X and Y be two non-empty sets. E. Agmon, The Languages of Western Tonality, Computational Music Science, 265 DOI 10.1007/978-3-642-39587-1, © Springer-Verlag Berlin Heidelberg 2013 266 Appendix A: Mathematical Preliminaries A function f from X into Y is a subset of X Â Y (i.e., a relation from X to Y) with the following property. For every x ∈ X, there exists exactly one y ∈ Y, such that (x, y) ∈ f. -
The Euclidean Algorithm Generates Traditional Musical Rhythms
The Euclidean Algorithm Generates Traditional Musical Rhythms Godfried Toussaint∗ School of Computer Science, McGill University Montreal,´ Quebec,´ Canada [email protected] Abstract The Euclidean algorithm (which comes down to us from Euclid’s Elements) computes the greatest com- mon divisor of two given integers. It is shown here that the structure of the Euclidean algorithm may be used to generate, very efficiently, a large family of rhythms used as timelines (ostinatos), in sub-Saharan African music in particular, and world music in general. These rhythms, here dubbed Euclidean rhythms, have the property that their onset patterns are distributed as evenly as possible. Euclidean rhythms also find application in nuclear physics accelerators and in computer science, and are closely related to several families of words and sequences of interest in the study of the combinatorics of words, such as Euclidean strings, to which the Euclidean rhythms are compared. 1. Introduction What do African rhythms, spallation neutron source (SNS) accelerators in nuclear physics, string theory (stringology) in computer science, and an ancient algorithm described by Euclid have in common? The short answer is: patterns distributed as evenly as possible. For the long answer please read on. Mathematics and music have been intimately intertwined since the days of Pythagoras. However, most of this interaction has been in the domain of pitch and scales. For some historical snapshots of this interaction the reader is referred to H. S. M. Coxeter’s delightful account [9]. Rhythm, on the other hand has been his- torically mostly ignored. Here we make some mathematical connections between musical rhythm and other areas of knowledge such as nuclear physics and computer science, as well as the work of another famous ancient Greek mathematician, Euclid of Alexandria. -
The Distance Geometry of Music
The Distance Geometry of Music Erik D. Demaine∗ Francisco Gomez-Martin† Henk Meijer‡ David Rappaport§ Perouz Taslakian¶ Godfried T. Toussaint§k Terry Winograd∗∗ David R. Wood†† Abstract We demonstrate relationships between the classical Euclidean algorithm and many other fields of study, particularly in the context of music and distance geometry. Specifically, we show how the structure of the Euclidean algorithm defines a family of rhythms that encompass over forty timelines (ostinatos) from traditional world music. We prove that these Euclidean rhythms have the mathematical property that their onset patterns are distributed as evenly as possible: they maximize the sum of the Euclidean distances between all pairs of onsets, viewing onsets as points on a circle. Indeed, Euclidean rhythms are the unique rhythms that maximize this notion of evenness. We also show that essentially all Euclidean rhythms are deep: each distinct distance between onsets occurs with a unique multiplicity, and these multiplicities form an interval 1, 2, . , k − 1. Finally, we characterize all deep rhythms, showing that they form a subclass of generated rhythms, which in turn proves a useful property called shelling. All of our results for musical rhythms apply equally well to musical scales. In addition, many of the problems we explore are interesting in their own right as distance geometry problems on the circle; some of the same problems were explored by Erd˝osin the plane. ∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, -
Euclidean Rhythm Music Sequencer Using Actors in Python
Euclidean Rhythm Music Sequencer using Actors in Python Daniel Prince Department of Electrical and Computer Engineering University of Dayton 300 College Park Dayton, Ohio 45469 USA [email protected] ABSTRACT entry by the user, and can feel tedious at worst. In this A real-time sequencer that implements the Euclidean Rhythm work, the Euclidean rhythm algorithm is explored for its Algorithm is created for creative generation of drum se- immediacy and ability to quickly define complex sequences. quences by musicians or producers. The Actor model of Audio production software necessitates a unique set of concurrency is used to simplify the communication required technical demands in order to facilitate an experience con- for interactivity and musical timing. Generator comprehen- sistent with modern standards. Software used for music pro- sions and higher-order functions are used for simplification. duction must not only provide precise timing for the gener- The resulting application sends Musical Instrument Digital ation and playback of musical passages that often involves Interface data interactively to another application for sound demanding digital signal processing algorithms, but it must generation. also provide an interface to a user that allows for real-time configuration of the model behind the music. This combi- nation of synchronous and asynchronous work is a demand- 1. INTRODUCTION ing task for synchronization models. Fundamental models A vast range of music production software has become of synchronization such as semaphores would be difficult to available recently due to the increasing power of personal scale to applications involving several concurrent tasks. Due computers and increasing popularity of audio production to the complex synchronization issues related to creating an among hobbyists and professionals alike. -
MTO 22.4: Gotham, Pitch Properties of the Pedal Harp
Volume 22, Number 4, December 2016 Copyright © 2016 Society for Music Theory Pitch Properties of the Pedal Harp, with an Interactive Guide * Mark R. H. Gotham and Iain A. D. Gunn KEYWORDS: harp, pitch, pitch-class set theory, composition, analysis ABSTRACT: This article is aimed at two groups of readers. First, we present an interactive guide to pitch on the pedal harp for anyone wishing to teach or learn about harp pedaling and its associated pitch possibilities. We originally created this in response to a pedagogical need for such a resource in the teaching of composition and orchestration. Secondly, for composers and theorists seeking a more comprehensive understanding of what can be done on this unique instrument, we present a range of empirical-theoretical observations about the properties and prevalence of pitch structures on the pedal harp and the routes among them. This is particularly relevant to those interested in extended-tonal and atonal repertoires. A concluding section discusses prospective theoretical developments and analytical applications. 1 of 21 Received June 2016 I. Introduction [1.1] Most instruments have a relatively clear pitch universe: some have easy access to continuous pitch (unfretted string instruments, voices, the trombone), others are constrained by the 12-tone chromatic scale (most keyboards), and still others are limited to notes of the diatonic or pentatonic scales (many non-Western-orchestral members of the xylophone family). The pedal harp, by contrast, falls somewhere between those last two categories: it is organized around a diatonic configuration, but can reach all 12 notes of the chromatic scale, and most (but not all) pitch-class sets. -
Musical Rhythms: a Mathematical Investigation
Rhythm Counting rhythms Even spacing Nonrepeating rhythms Musical Rhythms: a mathematical investigation Dr Marcel Jackson with Adam Rentsch Adam was sponsored by an AMSI Summer Research Scholarship www.amsi.org.au Rhythm Counting rhythms Even spacing Nonrepeating rhythms Outline 1 Rhythm 2 Counting rhythms 3 Even spacing 4 Nonrepeating rhythms Rhythm Counting rhythms Even spacing Nonrepeating rhythms melody = rhythm + pitch This is not actually the mathematical part. Rhythm Counting rhythms Even spacing Nonrepeating rhythms melody = rhythm + pitch This is not actually the mathematical part. Rhythm Counting rhythms Even spacing Nonrepeating rhythms Rhythm Rhythm: a regular, recurring motion. Some pattern of beats, to be repeated. Ostinato (Beethoven, Symphony No. 7, 2nd movement.) Rhythm can form the underlying structure over which a melody (with its own rhythm) sits. (Such as the bass line and also the time signature.) This often gives a second layer of rhythm: rhythm within rhythm. (Emphasis at start of phrasing.) Rhythm Counting rhythms Even spacing Nonrepeating rhythms Rhythm Rhythm: a regular, recurring motion. Some pattern of beats, to be repeated. Ostinato (Beethoven, Symphony No. 7, 2nd movement.) Rhythm can form the underlying structure over which a melody (with its own rhythm) sits. (Such as the bass line and also the time signature.) This often gives a second layer of rhythm: rhythm within rhythm. (Emphasis at start of phrasing.) Rhythm Counting rhythms Even spacing Nonrepeating rhythms Rhythm Rhythm: a regular, recurring motion. Some pattern of beats, to be repeated. Ostinato (Beethoven, Symphony No. 7, 2nd movement.) Rhythm can form the underlying structure over which a melody (with its own rhythm) sits. -
Tipping the Scales . . . Functionally!
Tipping the Scales . Functionally! Gordon J. Pace and Kevin Vella Department of Computer Science, University of Malta Although one might be tempted to attribute the choice of notes in musical scales and chords to purely aesthetic considerations, a growing body of work seeks to establish correspondences with mathematical notions. Intriguingly, the most important musical scales turn out to be solutions to optimisation problems. In this abstract, we review mathematical characterisations which yield some of the most important musical scales. We also describe an implementation of these notions using the functional programming language Haskell, which has allowed us to conduct interactive experiments and to visualise various approaches from the literature. 1 Pitches, Pitch Classes and Scales The pitch of a musical note is quantified by its frequency. Pitches are partitioned into pitch classes with frequencies p × 2n; −∞ < n < 1 (doubling frequencies) under the octave equivalence relation. Pitches within the same pitch class, although having different frequencies, are perceived as being of the same quality [6]. The continuum of pitch classes can be discretised by choosing a finite subset of pitch classes as a palette. This is the chromatic pitch-class set1, the raw material at a composer’s disposition. Frequencies are typically chosen at (or near) equidistant points on a logarithmic scale, so that the brain perceives the distance between successive pairs of pitches as being the same. Though by no means universal, the use of twelve pitch classes is predominant in western music [3] and is widely represented in other cultures. Western music also exhibits a preference for scales containing seven note pitch-class sets chosen from the twelve-note chromatic set.