Final Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
Annual Report and Financial Statements 2019 Table of contents Report from Chair 3 Report from Director 5 Trustee’s Report 7 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 21 Financial Review 31 Structure and Governance 36 Social Responsibility 40 Risk Management 42 Remuneration Report 44 Remuneration Committee Report 46 Nomination Committee Report 47 Investment Committee Report 48 Audit and Risk Committee Report 49 Independent Auditor’s Report 52 Financial Statements 61 Consolidated Statement of Financial Activities 62 Consolidated Balance Sheet 63 Statement of Financial Activities of the Trust 64 Balance Sheet of the Trust 65 Consolidated Cash Flow Statement 66 Notes to the Financial Statements 67 Alternative Performance Measures and Key Performance Indicators 114 Glossary of Terms 115 Reference and Administrative Details 116 Table of Contents Wellcome Trust Annual Report 2019 | 2 Report from Chair During my tenure at Wellcome, which ends in The macro environment is increasingly challenging, 2020, I count myself lucky to have had the which has created volatility in financial markets. opportunity to meet inspiring people from a rich Q4 2018 was a very difficult quarter, but the diversity of sectors, backgrounds, specialisms resumption of interest rate cuts by the US Federal and scientific fields. Reserve underpinned another year of gains for our portfolio. We recognise that the cycle is extended, Wellcome’s achievements belong to the people and that the portfolio is likely to face more who work here and to the people we fund – it is challenging times ahead. a partnership that continues to grow stronger, more influential and more ambitious, spurred by The team is working hard to ensure that our independence. -
Growth and Division Mode Plasticity by Cell Density in Marine-Derived
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.16.444389; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Growth and division mode plasticity by cell density in marine- 2 derived black yeasts 3 Gohta Goshima1,2 4 5 1 Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya 6 University, Sugashima, 429-63, Toba 517-0004, Japan 7 2 Division of Biological Science, Graduate School of Science, Nagoya University, Furo- 8 cho, Chikusa-ku, Nagoya 464-8602, Japan 9 Email: [email protected]; Phone: +81 599-34-2216 10 11 12 Abstract 13 The diversity and ecological contribution of the fungus kingdom in the marine 14 environment remain under-studied. A recent survey in the Atlantic (Woods Hole, MA, 15 USA) brought to light the diversity and unique biological features of marine fungi. The 16 study revealed that black yeast species undergo an unconventional cell division cycle, 17 which has not been documented in conventional model yeast species such as 18 Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission 19 yeast). The prevalence of this unusual property is unknown. Inspired by the findings in 20 Woods Hole, I collected and identified >50 marine fungi species across 40 genera from 21 the ocean surface, sediment, and macroalgal surface in the Pacific (Sugashima, Toba, 22 Japan). The Sugashima collection largely did not overlap with the Woods Hole collection 23 and included several unidentifiable species, further illustrating the diversity of marine 24 fungi. -
Josephine Bay Paul Center for Comparative Molecular Biology And
OCTOBER 2, 2014 CONTACT US DIRECTIONS TO MBL HOME ABOUT MBL EDUCATION RESEARCH GIVING MBL NEWS HOME Josephine Bay Paul Center for Comparative Molecular Biology and Evolution RESOURCES HIGHLIGHTS RESEARCH Josephine Bay Paul Center for Comparative Molecular Biology and Evolution Eugene Bell Center for Regenerative Biology & Tissue Engineering Cellular Dynamics Program The Ecosystems Center Program in Sensory Physiology and Behavior Whitman Center for Research and Discovery EDUCATION MBLWHOI LIBRARY GIFTS PEOPLE In the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, scientists explore the evolution and interaction of genomes of diverse organisms with significant roles in environmental biology and human health. Bay Paul Center scientists integrate the powerful tools of genome science, molecular phylogenetics, and molecular ecology to advance our understanding of how living organisms are related to each other, to provide the tools to quantify and assess biodiversity, and to identify genes and metabolic processes of ecological and biomedical importance. Publications | Staff List © 1996-2014, The Marine Biological Laboratory MARINE BIOLOGICAL LABORATORY, MBL, and the Join the MBL community: 1888 logo are registered trademarks and service marks of The Marine Biological Laboratory. OCTOBER 2, 2014 CONTACT US DIRECTIONS TO MBL HOME ABOUT MBL EDUCATION RESEARCH GIVING MBL NEWS HOME Bay Paul Center Publications RESOURCES Akerman, NH; Butterfield, DA; and Huber, JA. 2013. Phylogenetic Diversity and Functional Gene Patterns of Sulfur- oxidizing Subseafloor Epsilonproteobacteria in Diffuse Hydrothermal Vent Fluids. Front Microbiol. 4, 185. HIGHLIGHTS RESEARCH Alliegro, MC; and Alliegro, MA. 2013. Localization of rRNA Transcribed Spacer Domains in the Nucleolinus and Maternal Procentrosomes of Surf Clam (Spisula) Oocytes.” RNA Biol. -
Annual Report 2003
ANNUAL REPORT 2003 Published by the Marketing and Communications Division The Australian National University Published by The Marketing and Communications Division The Australian National University Produced by ANU Publications Unit Marketing and Communications Division The Australian National University Printed by University Printing Service The Australian National University ISSN 1327-7227 April 2004 Contents Council and University Office rs 7 Review of 2003 10 Council and Council Committee Meetings 20 University Statistics 22 Cooperation with Government and other Public Institutions 30 Joint Research Projects undertaken with Universities, CSIRO and other Institutions 76 Principal Grants and Donations 147 University Public Lectures 168 Freedom of Information Act 1982 Statement 172 Auditor-General’s Report 175 Financial Statements 179 University Organisational Structure 222 Academic Structure 223 ANU Acronyms 224 Index 225 Further information about ANU Detailed information about the achievements of ANU in 2003, especially research and teaching outcomes, is contained in the annual reports of the University’s Research Schools, Faculties, Centres and Administrative Divisions. For course and other academic information, contact: Director Student and Academic Services The Australian National University Canberra ACT 0200 T: 02 6125 3339 F: 02 6125 0751 For general information, contact: Director Marketing and Communications Division The Australian National University Canberra ACT 0200 T: 02 6125 2229 F: 02 6125 5568 The Council and University -
A Cell Senses Its Own Curves 28 April 2016
A cell senses its own curves 28 April 2016 branches where curvature was highest. They then decided to recreate this natural phenomenon in the lab, using artificial materials they could measure more easily than living cells. Using precisely scaled glass beads coated with lipid membranes, they discovered that septin proteins preferred curves in the 1-3 micron range. They got the same result using human or fungal septins, suggesting that this phenomenon is evolutionarily conserved. "This ability of septins to sense micron-scaled cell curvature provides cells with a previously unknown mechanism for organizing themselves," Bridges says. The filamentous fungus Ashbya gossypii. The plasma The idea for the glass bead experiment came from membrane is visualized in magenta (FM-464), and the "many rich intellectual discussions with other septin Cdc11a-GFP is in green. Credit: Andrew Bridges members of the MBL community," says Bridges, who has accompanied Gladfelter to the MBL each summer since 2012. "Both our collaborations and the imaging resources at MBL were central to this Can a cell sense its own shape? Working in the work." Marine Biological Laboratory's Whitman Center, scientists from Dartmouth College developed an More information: Andrew A. Bridges et al, ingenious experiment to ask this question. Their Micron-scale plasma membrane curvature is conclusion - Yes - is detailed in a recent paper in recognized by the septin cytoskeleton, The Journal the Journal of Cell Biology. of Cell Biology (2016). DOI: 10.1083/jcb.201512029 "Cells adopt diverse shapes that are related to how they function. We wondered if cells have the ability to perceive their own shapes, specifically, the Provided by Marine Biological Laboratory curvature of the [cell] membrane," says Drew Bridges, a Ph.D. -
Parliamentary Inquiry
February 9, 2004 Science and Technology Committee House of Commons 7 Millbank London SW1P 3JA UNITED KINGDOM Dear Dr Gibson and Members of the Science and Technology Committee: On behalf of the Public Library of Science, I am pleased to submit the following written evidence to the Science and Technology Committee's inquiry into scientific publication practices. I congratulate you and your colleagues for your initiative and leadership in pursuing this timely and important inquiry. The Public Library of Science (PLoS) is a grassroots, world-wide, not-for-profit organization of scientists, physicians, and members of the public working to make the world's scientific and medical literature a freely available resource, easily accessible to anyone, anywhere, with an Internet connection through open, online public libraries. The deepening crisis in scientific publishing as journal prices continue to escalate will restrict comprehensive access to the scientific literature to a dwindling elite at a handful of wealthy research institutions in the advanced economies. While action to reduce subscription costs would be welcome, it will ultimately be necessary for the scientific community to abandon the unstable, outdated, restrictive and fundamentally anti- competitive fee-for-access publication system. Only when we transition to an open access system - in which publishers are paid a fair price for the services they provide to the scientific community, and all reports become immediately freely available online - will we have a sustainable and equitable system for publishing science that serves the interests of the public, the public institutions that support scientific research, and scientists themselves. My colleagues and I at PLoS have been advocating for open access for over five years. -
Final Program
Final Program The SIAM Conference on the Life Sciences is sponsored by the SIAM Activity Group on Life Sciences (SIAG/LS) The SIAM Activity Group on the Life Sciences was established to foster the application of mathematics to the life sciences and research in mathematics that leads to new methods and techniques useful in the life sciences. The life sciences have become quantitative as new technologies facilitate collection and analysis of vast amounts of data ranging from complete genomic sequences of organisms to satellite imagery of forest landscapes on continental scales. Computers enable the study of complex models of biological processes. The activity group brings together researchers who seek to develop and apply mathematical and computational methods in all areas of the life sciences. It provides a forum that cuts across disciplines to catalyze mathematical research relevant to the life sciences and rapid diffusion of advances in mathematical and computational methods. AN16/LS16 Mobile App Scan the QR code with any QR reader and download the TripBulder EventMobileTM app to your iPhone, iPad, iTouch, or Android devices. You can also visit www.tripbuildermedia.com/apps/siam2016events Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215- 386-7999 Conference E-mail: [email protected] Conference Web: www.siam.org/meetings/ Membership and Customer Service: (800) 447-7426 (US & Canada) or +1-215-382-9800 (worldwide) www.siam.org/meetings 2 2016 SIAM Annual Meeting General Information Table of Contents C. David Levermore SIAM Registration Desk University of Maryland, College Park, USA General Information ...............................2 The SIAM registration desk is located on Rachel Levy Exhibitor and Sponsor Information .6 the Concourse Level of the Westin Boston Harvey Mudd College, USA Waterfront. -
Regulation of Distinct Septin Rings in a Single Cell by Elm1p and Gin4p Kinases
Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 2-18-2009 Regulation of Distinct Septin Rings in a Single Cell by Elm1p and Gin4p Kinases Bradley S. DeMay Dartmouth College Rebecca A. Meseroll Dartmouth College Patricia Occhipinti Dartmouth College Amy S. Gladfelter Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Life Sciences Commons Dartmouth Digital Commons Citation DeMay, Bradley S.; Meseroll, Rebecca A.; Occhipinti, Patricia; and Gladfelter, Amy S., "Regulation of Distinct Septin Rings in a Single Cell by Elm1p and Gin4p Kinases" (2009). Dartmouth Scholarship. 3825. https://digitalcommons.dartmouth.edu/facoa/3825 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Molecular Biology of the Cell Vol. 20, 2311–2326, April 15, 2009 Regulation of Distinct Septin Rings in a Single Cell by Elm1p and Gin4p Kinases Bradley S. DeMay, Rebecca A. Meseroll, Patricia Occhipinti, and Amy S. Gladfelter Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 Submitted December 4, 2008; Revised January 21, 2009; Accepted February 10, 2009 Monitoring Editor: Patrick J. Brennwald Septins are conserved, GTP-binding proteins that assemble into higher order structures, including filaments and rings with varied cellular functions. Using four-dimensional quantitative fluorescence microscopy of Ashbya gossypii fungal cells, we show that septins can assemble into morphologically distinct classes of rings that vary in dimensions, intensities, and positions within a single cell. -
World Health Summit Regional Meeting - Asia | Singapore 2013
Singapore I April 8th - 10th, 2013 World Health Summit Regional Meeting - Asia | Singapore 2013 M8Alliance Summit Program Monday, April 8th, 2013 Tuesday, April 9th, 2013 I Program Millenia 1 Grand Ballroom Millenia 1 Millenia 2 Millenia 3 11.00 8.00 Keynote Lectures Keynote Lectures 12.00 9.00 Does Health Have a Future After 2015? (Richard Horton) 8.30 - 09.30 Grand Ballroom · Page 42 The Impact of the Genetic Revolution on Society (Mary-Claire King) Roundtable Discussion 13.00 Partner Symposium 10.00 Industry Leaders' Roundtable Discussion: Sustainable Innovations for Health Care in Asia - An Industry Perspective High-Level Nutrition Dialogue 09.30 - 10.45 Grand Ballroom · Page 43 Coffee Break 14.00 11.00 Symposium Symposium Symposium Symposium The Critical Importance of Challenges in Drug and Device Disease Burden in Asia Social Innovation and Stratified Medicine to Global Regulation Entrepreneurship in Health Health Delivery 15.00 12.00 Page 48 Page 49 Symposium Symposium 11.15 - 13.15 Brain Drain - Workforce Innovations in Chronic Disease Page 36 Migration Control and Prevention in Asia 16.00 13.00 Page 44 Page 46 Page 50 Page 51 M8 Break Lunch Session Lunch Session Lunch Session Challenges and Opportunities in Com- Sustainable Corporate Engagement batting Malaria and its Socio-Economic The Role of IAMP in Global Health in Public Health Issues 14.00 Impact in the Asia-Pacific 13.30 - 14.15 Page 52 Page 53 Page 54 M8 Break Grand Ballroom Symposium Symposium Symposium Symposium 18.00 15.00 Medical Tourism Point of Care Diagnostics -
MRC Centre for Outbreak Analysis and Modelling
Centre for Outbreak Analysis and Modelling MRC Centre for ANNUAL REPORT Outbreak Analysis and Modelling www.imperial.ac.uk/medicine/outbreaks 2013-14 Director’s message Neil Ferguson This report is being published a year later than planned – a delay resulting from the last twelve months being some of the busiest in the MRC Centre’s now 6 year history. Following a very positive review of our progress by the MRC in late 2013, the Centre’s funding was renewed for a further 5 years. The continuing relevance of the MRC Centre’s mission was then underlined by events last year. Within a month of our 5th anniversary we were implemented. I would like to take the opportunity to approached by the Saudi Arabian government to recognise the huge commitment of time and effort assist them in risk analysis and modelling of the made by the researchers involved – an effort more newly resurgent outbreak of Middle East respiratory motivated by everyone’s desire to do something to syndrome (MERS) occurring in that country in spring help rather than the usual academic drive to publish 2014. Building on work completed the previous year, scientific papers. a team of 10 researchers was assembled to analyse While always remaining a core part of our mission, the real-time data coming from Saudi Arabia to outbreaks have only been one element of the MRC understand where transmission was occurring and to Centre activities in the last two years. This annual provide an assessment of the risk of large epidemics report highlights the substantial progress made by MRC being triggered by the mass gatherings of pilgrims to Centre researchers in improving understanding of the Umrah and the Hajj. -
Statistical Mechanics of Viral-Immune Co-Evolution
Préparée à l’École Normale Supérieure Statistical mechanics of viral-immune co-evolution Soutenue par Composition du jury : Jacopo Marchi Olivier, Martin Le 23/09/2020 INRAE Président du jury Martin, Weigt UPMC Rapporteur Ecole doctorale n° 564 Joshua, Weitz Physique en Île-de-France Georgia Institute of Technology Examinateur Aleksandra, Walczak École Normale Supérieure Directrice de thèse Spécialité Physique Thierry, Mora École Normale Supérieure Directeur de thèse ABSTRACT Evolution constrains organism diversity through natural selection. Here we build theoretical models to study the effect of evolutionary constraints on two natural systems at different scales: viral-immune coevolution and protein evolution. First we study how immune systems constrain the evolutionary path of viruses which constantly try to escape immune memory updates. We start by studying numerically a minimal agent based model with a few simple ingredients governing the microscopic interactions between viruses and im- mune systems in an abstract framework. These ingredients couple processes at different scales — immune response, epidemiology, evolution — that all together determine the evolutionary outcome. We find that the population of immune systems drives viruses to a set of interesting evolutionary patterns, which can also be observed in nature. We map these evolutionary strate- gies onto model parameters. Then we study a coarse-grained theoretical model for the evolution of viruses and immune receptors in antigenic space consisting of a system of coupled stochastic differential equations, inspired by the previous agent-based simulations. This study sheds light on the in- terplay between the different scales constituting this phylodynamic system. We obtain some analytical insights into how immune systems constrain viral evolution in antigenic space while viruses manage to sustain a steady state escape dynamics. -
Clustered Nuclei Maintain Autonomy and Nucleocytoplasmic Ratio Control in a Syncytium
M BoC | BRIEF REPORT Clustered nuclei maintain autonomy and nucleocytoplasmic ratio control in a syncytium Samantha E. R. Dundona, Shyr-Shea Changb, Abhishek Kumarc, Patricia Occhipintia, Hari Shroffc, Marcus Roperb, and Amy S. Gladfeltera,d,* aDepartment of Biological Sciences, Dartmouth College, Hanover, NH 03755; bDepartments of Mathematics and Biomathematics, University of California, Los Angeles, Los Angeles, CA 90095; cSection on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892; dThe Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543 ABSTRACT Nuclei in syncytia found in fungi, muscles, and tumors can behave independently Monitoring Editor despite cytoplasmic translation and the homogenizing potential of diffusion. We use a dynac- Wallace Marshall tin mutant strain of the multinucleate fungus Ashbya gossypii with highly clustered nuclei to University of California, San Francisco assess the relative contributions of nucleus and cytoplasm to nuclear autonomy. Remarkably, clustered nuclei maintain cell cycle and transcriptional autonomy; therefore some sources of Received: Mar 7, 2016 nuclear independence function even with minimal cytosol insulating nuclei. In both nuclear Revised: May 6, 2016 clusters and among evenly spaced nuclei, a nucleus’ transcriptional activity dictates local Accepted: May 9, 2016 cytoplasmic contents, as assessed by the localization of several cyclin mRNAs. Thus nuclear activity is a central determinant of the local cytoplasm in syncytia. Of note, we found that the number of nuclei per unit cytoplasm was identical in the mutant to that in wild-type cells, despite clustered nuclei. This work demonstrates that nuclei maintain autonomy at a submi- crometer scale and simultaneously maintain a normal nucleocytoplasmic ratio across a syncy- tium up to the centimeter scale.