The 18S Ribosomal RNA M 6 a Methyltransferase Mettl5 Is Required
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amplification of 8Q21 in Breast Cancer Is Independent of MYC and Associated with Poor Patient Outcome
Modern Pathology (2010) 23, 603–610 & 2010 USCAP, Inc. All rights reserved 0893-3952/10 $32.00 603 Amplification of 8q21 in breast cancer is independent of MYC and associated with poor patient outcome Matthias Choschzick1, Paula Lassen1, Annette Lebeau1, Andreas Holger Marx1, Luigi Terracciano2, Uwe Heilenko¨tter3, Fritz Jaenicke4, Carsten Bokemeyer5, Jakob Izbicki6, Guido Sauter1 and Ronald Simon1 1Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; 2Institute of Pathology, University Hospital Basel, Basel, Switzerland; 3Department of Gynaecology, Hospital Itzehoe, Itzehoe, Germany; 4Department of Gynaecology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; 5Department of Oncology, Hematology, Bone Marrow Transplantation with Section Pneumology, University Hospital Hamburg-Eppendorf, Hamburg, Germany and 6Department of Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany Copy number gains involving the long arm of chromosome 8, including high-level amplifications at 8q21 and 8q24, have been frequently reported in breast cancer. Although the role of the MYC gene as the driver of the 8q24 amplicon is well established, the significance of the 8q21 amplicon is less clear. The breast cancer cell line SK-BR-3 contains three separate 8q21 amplicons, the distal two of which correspond to putative target genes TPD52 and WWP1. To understand the effect of proximal 8q21 amplification on breast cancer phenotype and patient prognosis, we analyzed 8q21 copy number changes using fluorescence in situ hybridization (FISH) in a tissue microarray containing more than 2000 breast cancers. Amplification at 8q21 was found in 3% of tumors, and was associated with medullary type (Po0.03), high tumor grade (Po0.0001), high Ki67 labeling index (Po0.05), amplification of MYC (Po0.0001), HER2, MDM2, and CCND1 (Po0.05 each), as well as the total number of gene amplifications (Po0.0001). -
Xio Is a Component of the Drosophila Sex Determination Pathway and RNA N6-Methyladenosine Methyltransferase Complex
Xio is a component of the Drosophila sex determination pathway and RNA N6-methyladenosine methyltransferase complex Jian Guoa,b, Hong-Wen Tangc, Jing Lia,b, Norbert Perrimonc,d,1, and Dong Yana,1 aKey Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and dHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115 Contributed by Norbert Perrimon, February 14, 2018 (sent for review December 6, 2017; reviewed by James W. Erickson and Helen Salz) N6-methyladenosine (m6A), the most abundant chemical modifica- reader YT521-B, are required for Drosophila sex determination 6 tion in eukaryotic mRNA, has been implicated in Drosophila sex and Sxl splicing regulation. Further, m A modification sites have determination by modifying Sex-lethal (Sxl) pre-mRNA and facili- been mapped to Sxl introns, thus facilitating Sxl pre-mRNA al- 6 tating its alternative splicing. Here, we identify a sex determina- ternative splicing. Importantly, m A methylation is required in CG7358 xio human dosage compensation by modifying the long noncoding tion gene, , and rename it according to its loss-of- 6 function female-to-male transformation phenotype. xio encodes RNA XIST,suggestingthatmA-mediated gene regulation is an ancient -
Epigenome-Wide Exploratory Study of Monozygotic Twins Suggests Differentially Methylated Regions to Associate with Hand Grip Strength
Biogerontology (2019) 20:627–647 https://doi.org/10.1007/s10522-019-09818-1 (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength Mette Soerensen . Weilong Li . Birgit Debrabant . Marianne Nygaard . Jonas Mengel-From . Morten Frost . Kaare Christensen . Lene Christiansen . Qihua Tan Received: 15 April 2019 / Accepted: 24 June 2019 / Published online: 28 June 2019 Ó The Author(s) 2019 Abstract Hand grip strength is a measure of mus- significant CpG sites or pathways were found, how- cular strength and is used to study age-related loss of ever two of the suggestive top CpG sites were mapped physical capacity. In order to explore the biological to the COL6A1 and CACNA1B genes, known to be mechanisms that influence hand grip strength varia- related to muscular dysfunction. By investigating tion, an epigenome-wide association study (EWAS) of genomic regions using the comb-p algorithm, several hand grip strength in 672 middle-aged and elderly differentially methylated regions in regulatory monozygotic twins (age 55–90 years) was performed, domains were identified as significantly associated to using both individual and twin pair level analyses, the hand grip strength, and pathway analyses of these latter controlling the influence of genetic variation. regions revealed significant pathways related to the Moreover, as measurements of hand grip strength immune system, autoimmune disorders, including performed over 8 years were available in the elderly diabetes type 1 and viral myocarditis, as well as twins (age 73–90 at intake), a longitudinal EWAS was negative regulation of cell differentiation. -
Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest. -
Mutational Landscape Differences Between Young-Onset and Older-Onset Breast Cancer Patients Nicole E
Mealey et al. BMC Cancer (2020) 20:212 https://doi.org/10.1186/s12885-020-6684-z RESEARCH ARTICLE Open Access Mutational landscape differences between young-onset and older-onset breast cancer patients Nicole E. Mealey1 , Dylan E. O’Sullivan2 , Joy Pader3 , Yibing Ruan3 , Edwin Wang4 , May Lynn Quan1,5,6 and Darren R. Brenner1,3,5* Abstract Background: The incidence of breast cancer among young women (aged ≤40 years) has increased in North America and Europe. Fewer than 10% of cases among young women are attributable to inherited BRCA1 or BRCA2 mutations, suggesting an important role for somatic mutations. This study investigated genomic differences between young- and older-onset breast tumours. Methods: In this study we characterized the mutational landscape of 89 young-onset breast tumours (≤40 years) and examined differences with 949 older-onset tumours (> 40 years) using data from The Cancer Genome Atlas. We examined mutated genes, mutational load, and types of mutations. We used complementary R packages “deconstructSigs” and “SomaticSignatures” to extract mutational signatures. A recursively partitioned mixture model was used to identify whether combinations of mutational signatures were related to age of onset. Results: Older patients had a higher proportion of mutations in PIK3CA, CDH1, and MAP3K1 genes, while young- onset patients had a higher proportion of mutations in GATA3 and CTNNB1. Mutational load was lower for young- onset tumours, and a higher proportion of these mutations were C > A mutations, but a lower proportion were C > T mutations compared to older-onset tumours. The most common mutational signatures identified in both age groups were signatures 1 and 3 from the COSMIC database. -
Copy Number Variation at the 7Q11.23 Segmental Duplications Is a Susceptibility Factor for the Williams-Beuren Syndrome Deletion
Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Copy number variation at the 7q11.23 segmental duplications is a susceptibility factor for the Williams-Beuren syndrome deletion Ivon Cuscó,1,2,6 Roser Corominas,1,3,6 Mònica Bayés,1,4 Raquel Flores,1 Núria Rivera-Brugués,1 Victoria Campuzano,1,2 and Luis A. Pérez-Jurado1,2,5,7 1Genetics Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain; 2Center for Biomedical Research on Rare Diseases, CIBERER, Barcelona 08003 Spain; 3Research Group in Infantile Neurology and Genetic Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona 08035 Spain; 4National Genotyping Center (CEGEN), Centre for Genomic Regulation, Barcelona 08003 Spain; 5Program in Molecular Medicine and Genetics, Hospital Universitari Vall d’Hebron, Barcelona 08035 Spain Large copy number variants (CNVs) have been recently found as structural polymorphisms of the human genome of still unknown biological significance. CNVs are significantly enriched in regions with segmental duplications or low-copy repeats (LCRs). Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of contiguous genes at 7q11.23 mediated by nonallelic homologous recombination (NAHR) between large flanking LCRs and facilitated by a structural variant of the region, a ∼2-Mb paracentric inversion present in 20%–25% of WBS-transmitting progenitors. We now report that eight out of 180 (4.44%) WBS-transmitting progenitors are carriers of a CNV, displaying a chromosome with large deletion of LCRs. The prevalence of this CNV among control individuals and non-transmitting progenitors is much lower (1%, n = 600), thus indicating that it is a predisposing factor for the WBS deletion (odds ratio 4.6-fold, P = 0.002). -
MYC-Containing Amplicons in Acute Myeloid Leukemia: Genomic Structures, Evolution, and Transcriptional Consequences
Leukemia (2018) 32:2152–2166 https://doi.org/10.1038/s41375-018-0033-0 ARTICLE Acute myeloid leukemia Corrected: Correction MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences 1 1 2 2 1 Alberto L’Abbate ● Doron Tolomeo ● Ingrid Cifola ● Marco Severgnini ● Antonella Turchiano ● 3 3 1 1 1 Bartolomeo Augello ● Gabriella Squeo ● Pietro D’Addabbo ● Debora Traversa ● Giulia Daniele ● 1 1 3 3 4 Angelo Lonoce ● Mariella Pafundi ● Massimo Carella ● Orazio Palumbo ● Anna Dolnik ● 5 5 6 2 7 Dominique Muehlematter ● Jacqueline Schoumans ● Nadine Van Roy ● Gianluca De Bellis ● Giovanni Martinelli ● 3 4 8 1 Giuseppe Merla ● Lars Bullinger ● Claudia Haferlach ● Clelia Tiziana Storlazzi Received: 4 August 2017 / Revised: 27 October 2017 / Accepted: 13 November 2017 / Published online: 22 February 2018 © The Author(s) 2018. This article is published with open access Abstract Double minutes (dmin), homogeneously staining regions, and ring chromosomes are vehicles of gene amplification in cancer. The underlying mechanism leading to their formation as well as their structure and function in acute myeloid leukemia (AML) remain mysterious. We combined a range of high-resolution genomic methods to investigate the architecture and expression pattern of amplicons involving chromosome band 8q24 in 23 cases of AML (AML-amp). This 1234567890();,: revealed that different MYC-dmin architectures can coexist within the same leukemic cell population, indicating a step-wise evolution rather than a single event origin, such as through chromothripsis. This was supported also by the analysis of the chromothripsis criteria, that poorly matched the model in our samples. Furthermore, we found that dmin could evolve toward ring chromosomes stabilized by neocentromeres. -
Pharmacological Mechanisms Underlying the Hepatoprotective Effects of Ecliptae Herba on Hepatocellular Carcinoma
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 5591402, 17 pages https://doi.org/10.1155/2021/5591402 Research Article Pharmacological Mechanisms Underlying the Hepatoprotective Effects of Ecliptae herba on Hepatocellular Carcinoma Botao Pan ,1 Wenxiu Pan ,2 Zheng Lu ,3 and Chenglai Xia 1,4 1Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China 2Department of Laboratory, Fifth People’s Hospital of Foshan, Foshan 528000, China 3Wuzhou Maternal and Child Health-Care Hospital, Wuzhou 543000, China 4School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China Correspondence should be addressed to Zheng Lu; [email protected] and Chenglai Xia; [email protected] Received 30 January 2021; Revised 31 May 2021; Accepted 3 July 2021; Published 16 July 2021 Academic Editor: Hongcai Shang Copyright © 2021 Botao Pan et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. -e number of hepatocellular carcinoma (HCC) cases worldwide has increased significantly. As a traditional Chinese medicine (TCM) with a long history, Ecliptae herba (EH) has been widely used in HCC patients in China, but its hepatoprotective mechanism is still unclear. Methods. In this study, we applied a network pharmacology-based strategy and experimental ver- ification to systematically unravel the underlying mechanisms of EH against HCC. First, six active ingredients of EH were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) by the ADME method. Subsequently, 52 potential targets of 6 active ingredients acting on HCC were screened from various databases, including TCMSP, DGIdb, SwissTargetPrediction, CTD, and GeneCards. -
Analysis of Diet-Induced Differential Methylation, Expression, And
www.nature.com/scientificreports OPEN Analysis of diet-induced diferential methylation, expression, and interactions of lncRNA and protein- Received: 2 March 2018 Accepted: 29 June 2018 coding genes in mouse liver Published: xx xx xxxx Jose P. Silva1 & Derek van Booven2 Long non-coding RNAs (lncRNAs) regulate expression of protein-coding genes in cis through chromatin modifcations including DNA methylation. Here we interrogated whether lncRNA genes may regulate transcription and methylation of their fanking or overlapping protein-coding genes in livers of mice exposed to a 12-week cholesterol-rich Western-style high fat diet (HFD) relative to a standard diet (STD). Deconvolution analysis of cell type-specifc marker gene expression suggested similar hepatic cell type composition in HFD and STD livers. RNA-seq and validation by nCounter technology revealed diferential expression of 14 lncRNA genes and 395 protein-coding genes enriched for functions in steroid/cholesterol synthesis, fatty acid metabolism, lipid localization, and circadian rhythm. While lncRNA and protein-coding genes were co-expressed in 53 lncRNA/protein-coding gene pairs, both were diferentially expressed only in 4 lncRNA/protein-coding gene pairs, none of which included protein- coding genes in overrepresented pathways. Furthermore, 5-methylcytosine DNA immunoprecipitation sequencing and targeted bisulfte sequencing revealed no diferential DNA methylation of genes in overrepresented pathways. These results suggest lncRNA/protein-coding gene interactions in cis play a minor role mediating hepatic expression of lipid metabolism/localization and circadian clock genes in response to chronic HFD feeding. More than 70% of the mammalian genome is transcribed as non-coding RNA (ncRNA) while only 1–2% of the mammalian genome is transcribed as protein-coding RNA1–3. -
NSUN2 As the Methyltransferase and ALYREF As an M5c Reader
Cell Research (2017) 27:606-625. ORIGINAL ARTICLE www.nature.com/cr 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader Xin Yang1, 2, 3, *, Ying Yang2, *, Bao-Fa Sun2, *, Yu-Sheng Chen2, 3, *, Jia-Wei Xu1, 2, *, Wei-Yi Lai3, 4, *, Ang Li2, 3, Xing Wang2, 5, Devi Prasad Bhattarai2, 3, Wen Xiao2, Hui-Ying Sun2, Qin Zhu2, 3, Hai-Li Ma2, 3, Samir Adhikari2, Min Sun2, Ya-Juan Hao2, Bing Zhang2, Chun-Min Huang2, Niu Huang6, Gui-Bin Jiang4, Yong-Liang Zhao2, Hai-Lin Wang4, Ying-Pu Sun1, Yun-Gui Yang2, 3 1Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; 2Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; 3School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; 4State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 5Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; 6National Institute of Biological Sciences, Beijing 102206, China 5-methylcytosine (m5C) is a post-transcriptional RNA modification identified in both stable and highly abundant tRNAs and rRNAs, and in mRNAs. However, its regulatory role in mRNA metabolism is still largely unknown. Here, we reveal that m5C modification is enriched in CG-rich regions and in regions immediately downstream of trans- lation initiation sites and has conserved, tissue-specific and dynamic features across mammalian transcriptomes. -
Single Cell Derived Clonal Analysis of Human Glioblastoma Links
SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig. -
Uncovering the Human Methyltransferasome*DS
Research © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Uncovering the Human Methyltransferasome*□S Tanya C. Petrossian and Steven G. Clarke‡ We present a comprehensive analysis of the human meth- core (2, 3, 5, 6, 15). The SPOUT methyltransferase superfamily yltransferasome. Primary sequences, predicted second- contains a distinctive knot structure and methylates RNA ary structures, and solved crystal structures of known substrates (16). SET domain methyltransferases catalyze the methyltransferases were analyzed by hidden Markov methylation of protein lysine residues with histones and ribo- models, Fisher-based statistical matrices, and fold recog- somal proteins as major targets (17–19). Smaller superfamilies nition prediction-based threading algorithms to create a with at least one three-dimensional structure available include model, or profile, of each methyltransferase superfamily. the precorrin-like methyltransferases (20), the radical SAM1 These profiles were used to scan the human proteome methyltransferases (21, 22), the MetH activation domain (23), database and detect novel methyltransferases. 208 pro- teins in the human genome are now identified as known or the Tyw3 protein involved in wybutosine synthesis (24), and putative methyltransferases, including 38 proteins that the homocysteine methyltransferases (25–27). Lastly, an inte- were not annotated previously. To date, 30% of these gral membrane methyltransferase family has been defined