Investigation of Novel Nanoparticles of Gallium Ferricyanide and Gallium Lawsonate As Potential Anticancer Agents, and Nanoparti

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Novel Nanoparticles of Gallium Ferricyanide and Gallium Lawsonate As Potential Anticancer Agents, and Nanoparti Investigation of Novel Nanoparticles of Gallium Ferricyanide and Gallium Lawsonate as Potential Anticancer Agents, and Nanoparticles of Novel Bismuth Tetrathiotungstate as Promising CT Contrast Agent A Thesis submitted to Kent State University In partial fulfillment of the requirements for the degree of Master of Science Liu Yang August 2014 Thesis written by Liu Yang B.S. Kent State University, 2013 M.S. Kent State University, 2014 Approved by ___________________________________, Advisor, Committee member Dr. Songping Huang ___________________________________, Committee member Dr. Scott Bunge ___________________________________, Committee member Dr. Mietek Jaroniec Accepted by ___________________________________, Chair, Department of Chemistry Dr. Michael Tubergen ___________________________________, Dean, College of Arts and Sciences Dr. James L. Blank ii Table of Contents List of Figures..…………………………………………………………………........vii Acknowledgements ……………………………………………………………….….xi Chapter 1: Summary, Materials and Methods …..……………………………………1 1.1 Materials ………………………………………………………………….3 1.1.1 carboxymethyl reduced polysaccharide (CMRD) preparation….3 1.2 Methods …………………………………………………………………4 1.2.1 Atomic absorption spectroscopy (AA) …………………………4 1.2.2 Acid base treating method ……………………………………...4 1.2.3 Cell viability study ……………………………………………...5 i) MTT assay…………………………………………………..5 ii) Trypan blue assay ………………………………………….6 1.2.4 Dialysis …………………………………………………………6 1.2.5 Elementary analysis …………………………………………….7 1.2.6 Lyophilization …………………………………………………..7 iii 1.2.7 Kinetic study ……………………………………………………7 1.2.8 Thermal gravimetric analysis (TGA) ………………………..…8 1.2.9 Selectivity study ……………………………………….……..…8 1.2.10 Nanoparticle-surface conjugation of fluorescence dye molecules ...….………………………………………………………..9 1.2.11 X-ray attenuation measurements and CT phantom imaging…..9 1.2.12 Fourier transform infrared spectroscopy (FTIR)……………..10 1.2.13 Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX)……………………………………………...10 Chapter 2: Novel Gallium Ferricyanide Nanoparticles as Potential Anticancer Drug …………………………………………………………………………………11 2.1 Abstract ………………………………………………………………….11 2.2 Introduction ……………………………………………………………...11 2.3 Synthesis and characterization of bulk gallium ferricyanide compound...19 2.3.1 Method A………………………………………………………19 2.3.2 Method B………………………………………………………21 2.3.3 Results and discussion of Ga[Fe(CN)6] bulk compound………25 iv 2.4 Synthesis and characterization of gallium ferricyanide nanoparticles…..27 2.4.1 Synthesis of gallium ferricyanide nanoparticles……………….27 2.4.2 Results and discussion ………………………………………...28 2.5 Conclusion……………………………………………………………….37 Chapter 3: Gallium Lawsonate Nanoparticles as Potential Anticancer Agent………38 3.1 Abstract …………………………………………………….……………38 3.2 Introduction ……………………………………………………………...38 3.3 Synthesis …………………………………………………….…………..43 3.4 Results and discussion ……………………………………….………….46 3.5 Conclusion ………………………………………………………………47 Chapter 4: Bismuth Tetrathiotungstate Nanoparticles as Potential Contrast Agent for Computed Tomography……………………………………………………………...48 4.1 Abstract ………………………………………………………………….48 4.2 Introduction ……………………………………………………………...48 4.3 Synthesis ………………………………………………………………...51 4.4 Results and discussion …………………………………………………..51 4.5 Conclusion ……………………………………………………………....56 v Chapter 5: References ……………………………………………………………….57 vi List of Figures Figure 1. Iron uptake through transferrin receptor (TfR). Fe 2+ is oxidized to Fe 3+ and bounded to transferrin protein (Tf). Diferric Tf binds to the receptor and internalized with clathrin coating through receptor mediated endocytosis. In the endosome, at lower pH, Fe3+ is released from transferrin protein and reduced back to Fe2+. Fe2+ can cross the membrane through ion channel and become available for other cellular process………………………………………………………………………………17 Figure 2. Ga3+ uptake mimicking the Fe3+ uptake pathway: Ga3+ crosses plasma membrane with the help of transferrin protein and transferrin receptor. Afterwards in the acidic endosome, Ga3+ is released from transferrin and enters cytoplasm………18 Figure 3. (up) Junction of endothelial cells in normal and healthy blood vessels is 5- 10 nm. NP (>10 nm) would pass through. (Bottom) Junction of endothelial cells in abnormal blood vessels is usually few hundred nanometers, NP(<100 nm) would leak out from abnormal blood vessels and target tumor tissue. ………………………….19 Figure 4. Fourier transform infrared spectroscopy (FT-IR) of the Ga[Fe(CN)6] bulk compound synthesized by method A………………………………………………...20 Figure 5. TGA of Ga[Fe(CN)6] bulk compound synthesized by method A. Weight lost below 200 ºC showed on the first drop on graph was due to the water lost, The vii second drop showed on graph above 200 ºC may due to cyanide lost. 21% weight loss was due to the water………………………………………………………………….21 Figure 6. TGA of Ga[Fe(CN)6] bulk compound synthesized by method B. Weight lost below 200 ºC showed on the first drop in the graph was due to the water lost. The second drop showed in the graph above 200 ºC may be due to cyanide lost. 21%weight loss was due to the water……………………………………………….23 Figure 7. FT-IR of Ga[Fe(CN)6] bulk compound synthesized by method B………24 Figure 8. The Fe(III) center donates electron through a d orbital to empty π*, an anti-bonding orbital of the CN ligand………………………………………………24 Figure 9. The formula used for calculating water molecules in crystal lattice. X represents the number of water molecules…………………………………………...25 Figure 10. FT-IR of gallium ferricyanide nanoparticles in comparison with gallium ferricyinde bulk compound and the CMRD polymer coating agent…………………29 Figure 11. Transmission electron microscopy (TEM) images of CMRD coated gallium ferricyanide nanoparticles with an average size of 25 nanometers…………29 Figure 12. Selectivity studies. Ga NPs undergo ion-exchange with 100 ppm of several M(II) ions for 24 hours showing that Fe(II) to be the most selective metal and Mn(II)/Mg(II) the least selective metals……………………………………………..30 Figure 13. Kinetic study. (Top) Fe2+ removal by Ga NPs vs. time. (Bottom) Within first 20 min, the removal of Fe2+ fits the pseudo-first order reaction………………...31 viii Figure 14. A: Preparation of fluorescence Ga NPs. B: Confocal microscopy images of T24 cells: (Top left) fluorescence image of cells incubated with dye-conjugated Ga NPs for 3 hours; (Top right) bright field images of cells incubated with dye conjugated Ga NPs for 3 hours; (lower left) florescence images of the cells untreated with NPs; (lower right) bright field image of the cells untreated with NPs……….33 Figure 15. Confocal microscopy images of HT-29 cells: (Top left) fluorescence image of cells incubated with dye-conjugated Ga NPs for 3 hours; (Top right) bright field images of cells incubated with dye conjugated Ga NPs for 3 hours; (lower left) florescence images of the cells untreated with NPs; (lower right) bright field image of the cells untreated with NPs…………………………………………………………34 Figure 16. Cell viability curve based on the MTT assay. Effect of Ga NPs on viability of HT-29 cells after 24 hour-incubation in comparison with the cell viability using Ga(NO3)3………………………………………………………………………35 Figure 17. Bright field light microscopic images. Various concentrations of Ga NPs used for incubating HT-29 cells for 24 hours. A: 1.58mM; B: 2.3mM; C: 3.15mM; D: 3.94mM; E: 4.73mM; F: 5.51mM; G: 6.3mM; H: NP-free control cells……………36 Figure 18. Structures of the oral gallium maltolate (right) and maltol……………..42 Figure 19. Structure of the oral KP46………………………………………………42 Figure 20. Structure of lawsone……………………………………………………..43 Figure 21. Synthetic scheme and proposed structure of gallium lawsonate………..44 ix Figure 22. Cell viability studies of Ga-lawsonate NPs on HT-29 Cells (Top) and T24 cells (Bottom) by MTT method …………………………………………………….45 Figure 23. Cell viability studies of Potassium lawsonate on T24 Cells……………46 Figure 24. (TOP) Transmission electron microscopy (TEM) image of Bi2(WS4)3 NPs on the 5-nm scale. (Bottom) Energy dispersive X-ray spectrum of Bi2(WS4)3 NPs; TEM analysis revealed that the nanoparticles are well-formed cubes and the size distribution appeared to be relatively wide, ranging from 2 to 10 nm……………….53 Figure 25: Fluorescence microscopic images of HeLa cells incubated with dye- labeled NPs for 3 hours: (right) Bright-field image, (left) confocal fluorescence microscopy image; Carboxyfluorescene dye was conjugated to the surfaces of the ethylenediamine-coated Bi2(WS4)3 NPs by the EDC-coupling reaction. Fluorescent signal in the cytoplasm of cells confirms the uptake of the NPs by the cells. Therefore these agents can serve as intracellular contrast agents……………………………….54 Figure 26. Histogram showing the viability of Hela cells in the presence of various amounts of Bi2(WS4)3 NPs after 24 hours of incubation as determined by the Trypan Blue exclusion method. ……………………………………………………………...55 Figure 27. Phantom images of Bi2(WS4)3 NPs at different concentrations………….55 Figure 28: The CT values vs. Bi(III) concentrations………………………………..56 x Acknowledgements I specially would like to thank Dr. Songping Huang for his years of patience and advice. Without his knowledge and assistance, I probably could not solve problems I met and keep the projects going. And I learned a lot from doing research these years. I would like to thank most senior lab member Vindya Perera for her help with TEM and confocal microscopy. And she also helped me to learn dialysis and lyophilization methods. I would like to thank Murthi S. Kandanapitiye
Recommended publications
  • A Multicenter Trial of Low Dose Gallium Nitrate in Patients with Advanced Paget’S Disease of Bone
    Vol. 80. No. 2 Journalof CbnicalEndocrinology and Metabolism Pr’rrnrrd ,,, IJ S.A. CopyrIght0 1995by The EndocrineSociety A Multicenter Trial of Low Dose Gallium Nitrate in Patients with Advanced Paget’s Disease of Bone RICHARD S. BOCKMAN, FRANCOIS WILHELM, ETHEL SIRIS, FREDERICK SINGER, ARTHUR CHAUSMER*, RACHELLE BITTON, JON KOTLER, BARBARA J. BOSCO, DAVID R. EYRE, AND DAVID LEVENSON Department of Medicine, Hospital for Special Surgery and Cornell University Medical College (R.S.B., B.J.B., D.L.), New York, New York 10021; Research and Development, Fujisawa Pharmaceutical Co. (F.W.), Deer-field, Illinois 60015; Columbia University College of Physicians and Surgeons (E.S.), New York, New York 10032; St. John’s Hospital and Health Center, John Wayne Cancer Institute (F.S.1, Santa Monica, California 90404; the Division of Endocrinology, Long Island Jewish Hospital (R.B.1, New Hyde Park, New York 11042; Holy Cross Hospital (J.K.), Ft. Lauderdale, Florida 33008; and the Department of Orthopaedics, University of Washington (D.R.E.), Seattle, Washington 98195 ABSTRACT treated with the 0.5 mg/kg.day dose achieved a 50% or more reduction Gallium nitrate is a potent antiresorptive drug that has been ex- in enzyme activity. The nadir value in hydraxyproline excretion oc- tensively tested in patients with accelerated bone turnover. We have curred at 10 weeks, with mean changes of +9%, -lo%, and ~ 17% for evaluated the effects of this new agent in a pilot multicenter trial of the 0.05, 0.25, and 0.5 mg/kg.day doses, respectively; the difference 49 patients with advanced Paget’s disease of bone.
    [Show full text]
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Material Safety Data Sheet
    Material Safety Data Sheet Gallium(iii) nitrate hydrate, 99.9998%, ACC# 27373 Section 1 - Chemical Product and Company Identification MSDS Name: Gallium(iii) nitrate hydrate, 99.9998%, Catalog Numbers: AC212440000, AC212440010, AC212440050 Synonyms: Gallium nitrate; Gallium trinitrate; Nitric acid, gallium (3+) salt Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300 Section 2 - Composition, Information on Ingredients CAS# Chemical Name Percent EINECS/ELINCS 13494-90-1 Gallium(III) nitrate hydrate 99.9998 236-815-5 Section 3 - Hazards Identification EMERGENCY OVERVIEW Appearance: white crystalline powder. Danger! Strong oxidizer. Contact with other material may cause a fire. Causes respiratory tract irritation. Causes eye and skin irritation. May cause digestive tract irritation. Hygroscopic (absorbs moisture from the air). Target Organs: No data found. Potential Health Effects Eye: Causes eye irritation. May cause conjunctivitis. Skin: Causes severe skin irritation. Ingestion: May cause burns to the gastrointestinal tract. May cause nausea, vomiting, and diarrhea, possibly with blood. Inhalation: Causes respiratory tract irritation. May cause acute pulmonary edema, asphyxia, chemical pneumonitis, and upper airway obstruction caused by edema. Chronic: Effects may be delayed. Section 4 - First Aid Measures Eyes: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid imme diately. Skin: Get medical aid immediately. Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Ingestion: Never give anything by mouth to an unconscious person.
    [Show full text]
  • Download Thesis
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ New approaches to radionuclide imaging of cancer with gallium-68 Imberti, Cinzia Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 New approaches to radionuclide imaging of cancer with gallium-68 A thesis submitted by Cinzia Imberti In partial fulfilment of the requirements for the degree of Doctor of Philosophy University of London 2018 School of Biomedical Engineering and Imaging Sciences King’s College London 1 Abstract The positron emitting isotope 68Ga is gaining increasing interest in the radionuclide imaging community, due to its favourable decay properties and availability from a generator.
    [Show full text]
  • Elimination of Arthritis Pain and Inflammation for Over Two Years With
    Artrite por 2 anos tratada com aplicação local por 90 minutos com nitrato de gálio a 14% Elimination of arthritis pain and inflammation for over two years with a single 90 minute, topical 14% gallium nitrate treatment: Case reports and review of actions of gallium III. - Medical Hypotheses Vol 65/6 pp 1136-1141 by George Eby Austin, Texas See abstract at Elsevier Science Direct here See PDF version of published article here Abstract Arthritis is inflammation in a joint often with joint damage, usually accompanied by pain, swelling and stiffness, resulting from infection, trauma, degenerative changes, metabolic disturbances, autoimmune or other causes. It occurs in various forms, including rheumatoid arthritis, osteoarthritis, bacterial arthritis and gout. Gallium III can inhibit the production of inflammatory cytokines, such as IL-1beta, produced by macrophage-like cells in vitro. A dose-dependent inhibition of IL-1beta and TPA stimulated MMP activity by gallium nitrate at increasing concentrations occurs, demonstrating that gallium nitrate can be a useful modulator of inflammation in arthritis. Gallium III is an inhibitor of bone resorption and is an effective treatment for hypercalcemia. Gallium III has been reported to be effective in the treatment of mycobacterium butycicum-induced arthritis in rats by antagonism of iron III. Long-term elimination of pain from arthritis by gallium III was first observed in horses primarily being treated for navicular disease. Several people treating their horses with gallium nitrate coincidentally found that arthritis pain in their fingers ended and did not return after soaking their hands in 14% gallium nitrate solution. Therefore, the severely arthritic hands of a 60-year old woman were topically treated with a 14% aqueous solution of gallium nitrate for 90 minutes.
    [Show full text]
  • In-Vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung—A Dialog Between Aerosol Science and Biology$
    Journal of Aerosol Science 42 (2011) 668–692 Contents lists available at ScienceDirect Journal of Aerosol Science journal homepage: www.elsevier.com/locate/jaerosci In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology$ Hanns-Rudolf Paur a, Flemming R. Cassee b, Justin Teeguarden c, Heinz Fissan d, Silvia Diabate e, Michaela Aufderheide f, Wolfgang G. Kreyling g, Otto Hanninen¨ h, Gerhard Kasper i, Michael Riediker j, Barbara Rothen-Rutishauser k, Otmar Schmid g,n a Institut fur¨ Technische Chemie (ITC-TAB), Karlsruher Institut fur¨ Technologie, Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany b Center for Environmental Health, National Institute for Public Health and the Environment, P.O. Box 1, 3720 MA Bilthoven, The Netherlands c Pacific Northwest National Laboratory, Fundamental and Computational Science Directorate, 902 Battelle Boulevard, Richland, WA 99352, USA d Institute of Energy and Environmental Technologies (IUTA), Duisburg, Germany e Institut fur¨ Toxikologie und Genetik, Karlsruher Institut fur¨ Technologie, Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany f Cultex Laboratories, Feodor-Lynen-Straße 21, 30625 Hannover, Germany g Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Munchen,¨ Ingolstadter¨ Landstrasse 1, 85764 Neuherberg, Germany h THL National Institute for Health and Welfare, PO Box 95, 70701 Kuopio, Finland i Institut fur¨
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,360,712 Olm Et Al
    D US005360712A United States Patent 19 11 Patent Number: 5,360,712 Olm et al. 45 Date of Patent: Nov. 1, 1994 54 INTERNALLY DOPED SILVER HALIDE 4,981,781 1/1991 McDugle et al. ................... 430/605 EMULSIONS AND PROCESSES FOR THER 5,037,732 8/1991 McDugle et al. ................... 430/567 ARA 5,132,203 7/1992 Bell et al. ............. ... 430/567 PREP TION 5,268,264 12/1993 Marchetti et al. .................. 430/605 75) Inventors: McDugle;Myra T. Olm, Sherrin Webster; A. Puckett, Woodrow both G.of FOREIGN PATENT DOCUMENTS Rochester; Traci Y. Kuromoto, West 513748A1 11/1992 European Pat. Off. ... GO3C 7/392 Henrietta; Raymond S. Eachus, Rochester; Eric L. Bell, Wesbter; OTHER PUBLICATIONS Robert D. Wilson, Rochester, all of Research Disclosure, vol. 176, Dec. 1978, Item 17643, N.Y. Section I, subsection A. Research Disclosure, vol. 308, Dec. 1989, Item 308119, 73) Assignee: Eastman Kodak Company, Section, I, subsection D. Rochester, N.Y. 21 Appl. No.: 91,148 Primary Examiner-Janet C. Baxter J. v. V. 19 Attorney, Agent, or Firm-Carl O. Thomas 51) Int. Cl................................................. GC/ A process is disclosed of preparing a radiation sensitive 52 U.S.C. .................................... 430/567; 430/569; silver halide emulsion comprising reacting silver and 430/604; 430/605 halide ions in a dispersing medium in the presence of a 58 Field of Search ................ 430/567, 569, 604, 605 metal hexacoordination or tetracoordination complex (56) References Cited having at least one organic ligand containing a least one carbon-to-carbon bond, at least one carbon-to-hydro U.S.
    [Show full text]
  • Determination of the Activation Parameters of Reaction Between [Fe(CN6] and K[Co(HEDTA)NO2]." (2009)
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 12-2009 Determination of the Activation Parameters of -4 Reaction Between [Fe(CN6] and K[Co(HEDTA)NO2]. Sammy Eni Eni East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Organic Chemistry Commons Recommended Citation -4 Eni Eni, Sammy, "Determination of the Activation Parameters of Reaction Between [Fe(CN6] and K[Co(HEDTA)NO2]." (2009). Electronic Theses and Dissertations. Paper 1798. https://dc.etsu.edu/etd/1798 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. -4 The Determination of the Activation Parameters of Reaction Between [Fe(CN)6] and K[Co(HEDTA)NO2] ________________________________ A thesis presented to the faculty of the Department of Chemistry East Tennessee State University in Partial Fulfillment of the requirements for the degree Master of Science in Chemistry ________________________________ by Sammy Eni Eni December 2009 ________________________________ Dr. Jeffrey Wardeska, Chair Dr. Ningfeng Zhao Dr. Yu-Lin Jiang -4 Keywords: Activation parameters, [Fe(CN)6] , K[Co(HEDTA)NO2]. ABSTRACT -4 Determination of the Activation Parameters of Reaction Between [Fe(CN)6] and K[Co(HEDTA)NO2] by Sammy Eni Eni -4 The kinetics of the oxidation of [Fe(CN)6] by K[Co(HEDTA)NO2] was studied in order to get the mechanism and the activation parameters of the reaction.
    [Show full text]
  • University of Stockholm
    UNIVERSITY OF STOCKHOLM INSTITUTE OF PHYSICS NEW METALS — A study on the use of and exposure to certain metals and their compounds from a toxicological viewpoint U. BERGQVIST USIP Report 83 - 11 December 1983 NEW METALS A study on the use of and exposure to certain metals and their compounds from a toxicological viewpoint Ulf Bergqvist, with contributions from Foad Vojdani Ghamsari Theoretical Physics, University of Stockholm Vanadisvägen 9, S—113 46 Stockholm, Sweden I'm still confused - but on a higher level USIP Report 83--1 December 1983 - I - LIST OF CONTENTS (IN BRIEF) Page: List of contents (in brief) I List of contents (in details) III Acknowledgements X Disposition of this report XI Introduction 1 Section 1: Exposure to metals and metal compounds Preamble 3-6 Criteria based on total world consumption 7-13 Criteria based on probable increases in world metal consumption 1 4-22 Criteria based on exposure to metal emissions from sources other than metal consumption 23-29 Reconfirmation of metals found interesting in this section 30-33 Summary of section 1 34-38 Section 2: ' 1 e extent of toxicological knowledge and * search on metals and their compounds Preamb c 39-42 The re.://ch activity on toxic effects of metals ,nd metal compounds 43-49 Differe t organisms responses to metal compounds 50-r54 Introciu :• ,ion of new metal compounds in industrial consumption and its toxicological impli- cation 55-60 An es . mate of the quantity of toxicological infor- mation on metal and metal compounds in reviews 61-65 An evaluation of the relevance of available toxico- logical information to present and future industrial consumption of certain metals 66-72 Summar.
    [Show full text]
  • Reversibility of Ferri-/Ferrocyanide Redox During Operando Soft X-Ray Spectroscopy
    Reversibility of Ferri-/Ferrocyanide Redox during Operando Soft X-ray Spectroscopy The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Risch, Marcel, Kelsey A. Stoerzinger, Tom Z. Regier, Derek Peak, Sayed Youssef Sayed, and Yang Shao-Horn. “Reversibility of Ferri-/ Ferrocyanide Redox During Operando Soft X-Ray Spectroscopy.” The Journal of Physical Chemistry C 119, no. 33 (August 20, 2015): 18903–18910. As Published http://dx.doi.org/10.1021/acs.jpcc.5b04609 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/109590 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Reversibility of Ferri-Ferrocyanide Redox During Operando Soft X-Ray Spectroscopy ┴ Marcel Risch,†* Kelsey A. Stoerzinger,§ Tom Z. Regier,‡ Derek Peak,º Sayed Youssef Sayed,† Yang Shao-Horn†§||* †Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA 02139 §Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 02139 ||Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 02139 ‡Canadian Light Source, Inc., Saskatoon, SK, Canada S7N 2V3 ºDepartment of Soil Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8 KEYWORDS. Electrochemistry; In-situ; redox shuttle; iron cyanide; X-ray absorption; radiolysis; radiation damage. ABSTRACT The ferri-ferrocyanide redox couple is ubiquitous in many fields of physical chemistry. We studied its photochemical response to intense synchrotron radiation by in-situ X-Ray absorption spectroscopy.
    [Show full text]
  • Gallium and Bone Pathology
    ARTIGO DE REVISÂO O GÁLIO E A PATOLOGIA ÓSSEA GALLIUM AND BONE PATHOLOGY PETR MELNIKOV1, AUGUSTIN MALZAC2, MARLENE DE BARROS COELHO3 RESUMO SUMMARY Proposta: Revisão de trabalhos científicos referentes à incorporação Purpose: To review the literature concerning the incorporation do gálio no tecido ósseo, ao mecanismo da atividade terapêutica of gallium into bone tissue, mechanisms of therapeutic activity desse elemento, bem como a formação, crescimento e solubili- of this element, as well as the formation, growth and solubility dade da hidroxiapatita na presença dos sais de gálio.Justificativa: of hydroxiapatite in the presence of gallium salts. Justification: Diferente de outras drogas que impedem a perda de cálcio, os sais In contrast to other calcium-saving drugs, salts of trace element de elemento traço gálio são eficazes em hipercalcemia severa. O gallium are effective in severe hypercalcemias. Gallium (most gálio (geralmente na forma de nitrato) aumenta a concentração commonly in the form of its nitrate) enhances calcium and de cálcio e fósforo no osso, influindo nos osteoclastos de maneira phosphorus content of the bone and has direct, noncytotoxic direta não tóxica, em doses surpreendentemente baixas. Apesar effects on osteoclasts at markedly low doses. Although the de que os detalhes do mecanismo de ação do gálio não são bem details of gallium action on the bone are still uncertain, it is well esclarecidos, está comprovado que esse mecanismo envolve a established that the mechanism involves gallium insertion into inserção do gálio na matriz de hidroxiapatita, protegendo-a contra the hydroxiapatite matrix protecting it from resorbtion and impro- a reabsorção e melhorando as propriedades biomecânicas do ving biomechanical properties of the skeletal system.
    [Show full text]
  • Spinal Arachnoiditis Stephen I
    THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCbS REVIEW ARTICLE: Spinal Arachnoiditis Stephen I. Esses and T.P. Morley SUMMARY: A review of the literature points to the many causes of arachnoiditis and the failure of treatment to arrest or reverse its effects. The true incidence cannot be determined, although it is probably lower than might at first appear from the published articles. In the radiological literature the diagnosis seems to derive from an examination of the films alone, often without reference to the clinical findings or appearance at operation. While attempts at treatment are usually unsuccessful, some iatrogenic cases can be prevented by the avoidance of intrathecal steroid injections or unduly rough or repeated surgical exploration of the lumbar vertebral canal. RESUME: Une revue de la litterature indique clairement que I'arachnoidite peut etre due a plusieurs causes et que son traitement est deficitaire. L'incidence reelle de I'arachnoidite ne peut etre determinee, mais elle est probablement inferieure au taux apparent selon les publications. Ainsi dans la litterature radiologique on semble etablir un diagnostic sur la base des films sans tenir compte des aspects clini- ques ou de la presentation chirurgicale. Quoique les essais therapeutiques soient generalement negatifs, on peut prevenir certaines causes iatrogeniques en evitant les injections intrathecals de steroides ou les explorations repetees, ou trop dures, du canal vertebral lombaire. Can. J. Neurol. Sci. 1983; 10:2-10 Feodor Krause (1907) was the first to describe adhesive dense collagen deposition which completely encases the lumbar arachnoiditis. By 1936 Elkington presented a com­ nerve roots. The roots are deprived of their blood supply plete analysis of forty-one cases under the tide "Meningitis and undergo progressive atrophy.
    [Show full text]