Cervical Thorium Dioxide Granuloma ('Thorotrastoma')

Total Page:16

File Type:pdf, Size:1020Kb

Cervical Thorium Dioxide Granuloma ('Thorotrastoma') CervicalThorium Dioxide Granuloma ('Thorotrastoma') Binh T. Nguyen, David M. Yousem, Richard E. Hayden, and Kathleen T. Montone Summary: An elderly woman had an expanding cervical mass graines abated in early adulthood. During a work-up for that entrapped and compressed the adjacent cranial nerves, cerebrovascular disease in the 1970s, the patient was blood vessels, and muscles. The mass was dense on radio- noted to have a left neck mass in the same location as the graphs, extendedfrom the skull base to low neck in the prever- current lesion. The patient had surgical exploration of her tebral and parapharyngealtissues, and showed mixed intensity left neck. Although the records from this admission are on MR. A previous direct carotid arteriogram with thorium diox- incomplete, the carotid artery and vagus nerve may have ide as the contrast agent suggested the histologically proved been injured or resectedat that time. The mass could not diagnosis of a cervical thorium dioxide granuloma ("thorotras- be completely excisedbecause of its invasiveness.Patho- toma"). logically, the mass was characterizedas "granulomatous." This massgrew through the 1970sand 1980sand increas- Index terms: Neck, magnetic resonance; Granuloma; Contrast ing neck discomfort, difficulty swallowing, and globus media, complications symptoms developed. Imaging evaluation of this patient included a barium Thorium dioxide (Thorotrast) was introduced swallow,which demonstrateda radiopaqueleft neck mass as a radiologiccontrast agent in 1928 by Radt (Fig 1A), and compressionof the left and posterior aspect (1). An estimated 10 000 to 100 000 patients of the pharynx, vallecula,and piriform sinuses.There was were injected with thorium dioxide worldwide, discoordinatedswallowing. A computed tomography (CT) with approximately4000 to 5000 patients ex- scan showed a peripherally calcified mass in the prever- posedin the UnitedStates (2). Almost all of the tebral and parapharyngeal tissues with evidence of left injected thorium dioxide is retained within the tongue atrophy and vocal cord paralysis (Fig 1B). On body; about 60%is depositedin the liver, 19%in magnetic resonance(MR), the mass showedmixed inten- sity on pulse sequences, the spleen, and 27% in the reticuloendothelial all thought to representhemor- rhage (Fig 1C-E). A low-intensity peripheral wall system of (3). corre- the bone marrow The radioactiv- spondedto calcificationseen on CT. An MR angiogram did ity of thorium dioxide and its retention in the not show the left common, internal, or external carotid liver and bone marrow account for the high rate arteries(Fig 1F). of hepatic neoplasmsand blood dyscrasiasas- Becauseof continued growth and discomfort of the left sociatedwith this agent, use of which was dis- neck mass, resectionof the lesion was performed. During continuedin the earlv 1950s. surgery, the mass was noted to be calcified and fibrotic peripherally with a necrotic center. The carotid vessels Case Report could not be identifiedwithin the mass. Pathologicexam- ination revealed granulomatous inflammation associated A 64-year-old white woman presented with difficulty with extensive dense fibrosis, calcification, and the pres- breathing and an enlarging left neck mass. On examina- ence of granular brown pigmented foreign material con- tion, she had inspiratory stridor worseningwith phonation, sistent with thorium dioxide deposits (Fig 1G). Thorium left-sideddeviation of the larynx, left vocal cord paralysis, dioxide was discoveredto be the contrast agent used for a left Horner syndrome, and a large, fixed left neck mass the arteriogramsin 1943. extending from the mastoid tip to the lower neck. The patient's medical history was significant for long- standing hypertensionand migraine headachesas a child. Discussion As part of the evaluation for migraines, the patient had bilateral direct carotid artery puncture arteriograms in Local granulomaformation at the site of in- 1943. No intracranialaneurvsms were seen.and the mi- jection usuallyoccurs 15 or more yearsafter ReceivedSeptember 12, 1994: acceptedafter revisionNovember 30. From the Departments of Radiology (B.T.N., D.M.Y.), Head and Neck Surgery (R.E.H.), and Pathology (K.T.M.), Hospital of the University of Pennsylvania,Philadelphia. Addressreprint requests to David M. Yousem,MD, Hospitalof the Universityof Pennsylvania,Departrrient of Radiology,3400 SpruceSt, philadelphia, PA 19104. AJNR l6:1729-1732,Sep 1995 0195-6108/95/1608-1729@ AmericanSociety of Neuroradiology 1729 I73O NCUYEN AJNR: 16, September 1995 Fig 1. A, On the lateral barium swal- low view one seesthe posterior pharyn- geal wall displacedanteriorly by a calci- fied mass. Note also that the patient has aspirated (arows) secondary to disco- ordinated swallowing from her cranial neuropathies. B, The mass (M has a denserim and is located in the prevertebral space on this contrast-enhancedCT. The ipsilat- eral carotid artery and jugular vein can- not be identified. The tongue is atrophied (arrows) from tumor involvement of the extracranialportion of cranial nerve XII. (Figure continues.) thorium dioxide administration. During intra- Without the history of thorium dioxide expo- vascular thorium dioxide administration, ex- sure, the heterogeneous signal intensity and travasationmay occur, initiatinga local cellular calcified rim on CT and MR with absent flow on reaction against the foreign substance and, in the MR angiogram might suggestthe possibility time, leadingto tissuefibrosis. Thorium dioxide of a thrombosed chronic pseudoaneurysm of carotid angiography had a 3% to 70% rate of the common carotid artery. Pseudoaneurysms extravasationin patients, in at least 50% of have variable MR presentations depending on whom thorium dioxide granulomas ("thorotras- their size and age and the extent of thrombosis tomas") developed(4-6).The cervical mass (12). Concentric, laminated rings of hemor- may entrap cranial nervesIX, X, XI, and XII and rhage in variousstages and a lumen of variable the sympathetic chain, resulting in atrophy of patency (recognizedby a flow void) are typi- respective innervated tissues, pain, cough, callyseen (12). hoarseness,vocal cord paralysis, dysphagia, Other differential diagnostic possibilitiesof a tongue fasciculations,laryngeal edema, dys- mass in this regioninclude calcified tuberculous pnea, and Horner syndrome (7-9). Compres- or fungal infections,myositis ossificans, glomus sion and/or obstruction of cervical blood ves- tumors, and schwannomas.Most patientswith sels may induce cerebrovascularinsufficiency, granulomatousinfections would have systemic vesselthrombosis, vascular erosion,and hem- symptoms or a definite history of previous in- orrhage(9, 10). fection. lt would be rare for such an inflamma- Radiographically,nearly every case of a tho- tory mass to grow without adjacent cellulitic rium dioxide granuloma has shown extensive changes or edema in the fat. The calcification hyperdensity,because of thorium dioxide dep- that was seenin the thorium dioxidegranuloma osition compounded by calcification. Spread would not be unusual in retropharyngealhis- from the skull base to the mediastinum is not toplasmosisor tuberculosis.Myositis ossificans uncommon, presumably becauseof the effect would be unusual in the retropharynx where of gravity or the lymphatic drainage pathways muscle is scarce.Glomus tumors (paragangli- of thorium dioxide-engulfingmacrophages (5, omas) usually are isodenseon noncontrasteT, 7, 17). Necrosiswithin or adjacentto the gran- have flow voids on MR, and dramatically en- uloma, rnanifestedas low density on CT within hance after contrast. Diffuse calcification and the hyperdensemass, hdy occur (11). occlusion of the common carotid artery in a AJNR: 16. September 1995 THORIUM DIOXIDE 7731 Fig 7, continued. C, The prevertebral location of the mass is well demonstratedon this T1- weightedMR image. Note the displace- ment of pharyngeal musculature (white arrow) anteriorly.Again, no ca- rotid artery or jugular vein separable from the mass is identified. The lesion has mixed signal intensity.The stemo- cleidomastoid atrophy (black arrows) on the left signifies cranial nerve XI damage. D, The fat-suppressedfast spin-echo T2-weightedMR image also shows heterogeneityto the signal intensityof the mass. Note that the low-intensityrim (arrows) correspondsto the density seen on CT. E, On gadolinium-enhanced,fat-suppressed MR images, the lesion showsno significant enhancement centrally, although there are focal areas that may enhance (arows). f;, The time-of-flight MR angiogram through the neck ehows a lack of visibility of the common carotid and internal and external carotid arteries. Collateral vessels may be present superiorly from the vertebrobasilarsystem. G In this pathologic section through mass, dense fibrous tissue containing histiocytes with foreign granular material (arrous) have histologic appearanceconsistent with thorium dioxide (magnification,x 198). paragangliomawould be uncommon findings. coma could have been dense, but one would Schwannomas arising from nerve sheaths of expect a greater degree of enhancementin a cranial nerves IX, X, and XI have a smooth, sarcoma. Only the chondroosseousneoplasms well-definedround or lobular border,are hypo- would calcify so extensively. denseon CT, and moderatelyenhance. They do In summary, history is worth a thousand not usually calcify or occlude vessels. ages. The remote history of exposure to Another considerationin this case is the pos- agent at cerebralangiography provided the sibility of
Recommended publications
  • In-Vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung—A Dialog Between Aerosol Science and Biology$
    Journal of Aerosol Science 42 (2011) 668–692 Contents lists available at ScienceDirect Journal of Aerosol Science journal homepage: www.elsevier.com/locate/jaerosci In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology$ Hanns-Rudolf Paur a, Flemming R. Cassee b, Justin Teeguarden c, Heinz Fissan d, Silvia Diabate e, Michaela Aufderheide f, Wolfgang G. Kreyling g, Otto Hanninen¨ h, Gerhard Kasper i, Michael Riediker j, Barbara Rothen-Rutishauser k, Otmar Schmid g,n a Institut fur¨ Technische Chemie (ITC-TAB), Karlsruher Institut fur¨ Technologie, Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany b Center for Environmental Health, National Institute for Public Health and the Environment, P.O. Box 1, 3720 MA Bilthoven, The Netherlands c Pacific Northwest National Laboratory, Fundamental and Computational Science Directorate, 902 Battelle Boulevard, Richland, WA 99352, USA d Institute of Energy and Environmental Technologies (IUTA), Duisburg, Germany e Institut fur¨ Toxikologie und Genetik, Karlsruher Institut fur¨ Technologie, Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany f Cultex Laboratories, Feodor-Lynen-Straße 21, 30625 Hannover, Germany g Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Munchen,¨ Ingolstadter¨ Landstrasse 1, 85764 Neuherberg, Germany h THL National Institute for Health and Welfare, PO Box 95, 70701 Kuopio, Finland i Institut fur¨
    [Show full text]
  • Spinal Arachnoiditis Stephen I
    THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCbS REVIEW ARTICLE: Spinal Arachnoiditis Stephen I. Esses and T.P. Morley SUMMARY: A review of the literature points to the many causes of arachnoiditis and the failure of treatment to arrest or reverse its effects. The true incidence cannot be determined, although it is probably lower than might at first appear from the published articles. In the radiological literature the diagnosis seems to derive from an examination of the films alone, often without reference to the clinical findings or appearance at operation. While attempts at treatment are usually unsuccessful, some iatrogenic cases can be prevented by the avoidance of intrathecal steroid injections or unduly rough or repeated surgical exploration of the lumbar vertebral canal. RESUME: Une revue de la litterature indique clairement que I'arachnoidite peut etre due a plusieurs causes et que son traitement est deficitaire. L'incidence reelle de I'arachnoidite ne peut etre determinee, mais elle est probablement inferieure au taux apparent selon les publications. Ainsi dans la litterature radiologique on semble etablir un diagnostic sur la base des films sans tenir compte des aspects clini- ques ou de la presentation chirurgicale. Quoique les essais therapeutiques soient generalement negatifs, on peut prevenir certaines causes iatrogeniques en evitant les injections intrathecals de steroides ou les explorations repetees, ou trop dures, du canal vertebral lombaire. Can. J. Neurol. Sci. 1983; 10:2-10 Feodor Krause (1907) was the first to describe adhesive dense collagen deposition which completely encases the lumbar arachnoiditis. By 1936 Elkington presented a com­ nerve roots. The roots are deprived of their blood supply plete analysis of forty-one cases under the tide "Meningitis and undergo progressive atrophy.
    [Show full text]
  • Investigation of Novel Nanoparticles of Gallium Ferricyanide and Gallium Lawsonate As Potential Anticancer Agents, and Nanoparti
    Investigation of Novel Nanoparticles of Gallium Ferricyanide and Gallium Lawsonate as Potential Anticancer Agents, and Nanoparticles of Novel Bismuth Tetrathiotungstate as Promising CT Contrast Agent A Thesis submitted to Kent State University In partial fulfillment of the requirements for the degree of Master of Science Liu Yang August 2014 Thesis written by Liu Yang B.S. Kent State University, 2013 M.S. Kent State University, 2014 Approved by ___________________________________, Advisor, Committee member Dr. Songping Huang ___________________________________, Committee member Dr. Scott Bunge ___________________________________, Committee member Dr. Mietek Jaroniec Accepted by ___________________________________, Chair, Department of Chemistry Dr. Michael Tubergen ___________________________________, Dean, College of Arts and Sciences Dr. James L. Blank ii Table of Contents List of Figures..…………………………………………………………………........vii Acknowledgements ……………………………………………………………….….xi Chapter 1: Summary, Materials and Methods …..……………………………………1 1.1 Materials ………………………………………………………………….3 1.1.1 carboxymethyl reduced polysaccharide (CMRD) preparation….3 1.2 Methods …………………………………………………………………4 1.2.1 Atomic absorption spectroscopy (AA) …………………………4 1.2.2 Acid base treating method ……………………………………...4 1.2.3 Cell viability study ……………………………………………...5 i) MTT assay…………………………………………………..5 ii) Trypan blue assay ………………………………………….6 1.2.4 Dialysis …………………………………………………………6 1.2.5 Elementary analysis …………………………………………….7 1.2.6 Lyophilization …………………………………………………..7 iii 1.2.7
    [Show full text]
  • Synthesis of Radioactive Nanostructures in a Research Nuclear Reactor
    Scholars' Mine Masters Theses Student Theses and Dissertations Summer 2016 Synthesis of Radioactive Nanostructures in a Research Nuclear Reactor Maria Camila Garcia Toro Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Materials Science and Engineering Commons, Medicine and Health Sciences Commons, and the Nuclear Engineering Commons Department: Recommended Citation Garcia Toro, Maria Camila, "Synthesis of Radioactive Nanostructures in a Research Nuclear Reactor" (2016). Masters Theses. 7813. https://scholarsmine.mst.edu/masters_theses/7813 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SYNTHESIS OF RADIOACTIVE NANOSTRUCTURES IN A RESEARCH NUCLEAR REACTOR by MARIA CAMILA GARCIA TORO A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE in NUCLEAR ENGINEERING 2016 Approved by Carlos H. Castano Giraldo, Advisor Joshua P. Schlegel Joseph D. Smith 2016 Maria Camila Garcia Toro All Rights Reserved iii PUBLICATION THESIS OPTION This thesis consists of the following papers prepared in the style utilized by the Journal of Applied Physics and Journal of Physical Chemistry Letters. Paper I: Synthesis of Radioactive Gold Nanoparticles Using a Research Nuclear Reactor; pages 21-33, has been submitted for publication to the Journal of Applied Physics. Paper II: Production of Bimetallic Gold – Silver Nanoparticles in a Research Nuclear Reactor; pages 49-73, will be submitted to the Journal of Physical Chemistry Letters.
    [Show full text]
  • Contrast-Enhanced Breast Imaging 1
    Contrast-Enhanced Breast Imaging 1 Contrast-Enhanced Breast Imaging: Better Visualization for Abnormalities December 10, 2020 Contrast-Enhanced Breast Imaging 2 Contrast-Enhanced Breast Imaging: Better Visualization for Abnormalities Contrast-Enhanced Breast Imaging 3 Outline I. Abstract II. Introduction III. History of Mammography IV. Focusing on Breast Health V. Other Breast Imaging Modalities a. Computed Tomography b. Magnetic Resonance Imaging c. Ultrasound VI. Usage of Contrast-Enhanced Imaging a. Benefits b. Concerns VII. Conclusion VIII. References Objectives After reading the scientific paper Contrast-Enhanced Breast Imaging: Better Visualization for Abnormalities, the reader will be able to: 1. Understand the history of mammography 2. Differentiate between each of the breast imaging modalities 3. Recognize the benefits with the usage of contrast-enhanced breast imaging 4. Recognize the concerns associated with contrast-enhanced breast imaging Contrast-Enhanced Breast Imaging 4 Abstract Contrast-enhanced breast imaging is a useful diagnostic tool that utilizes various modalities, including mammography, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). Contrast-enhanced breast imaging is better at detecting lesions and abnormalities within the breasts than images that do not use contrast. By using contrast, the cancerous tissue absorbs it and provides an easier method to determine cancerous tissue from the normal surrounding tissue. Also, contrast can help determine the difference between a malignant tumor and a benign tumor. In order to evaluate the status of the tumor, the contrast is needed to determine whether the lesion is supplied with blood. If the lesion has an adequate blood supply, it will most likely be considered a malignant tumor.
    [Show full text]
  • Division Oncological Diagnostics and Therapy (E0100 / E010) Head: Prof
    Research Program E Division E0100 Radiological Diagnostics and Therapy Oncological Diagnostics and Therapy Division Oncological Diagnostics and Therapy (E0100 / E010) Head: Prof. Dr. Gerhard van Kaick (- 9/02), Priv.-Doz. Dr. Stefan Delorme (acting, 10 - 12/02)*) Scientists Most of our clinical projects evaluate technical improve- Priv.-Doz. Dr. Stefan Delorme ments in the field of Magnetic Resonance Imaging which Dr. Ljubica Dukic (1/02 -) are developed in close cooperation with the Division of Priv.-Doz. Dr. Marco Essig Biophysics (E0200). New methods are mainly related to Dr. Christian Fink functional imaging, e.g, of perfusion, diffusion, or metabo- Dr. Stefan Heckl (- 5/02) lism in tumors. We intend to obtain more information on Dr. Fabian Kießling the biological behavior of tumors, particularly their aggres- Dr. Martin Krix siveness and their response to radiotherapy, chemother- Dr. Matthias Lichy apy, or novel approaches, such as antiangiogenic treat- Dr. Dagmar Liebermann (½) ment. Together with E0200, we are evaluating new devel- Dr. Michael Puderbach (7/02 -) opments in interventional MRI, i.e., MR-guided treatment Dr. Cornelia Rehm using intravascular catheters or percutaneous probes for Priv.-Doz. Dr. Heinz-Peter Schlemmer (-5/02) local drug delivery or, e.g., thermal ablation. Priv.-Doz. Dr. Stefan Schönberg (-10/01) Besides MRI, multiphasic, contrast-enhanced spiral CT Dr. Bram Stieltjes (6/02 -) and new-developed ultrasound techniques are capable of Dr. Klaus Wasser (-6/02) assessing tissue perfusion. They are being evaluated in Dr. Marc-André Weber (-7/01) experimental and clinical settings for assessing therapeuti- cally induced changes in tumor perfusion, and are corre- Guest Scientists lated with reference measurements using MRI.
    [Show full text]
  • 4. Other Data Relevant to an Evaluation of Carcinogenicity and Its Mechanisms
    4. Other Data Relevant to an Evaluation of Carcinogenicity and its Mechanisms 4.1 Absorption, distribution, metabolism and excretion of radionuclides The most important routes of intake of radionuclides are by inhalation and ingestion, for both workers and members of the public. Ingestion is a less important route for workers, but a proportion of inhaled material is escalated from the trachea and lungs and swallowed. Entry through contaminated wounds may also occur in certain industrial situations. Entry through intact skin is rare, although exposure to 3 H2O vapour can lead to appreciable doses by this route. Entry of radionuclides into the body by inhalation and ingestion leads to irradiation of the respiratory and gastrointestinal tracts. Entry through contaminated wounds also results in local irradiation of tissues. After intake by any route, the subsequent behaviour of the radionuclide depends on the element concerned and its chemical form during exposure. These factors determine its solubility and the extent to which it is dissolved and absorbed into the blood. On reaching the blood, the distri- bution to and retention in body tissues depend on the chemical nature of the element. If a radionuclide that enters the bloodstream is an isotope of an element that is normally present (e.g. sodium, potassium, chlorine), it will behave like the stable element. If it has similar chemical properties to an element normally present, it will tend to follow the metabolic pathways of that element (e.g. 90Sr and 226Ra behave similarly to calcium and 137Cs and 86Rb similarly to potassium), although the rate of transfer between the various compartments in the body may be different.
    [Show full text]
  • Statement of Prinicples Concerning Spinal Adhesive Arachnoiditis No. 75 of 2020
    Statement of Principles concerning SPINAL ADHESIVE ARACHNOIDITIS (Balance of Probabilities) (No. 75 of 2020) The Repatriation Medical Authority determines the following Statement of Principles under subsection 196B(3) of the Veterans' Entitlements Act 1986. Dated 30 October 2020 The Common Seal of the Repatriation Medical Authority was affixed to this instrument at the direction of: Professor Nicholas Saunders AO Chairperson Statement of Principles concerning 1 of 7 Spinal Adhesive Arachnoiditis (Balance of Probabilities) (No. 75 of 2020) Veterans' Entitlements Act 1986 Contents 1 Name ............................................................................................................................. 3 2 Commencement ............................................................................................................ 3 3 Authority ....................................................................................................................... 3 4 Repeal ........................................................................................................................... 3 5 Application .................................................................................................................... 3 6 Definitions..................................................................................................................... 3 7 Kind of injury, disease or death to which this Statement of Principles relates ............. 3 8 Basis for determining the factors .................................................................................
    [Show full text]
  • The History of Contrast Media Development in X-Ray Diagnostic Radiology
    MEDICAL PHYSICS INTERNATIONAL Journal, Special Issue, History of Medical Physics 3, 2020 The History of Contrast Media Development in X-Ray Diagnostic Radiology Adrian M K Thomas FRCP FRCR FBIR Canterbury Christ Church University, Canterbury, Kent UK. Abstract: The origins and development of contrast media in X-ray imaging are described. Contrast media were used from the earliest days of medical imaging and a large variety of agents of widely different chemical natures and properties have been used. The use of contrast media, which should perhaps be seen as an unavoidable necessity, have contributed significantly to the understanding of anatomy, physiology and pathology. Keywords: Contrast Media, Pyelography, Angiography, X-ray, Neuroimaging. I. INTRODUCTION Contrast media have been used since the earliest days of radiology [1], and developments in medical imaging have not removed the need for their use as might have been predicted. The history of contrast media is complex and interesting and has recently been reviewed by Christoph de Haën [2] . The need for contrast media was well expressed by the pioneer radiologist Alfred Barclay when he said in 1913 that ‘The x-rays penetrate all substances to a lesser or greater extent, the resistance that is offered to their passage being approximately in direct proportion to the specific gravity’ [3]. Barclay continued by noting that ‘The walls of the alimentary tract do not differ from the rest of the abdominal contents in this respect, and consequently they give no distinctive shadow on the fluorescent screen or radiogram.’ Barclay clearly states the essential problem confronting radiologists. The density differences that are seen on the plain radiographs are those of soft tissue (which is basically water), bony and calcified structures, fatty tissues, and gas.
    [Show full text]
  • Abdominal Pain: Do Not Forget Thorotrast!
    Thorotrast-induced hepatocarcinoma 367 Postgrad Med J: first published as 10.1136/pgmj.71.836.367 on 1 June 1995. Downloaded from Abdominal pain: do not forget Thorotrast! Eric Weber, Fatima Laarbaui, Luc Michel, Julian Donckier Summary Case report The use ofThorotrast (25% thorium diox- ide), a radiologic contrast agent used up A 82-year-old woman was admitted with sud- until the mid-1950s, was associated with a den right-sided abdominal pain. An aortic wide range of malignancies, mainly of valvular replacement had been performed eight hepatic origin. We report a case of years earlier and the patient had experienced Thorotrast-induced hepatocarcinoma in three interventions for inguinal hernia correc- an 82-year-old woman. tion and ovariectomy in the 1940s. Physical examination revealed abdominal tenderness in Keywords: Thorotrast, hepatocarcinoma, carcinogen the right upper quadrant. The erythrocyte sedimentation rate was 44 mm/h, fibrinogen Thorotrast (25% thorium dioxide), a 670 mg/dl, bilirubin 2.9 mg/dl, serum aspar- radiologic contrast agent used between 1928 tate aminotransferase 75 UI/l, serum alanine and 1955, was abandoned following a report by aminotransferase 29 UI/l, y-glutamyl trans- MacMahon' of hepatic angiosarcoma att- ferase 54 UI/l, lactic dehydrogenase 678 U/l, ributed to Thorotrast exposure. Thorium and alkaline phosphatase 203 U/l. Serology for dioxide has radioactive properties due to the viral hepatitis indicated immunity for virus B emission ofalpha-, beta- and gamma-rays with but not for virus A and C. Anti-smooth muscle a biological half-life of 400 years.2 Its use has and anti-mitochondria antibodies were absent.
    [Show full text]
  • Delayed Effect of Thorotrast Deposition in Humans: Carcino- Genesis and Suppression of the Reticuloendothelial System
    Review Bioscience Microflora Vol. 19 (2), 107-116,2000 Delayed Effect of Thorotrast Deposition in Humans: Carcino- genesis and Suppression of the Reticuloendothelial System Hiroshi IRIE* Department of Pathology, TeikyoUniversity School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan Received for publication, July 26, 2000 Thorotrast is a colloidal solution containing 20% thorium (232Th),and used to be used primarily in diagnostic radiology for visualization. Once thorotrast is infused into the body, it is not eliminated easily. Over 90% of thorotrast forms deposits. It emits a-rays, and thorotrast-injected patients are semipermanently irradiated from a-particles deposited in the body. Thorotrast gives rise to malignant tumors by delayed effect of deposition, and especially liver cancer is highly associated with thorotrastosis. Deposition of thorotrast as an exogenous substance inhibits phagocytosis by suppressing the reticuloendothelial system (RES) as well and bringing about a Shwartzman preparatory state (pre- shock state) in patients. A majority of thorotrast-injected patients died abruptly. This short natural history of thorotrastosis is thought to have some relation to RES suppression by long-term thorotrast deposition resulting in vulnerability to shock and infection. Key words: thorotrast, a-ray emitter; carcinogenesis; reticuloendothelial system German firm Heyden and exported and used widely at INTRODUCTION military hospitals and other medical institutions, mainly With the use of radioactive imaging materials, the for angio- and hepatolienography. Thorotrast provided potential for internal injury, (i.e., internal irradiation) good contrast with relatively low risk of allergic reac- is always of concern. A radioactive substance known tion and was widely utilized in western countries until as thorotrast was used widely in Japan, Portugal, Ger- 1955.
    [Show full text]
  • Leptomeningeal Pathology Systematic Review Protocol V.16 Nal 7/23/2021
    Leptomeningeal pathology systematic review protocol v.16 nal 7/23/2021 Carol Palackdkharry MD, MS, FACP ( [email protected] ) CEO Arcsology, ActiveHealth 2. Stephanie Wottrich BS Case Western Reserve School of Medicine, Cleveland, OH 3. Erin Dienes PhD Senior Director of Biostatistics, Arcsology Christopher D. Witiw MD Assistant Professor, Division of Neurosurgery, University of Toronto 5. Mohamad Bydon MD Professor, Departments of Neurosurgery, Orthopedics, and Health Services Research, Assistant Dean, Education Enrichment and Innovation, Mayo Clinic School of Medicine, Rochester MN Michael P. Steinmetz MD William P. and Amanda C. Madar Endowed Professor and Chair, Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine Neurologic Institute, Cleveland OH Vincent C. Traynelis MD A. Watson Armour and Sarah Armour Presidential Professor and Vice Chair, Department of Neurosurgery, Rush University School of Medicine Method Article Keywords: leptomeningitis; arachnoiditis; radiculitis; leptomeningeal broisis; arachnoid brosis; adhesive arachnoiditis; arachnoid cysts; arachnoid scarring; arachnoid ossicans; arachnoidopathy; arachnopathy; Bannwarth's Syndrome; basilar meningitis; chronic meningitis; meningitis; encephalomeningoradiculopathy; familial adhesive arachnoiditis; leptomeningeal adhesions; leptomeningeal scarring; meningeal scarring; meningitis serosa; meningoradiculitis; meningitis serosa circumscripta spinalis; meningoradiculopathy; carcinomatous meningitis; neoplastiic meningitis; Pseudotumor
    [Show full text]