Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications
Total Page:16
File Type:pdf, Size:1020Kb
Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Murthi S. Kandanapitiye May, 2015 Dissertation written by Murthi S. Kandanapitiye B.S., University of Colombo, Sri Lanka, 2007 Ph.D., Kent State University, USA, 2015 Approved by __________________________________ Songping Huang, Professor, Ph.D., Department of Chemistry & Biochemistry, Doctoral Advisor __________________________________ Scott D. Bunge, Professor, Ph.D., Department of Chemistry & Biochemistry __________________________________ Mietek Jaroniec, Professor, Ph.D., Department of Chemistry & Biochemistry __________________________________ Gail C. Fraizer, Professor, Ph.D., Department of Biological Sciences __________________________________ Torsten Hegmann, Professor, Ph.D., Department of Chemical Physics Accepted by __________________________________ Michael J. Tubergen, Professor, Ph.D., Chair, Department of Chemistry & Biochemistry __________________________________ James L. Blank, Professor, Ph.D., Dean, College of Arts and Sciences TABLE OF CONTENTS List of figures…………………………………………………………………………. iv List of schemes………………………………………………………………………... xii List of tables…………………………………………………………………………... xiii Acknowledgments……………………………………………………………………. xiv Chapter 1: Introduction to Nanomaterials for Biomedical Applications……….... 1 1.1. Magnetic resonance imaging (MRI)……………………………………………... 8 1.1.1 Contrast agents for MRI…………………………………………………… 12 1.2. Multimodal imaging modalities (MRI-PET/SPECT)……………………… 14 1.2.1 Bimodal imaging agents for MRI-PET/SPECT………………………….. 15 1.3. X-ray computed tomography (CT)……………………………………………… 17 1.3.1 Contrast agents for computed tomography………………………………. 18 1.4. The therapeutics for intracellular copper detoxifications……………………… 21 1.4.1 Noninvasive copper detection using molecular probes………………….. 23 1.4.2. Intracellular copper removal as a novel approach for angiogenesis inhibition………………………………………………………………………….. 25 Chapter 2: Materials and Methods…………………………………………………. 27 2.1. Materials…………………………………………………………………………… 27 2.2. Experimental design and techniques…………………………………………….. 27 2.3. Experimental methodology………………………………………………………. 28 2.4. Instrumentation…………………………………………………………………… 28 2.4.1 Powder X-ray diffraction spectroscopy (PXRD)………………………… 28 2.4.2 Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX)……………………………………………………………… 29 2.4.3 Thermogravimetric analysis (TGA)………………………………………. 29 i 2.4.4 Fourier transform infrared spectroscopy (FTIR)………………………... 30 2.4.5 Confocal microscopy……………………………………………………….. 30 2.4.6 T1 and T2 measurements…………………………………………………… 30 2.4.7 Atomic absorption measurements…………………………………………. 31 2.4.8 Cell viability of nanoparticles……………………………………………… 31 2.4.9 Determination of acid dissociation constants and binding constant of D- penicillamine toward the Cu2+ and characteristics of complexation equilibria………………………………………………………………………… 32 2.5. Experimental calculations………………………………………………………… 32 2.5.1 Relaxivity (r1 and r2 values)………………………………………………... 32 2.5.2 Stability constant of metal complexes using Irving Rossetti method……. 33 Chapter 3: Synthesis of Novel Coordination Polymer KGa[Fe(CN)6], KGaxFe1-x[Fe(CN)6] and KGaxGdyFe(1-(x+y))[Fe(CN)6] Solid Solutions for Diagnostic Applications……………………………………………………………… 35 3.1. Gallium Analogue of Soluble Prussian blue KGa[Fe(CN)6]·nH2O…………… 35 3.1.1.Preparation of Gallium Analogue of Soluble Prussian Blue KGa[Fe(CN)6]·nH2O…………………………………………………………….. 36 3.2. Synthesis and characterization of KGa0.1Fe0.9[Fe(CN)6] for diagnostic applications in PET/SPECT scans…………………………………………………. 52 3.2.1 Preparation of PVP citrate- coated KGa0.1Fe0.9[Fe(CN)6] Nanoparticles……………………………………………………………………... 55 3.3. Synthesis and characterization of KGa0.1Gd0.1Fe0.8[Fe(CN)6] for bimodal imaging applications in MRI-PET/SPECT scans……………………………………. 69 3.3.1 PVP- citrate coated KGa0.1Gd0.1Fe0.8[Fe(CN)6]nanoparticles……………. 71 Chapter 4: Non-gadolinium based T1-weighted MRI Contrast agent: Biocompatible Nanoparticulate based T1-weighted MRI Contrasting agent using Mn Analogues of Prussian blue K Mn [Fe(CN) ] ………………………….. 2 3 6 2 89 ii 4.1. Citrate-coated K2Mn3[Fe(CN)6]2 nanoparticles as a T1- weighted contrast agent for MRI................................................................................................................... 91 Chapter 5: Nanoparticulate based CT Contrast agentes for X-ray Computed Tomography............................................................................................................................... 109 5.1. Ultra-small nanoparticles of BiOI as a potential contrast agent for computed tomography……………………………………………………………………………... 111 Chapter 6: Nanoparticulate for therapeutic and diagnostic applications………... 125 6.1. Biocompatible D-penicillamine conjugated Au NPs: Targeting intercellular free Copper ions for detoxification…………………………………………………… 126 6.2. Selective Ion-Exchange Governed by the Irving-Williams Series in K2Zn3[Fe(CN)6]2 Nanoparticles: Toward a Designer Prodrug for Wilson’s Disease……………………………………………………………………….. 141 6.2.1 Antiangiogenic activity and copper sensing properties of K2Zn3[Fe(CN)6]2 nanoparticles………………………………………………… 161 Chapter 7: Conclusion and Outlook………………………………............................ 168 References…………………………………………………………………………….. 171 iii LIST OF FIGURES Figure 3.1: TEM image of as prepared KGaPB nanoparticles……………………………….. 38 Figure 3.2: TEM image, STEM images and particles size distributions of as prepared KGaPB nanoparticles………………………………………………………………………… 38 Figure 3.3: EDS spectrum on a PVP-coated KGa[Fe(CN)6] nanoparticle…………………… 39 Figure 3.4: The FT-IR spectra of PVP, KGaPB bulk compound and KGaPB NPs………….. 39 Figure 3.5: Observed XRD data for the bulk KGa[Fe(CN)6]·nH2O given in black with calculated pattern given in red. The difference between observed and calculated is given in grey. The tick marks denotes the peak location for the known structure……………………... 41 Figure 3.6: The unit cell structure of KGa[Fe(CN)6]. Color code: dark yellow=Fe(II), turquoise=Ga(III), pink=K, gray=C and blue=N…………………………………………….. 41 Figure 3.7: TGA curve of the bulk KGa[Fe(CN)6]·nH2O sample…………………………… 43 Figure 3.8: TGA curve of the PVP-coated KGa[Fe(CN)6]·nH2O nanoparticles……………... 44 Figure 3.9: Dynamic Light Scattering of the PVP-coated KGa[Fe(CN)6]·nH2O nanoparticles…………………………………………………………………………………. 44 Figure 3.10: Kinetic curve of Ga3+/Fe2+ ion-exchange in aqueous solution…………………. 46 Figure 3.11: Curve fitting results to (right) the pseudo first-order reaction, and the second-order reaction for the ion-exchange (left)………………………………………… 47 Figure 3.12: The cell viability curve of PVP-coated KGaPB NPs………………………….. 48 Figure 3.13: Fluorescence spectrum of carboxyfluorescein dye and dye labeled KGaPB NPs…………………………………………………………………………………... 51 Figure 3.14: a) bright-field images, (b) confocal-fluorescence images of dye-labeled KGaPBNP-treated HeLa cells, (c) bright-field for control cells and (d) confocal- fluorescence of control cells…………………………………………………………………... 51 Figure 3.15: TEM images of PVP-citrate coated 10-GaPB and selected area electron diffraction map……………………………………………………………………………….. 56 Figure 3.16: EDX spectrum on a PVP-citrate coated 10-GaPB NPs………………………… 57 iv Figure 3.17: EDS-STEM elemental mapping of 10-GaPB NPS of selected nanoparticle acquired by different energy window………………………………………………………… 57 Figure 3.18: X-ray diffraction pattern of the PVP-coated 10-GaPB NPs……………………. 58 Figure3.19: KGa0.05Fe0.95[Fe(CN)6]·nH2O; b) KGa0.10Fe0.90[Fe(CN)6]·nH2O; c) KGa0.15Fe0.85[Fe(CN)6]·nH2O; d) KGa0.20Fe0.80[Fe(CN)6]·nH2O; Observed XRD data for the bulk KGaxFe1-x[Fe(CN)6]·nH2O given in black with calculated pattern given in red. The difference between observed and calculated is given in grey. The tick marks denotes the peak location for the known structure………………………………………………………… 59 Figure 3.20: Unit cell structure of KGaxFe1x[Fe(CN)6]……………………………………… 60 Figure 3.21: Vegard plot for lattice parameter of Ga doped Prussian blue…………………... 62 Figure 3.22: FT-IR spectra of citric acid (green), PVP40K (blue), PVP-citrate coated 10- GaPB NPs (brown) and 10- GaPB bulk (red)………………………………………………… 63 Figure 3.23: The TGA curve of KGa0.1Fe0.9[Fe(CN)6] sample………………………………. 63 Figure 3.24: Radioactive leaching studies (left) and dialysis of 10-68GaPB NPs (right)…….. 65 3+ Figure 3.25: Plots of 1/Ti (i = 1, 2) vs the Fe concentration at magnetic field strengths of 1.4 T for 10-GaPB NPs……………………………………………………………………….. 66 Figure 3.26: Confocal microscopic images of HeLa cell line (a) fluorescence image of cells incubated with dye conjugated nanoparticles for 4 hours, (b) bright field image of cells incubated with dye conjugated nanoparticles for 4 hours, (c) fluorescence image of untreated cells and (d) bright field image of untreated cells…………………………………………….. 67 Figure 3.27: Viability of HeLa cells after incubation with 10-GaPB NPs for 24 hours (MTT viability assay)………………………………………………………………………………… 68 Figure 3.28: TEM image (left), SAED insets with histogram of particle size (right)……….. 72 Figure 3.29: EDX spectrum of PVP-citrate coated 10% GaGd PB NPs…………………….. 73 Figure 3.30: Intensity line profile of PVP-citrate coated KGa0.1Gd0.1Fe0.8[Fe(CN)6] nanoparticles (orange bar)…………………………………………………………………….. 74 Figure 3.31: EDS-STEM elemental mapping acquired by different energy windows