UC Berkeley UC Berkeley Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redacted for Privacy Abstract Approved: Mary Jo Nye
AN ABSTRACT OF THE THESIS OF Linda Hahn for the degree of Master of Science in History of Science presented on February 4. 2000. Title: In the Midst of a Revolution: Science, Fish Culture and the Oregon Game Commission. 1935-1949. Redacted for privacy Abstract approved: Mary Jo Nye This thesis will address the transformation of biological sciences during the 1930s and 1940s and it effects on fisheries science. It will focus on Oregon State College and specifically the Department of Fish and Game Management and the interaction with the Oregon Game Commission. Support for mutation theory and neo- Lamarckism lasted throughout this study's time frame. The resulting belief that the environment can directly affect species fitness could have been a factor in fisheries managers' support for fish hatcheries. Throughout this time frame the science of ecology was emerging, but the dominant science of agricultural breeding science within wildlife management took precedence over ecology. Two case studies show changing ideas about agricultural breeding science as applied to wildlife management. In the first case study, the debate concerning fishways over Bonneville Dam shows that fish hatcheries were counted on to mitigate the loss of salmon habitat due to construction, and to act as a failsafe should the fishways fail. When the 1934 Oregon Game Commission members failed to enthusiastically support the construction of the dam and the fishway plans, this thesis argues that the commission members were dismissed in 1935. The second case study addresses the actions of the Oregon Game Commission in placing some high dams on tributaries of the Willameue River, the Willamette Valley project. -
Population Ecology of the Multivoltine Neotropical Gall Midge Eugeniamyia Dispar (Diptera, Cecidomyiidae)
170 MENDONÇA JR & ROMANOWSKI Population ecology of the multivoltine Neotropical gall midge Eugeniamyia dispar (Diptera, Cecidomyiidae) Milton de S. Mendonça, Jr.1,2 & Helena P. Romanowski1 1. Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bloco IV, Prédio 43435, 91501-970, Porto Alegre, RS, Brazil ([email protected]). 2. Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bloco IV, Prédio 43422, 91501-970, Porto Alegre, RS, Brazil. ABSTRACT. Our understanding of the population ecology of insect gallers is largely built on examples from temperate zones, but tropical and subtropical gallers may present distinct patterns of abundance and distribution across time. Eugeniamyia dispar Maia, Mendonça & Romanowski, 1996 is a multivoltine Neotropical cecidomyiid that induces spongy leaf galls on Eugenia uniflora(Myrtaceae). Galls were censused in the urban area of Porto Alegre, southern Brazil on six plants at two sites, for two years, at roughly weekly intervals. Overall 9,694 eggs, galling attempts and galls were counted. New galls continuously appear on developing leaves, but galls with live inducers are absent from June to at least early August. Galls on a same shoot develop synchronically, thus the shoot is probably the unit for oviposition. Given the also synchronic appearance of galls on different plants on a site, it seems midges can disperse and attack close-by plants. Gall cohorts varied in abundance by two orders of magnitude; there were more galls during summer than for spring and autumn, in a wave-like pattern. -
Clear-Cutting Thrown Into Sharp Relief
264 Clear-Cutting thrown into sharp relief. Nonetheless, the effect to a new tree species through planting or seeding; of the NPDES program is visible in the dramatic to provide forest habitat for species that rely upon recovery of Lake Erie water qua lity and fisheries, edge and high-density, even-aged stands; and to the improvement of previously dead rivers in the mimic the effects of large-scale, catastrophic wild industrial northeast, and the drive to develop the fires or hurricanes. technology that allows polluters to meet or exceed Conservationists, on the other hand, point to the required effluent reductions. detrimental effects of clear-cutting, since the prac tice can result in fragmented landscapes, landslides, SEE AL SO: Nutrients (as contaminants of water); Pollu increases in flamma ble "slash" left on forest floors, tion, Sewage and Sewer Systems; Total Maximum Daily watershed degradation, habitat degradation and Loads (TMDLs); Water; Water Law; Wetlands; Wetlands loss, soil erosion, soil temperature increases, aes Mitigation. thetic blight, species extinction, and loss of a forest's age and species diversity. BIBLIOGRAPHY. Robert Adler, Jessica Landman, and Diane Cameron, The Clean Water Act 20 Years Later DOMINANT METHOD OF LOGGING (Island Press, 1993); Robin Kundis Craig, Clean Water Act and the Constitution (Environmental Law Institute, Clear-cutting, while financially efficient, a useful 2004); Mark Ryan, The Clean Water Act Handbook management tool, and historically a standard prac (American Bar Association, 2004). tice, is often applied to forests that do not benefit from the practice. During the 1970s, it is estimated MORGAN ROBERTSON that clear-cutting took place on more than 250,000 UNIVERSITY OF KENTUCKY acres each year, or an acre every two minutes. -
The “Plant Drosophila”: E. B. Babcock, the Genus Crepis, and the Evolution of a Genetics Research Program at Berkeley, 1915–1947
HSNS3903_02 6/26/09 11:04 AM Page 300 ∗ VASSILIKI BETTY SMOCOVITIS The “Plant Drosophila”: E. B. Babcock, the Genus Crepis, and the Evolution of a Genetics Research Program at Berkeley, 1915–1947 The student of genetics must be ready to resort to the use of any living organism that gives promise of revealing the natural laws upon which the future science of breeding will be grounded. E. B. Babcock, 19131 The Crepis investigations carried on by the Babcock group are the American evolutionary investigations that seem to have attracted the largest attention outside of America next to the Drosophila investigations. One reason for this is their wider systematical aspect. Jens Clausen, 19342 *Departments of Zoology and History, Affiliate in Botany, University of Florida, Bartram Hall, Gainesville, FL 32611; [email protected]fl.edu, [email protected]fl.edu. The following abbreviations are used: APS, American Philosophical Society Library, Philadel- phia, PA; CAS, California Academy of Sciences, San Francisco, CA; CIW, Carnegie Institution of Washington; CP, Carnegie Papers, Missouri Botanical Garden Archives, St. Louis, MO; EBB, Ernest Brown Babcock Papers, TBL; JHB, Journal of the History of Biology; JAJ, James Angus Jenkins Papers, TBL; RG, Rockefeller Foundation Archives, Sleepy Hollow, NY, http://www.rockarch.org/collections/rf/; TBL, The Bancroft Library, University of California, Berkeley; UC, University of California; UCGD, University of California, Berkeley, Genetics Department, APS. Interviews with G. Ledyard Stebbins are transcribed and in the author’s possession. 1. “Division of Genetics: Report to the Director of the Experiment Station, 11 June 1913,” EBB, Folder The Division of Genetics of the Department of Agriculture. -
The Emergence of Ecology from Natural History Keith R
The emergence of ecology from natural history Keith R. Benson The modern discipline of biology was formed in the 20th century from roots deep in the natural-history tradition, which dates from Aristotle. Not surprisingly, therefore, ecology can also be traced to natural history, especially its 19th-century tradition emphasizing the adaptive nature of organisms to their environment. During the 20th century, ecology has developed and matured from pioneering work on successional stages to mathematically rich work on ecosystem energetics. By the end of the century, ecology has made a return to its natural-history heritage, emphasizing the importance of the integrity of ecosystems in considering human interactions with the environment. Today, the field of biology includes a vast array of diver- like molecular biology, ecology emerged as a distinct gent and unique subdisciplines, ranging from molecular area in biology only at the turn of the century but very biology to comparative endocrinology. With very few quickly developed its own conventions of biological exceptions, most of these specialty areas were created by discourse. Unlike molecular biology and several other biologists during the 20th century, giving modern biology biological subsciplines, ecology’s roots are buried deep its distinctive and exciting character1. However, before within natural history, the descriptive and often romantic 1900, the field was much different because even the term tradition of studying the productions of nature. biology was seldom used2. Indeed, most of those who studied the plants and animals scattered over the earth’s Perspectives on the natural world before the surface referred to themselves as naturalists: students of 20th century natural history3. -
Urban Pest Management: a Report REFERENCE COP~ for LIBRAR'l USE ONLY
This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=19809 Urban Pest Management: A Report (1980) Pages Committee on Urban Pest Management; Environmental 304 Studies Board; Commission on Natural Resources; Size National Research Council 5 x 8 ISBN 0309031257 Find Similar Titles More Information Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts FROM THE ARCHIVES Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. To request permission to reprint or otherwise distribute portions of this publication contact our Customer Service Department at 800-624-6242. Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 REFERENCE COP~ fOR LIBRAR'l USE ONLY lliQM1~ ..Nationa[ AcademJ Press The National Academy Press was created by the National Academy of Sciences to publish the reports issued by the Academy and by the National Academy of Engineering, the Institute of Medicine, and the National Research Council, all operating under the charter granted to the National Academy of Sciences by the Congress of the United States. Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 IJrbaa Pesl M aaagemeal A Report Prepared by the COMMITI'EE ON URBAN PEST MANAGEMENT Environmental Studies Board Commission on Natural Resources National Research Council ,. -
Application to the USDA-ARS LONG-TERM AGRO-ECOSYSTEM RESEARCH (LTAR) NETWORK to ESTABLISH the PLATTE RIVER – HIGH PLAINS AQUIF
Application to the USDA-ARS LONG-TERM AGRO-ECOSYSTEM RESEARCH (LTAR) NETWORK TO ESTABLISH THE PLATTE RIVER – HIGH PLAINS AQUIFER LTAR CONTACT INFORMATION: Brian Wienhold, Research Leader Tala Awada, Interim Director and Agro-ecosystem Management Research Unit Professor ARS-USDA School of Natural Resources 137 Keim Hall, East Campus University of Nebraska-Lincoln University of Nebraska-Lincoln 904 Hardin Hall, East Campus Lincoln, NE 68583 University of Nebraska-Lincoln Phone: 402-472-1484 Lincoln, NE 68583 E-mail: [email protected] Phone: 402-472-0232 E-mail: [email protected] TABLE OF CONTENTS Cover Page Table of Contents List of Acronyms Introduction ......................................................................................................................... 1-3 Goal and Objectives ....................................................................................................... 1 Overview of the High Plains Aquifer and Need for the Proposed LTAR Site ............... 1-3 Productivity ......................................................................................................................... 3-7 Partners and Participating Research Units ..................................................................... 3-5 Leadership Team ............................................................................................................ 5 Research Clusters ........................................................................................................... 5-7 Infrastructure Capacity ..................................................................................................... -
Author Index
AUTHOR INDEX Addington, J., 210 Bentley, J. R., 266 Aldrich, J. M., 256 Berryman, A. A., 259, 260, 261, 339, 340 AI-Hafidh, R., 56, 58, 59 Bess, H. A., 145 Allen, G. E., 351 Bethel, R. S., 356 Allen, H. W., 71, 85 Birch, L. C., 18, 19, 85 Allen, W. W., 276, 277 Bird, F. T., 347 Amidon, E. L., 338 Black, J. H., 353 Amitai, S., 463 Blackburn, R. D., 162 Anderson, W. H., 148 Bodenheimer, F. S., 462, 464 Andres, L. A., 148, 149 Boling, J. C., 227, 230, 231, 232, 236, 237, Andrewartha, H. G., 18, 19 238, 239, 245 Angalet, G. W., 149 Bombosch, S., 207 Applebaum, S. W., 466 Borden, J. H., 261 Argyriou, L. C., 190 Bowen, W. R., 277 Asquith, D., 412 Bowery, T. G., 299 Auer, C., 98 Box, H. E., 85 Avidov, Z., 460, 461 Bradley, J. R., 306 Axelrod, D. J., 264 Braun, A. F., 283 Ayre, G. L., 264 Bravenboer, L., 196 Brazzel, J. R., 351 Brimblecrombe, A. R., 228 Britton, D. W., ~89 Bailey, J. C., 227, 239 Broodryk, S., 48, 177 Bailey, V. A., 27,32,33,97,98,99, 100, Brooks, W. M., 297 101, 103 Browne, L. E., 340 Balch, R. E., 256, 347 Brownlee, R. G., 340 Barr, W. F., 266, 267 Buckner, C. H., 104 Bartlett, B. R., 115, 127, 132, 136, 168, Bullock, H. R., 351, 353 269,270,271,448,449,450 Burges, H. D., 349, 350 Bedard, W. D., Jr., 258, 340 Burkhardt, C. C., 278 Bedard,.W. -
Females to Host Plant Volatiles
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University OLFACTORY RESPONSES OF DASINEURA DIELSI RÜBSAAMEN (DIPTERA: CECIDOMYIIDAE) FEMALES TO HOST PLANT VOLATILES Town M.J. KOTZE Cape of Thesis presented for the Degree of DOCTOR OF PHILOSOPHY Universityin the Department of Zoology of UNIVERSITY OF CAPE TOWN June 2012 Dedicated to Town my mother, Hester WJ Kotze 5 April 1927 – 4 June 2011 Cape of University ii ACKNOWLEDGEMENTS There are several people without whom this thesis and the work it describes would not have been possible at all. It gives me great pleasure to thank all those people who have contributed towards the successful completion of this work. My sincere thanks go to Prof. John Hoffman, my supervisor for this project. John, I arrived on your doorstep with a slightly out-of-the-ordinary story, and you took me on as a student. I am grateful that you were my supervisor. Thank you for giving me freedom to work my project in my own personal style, but at the same time growing my skills as researcher. Thanks for allowing me to investigate some of the side paths that inevitably presented itself, andTown at the same time reminding me of the “storyline”. Thanks specifically for your excitement when I reported the results as it became unveiled; your enthusiasm fuelled my own excitement.Cape of To Dr. -
Community Concepts in Plant Ecology: from Humboldtian Plant Geography to the Superorganism and Beyond
Nicolson, M. (2013) Community concepts in plant ecology: from Humboldtian plant geography to the superorganism and beyond. Web Ecology, 13. pp. 95-102. ISSN 2193-3081 Copyright © 2013 The Author http://eprints.gla.ac.uk/92864 Deposited on: 01 April 2014 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Web Ecol., 13, 95–102, 2013 www.web-ecol.net/13/95/2013/ doi:10.5194/we-13-95-2013 © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Web Ecology Community concepts in plant ecology: from Humboldtian plant geography to the superorganism and beyond M. Nicolson Centre for the History of Medicine, School of Social and Political Sciences, University of Glasgow, Glasgow, G12 8RT, UK Correspondence to: M. Nicolson ([email protected]) Received: 12 March 2013 – Revised: 7 November 2013 – Accepted: 21 November 2013 – Published: 13 December 2013 Abstract. The paper seeks to provide an introduction to, and review of, the history of concepts of the plant community. Eighteenth-century naturalists recognised that vegetation was distributed geographically and that different species of plants and animals were interconnected in what would later be called ecological relation- ships. It was not, however, until the early nineteenth century that the study of vegetation became a distinctive and autonomous form of scientific inquiry. Humboldt was the first to call communities of plants “associa- tions”. His programme for the empirical study of plant communities was extended by many European and North American botanists, throughout the nineteenth and into the twentieth century. There developed an al- most complete consensus among ecologists that vegetation was made up of natural communities, discrete entities with real boundaries. -
Dispersal and Foraging Behaviour of Platygaster Californica: Hosts Can't Run, but They Can Hide
Ecological Entomology (2006) 31, 298–306 Dispersal and foraging behaviour of Platygaster californica : hosts can’t run, but they can hide ANTHONY DARROUZET-NARDI 1 , MARTHA F . HOOPES 2 , JESSE D . WALKER 3 and CHERYL J . BRIGGS 4 1 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, U.S.A. ; 2 Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts, U.S.A. ; 3 Department of Biology, Utah State University, Logan, Utah, U.S.A. ; 4 Department of Integrative Biology, University of California, Berkeley, California, U.S.A. Abstract. 1. Host – parasitoid models often identify foraging behaviour and dispersal distance as important for system persistence. 2. Laboratory observations and field trials were used to characterise foraging behaviour and dispersal capability of Platygaster californica Ashmead (Platygasteridae), a parasitoid of the gall midge Rhopalomyia californica Felt (Cecidomyiidae). 3. Although foraging parasitoids meticulously searched plants in laboratory observations, none of the laboratory trials resulted in 100% parasitism, and the proportion of parasitism declined as midge egg density increased. 4. The field trials showed that the distribution of parasitism over distance from a central release point was hump-shaped, as predicted by a simple diffusion model. Mean parasitoid dispersal distance was 4.5 m, considerably farther than the 1.7 m mean midge dispersal found in previous work. 5. Although the parasitoid appears to search thoroughly for midge eggs and to disperse farther than the midge, the results of this study show how this host – parasitoid system may persist due to spatially variable incomplete parasitism. Key words . Gall midge , host – parasitoid interaction , inverse density dependence , persistence , Rhopalomyia californica . -
Evolving Communities: How Ecology’S Succession Debate Got Started
Evolving Communities: How Ecology’s Succession Debate Got Started John Doe Biology 101 Dr. Henry Wilkens Sept. 30, 2012 http://www.bestcustomwriting.com – We Write Your Paper, You Do What You Love! A knowledge of history is necessary for anyone interested in science. Whether they want to experiment in the field, theorize in the lab, or teach in the classroom, it’s vital that scientists understand not only today’s scientific ideas, but also how all those theories came to be. The history of the succession debate in ecology is an excellent example of how knowledge of the past can help facilitate an understanding of the work being done today. The idea of succession —that plant and animal communities evolve together in a recognizable pattern—was first introduced in the late 19th century and quickly became the subject of intense debate. By looking at the work of Henry Chandler Cowles, Frederic Clement, and Arthur G. Tansley, three early ecologists, it’s possible to trace the succession debate back to its earliest roots. Cowles’s seminal work on plant community succession was done in the sand dunes that surround Lake Michigan near Chicago. He believed that plant communities were closely tied to geographic features, and when surveying the plant communities there hypothesized that “plant formations should be found which are rapidly passing into other types by reason of a changing environment” (Cowles 1899, p. 97). And indeed, that was what he found—plants communities changing to fit the environment. He further argued that “successional stages leading to the climax community—the final stage of succession—were never in a straight line, but could even regress in the normal course of events” (Kingsland 1991, p.