Community Concepts in Plant Ecology: from Humboldtian Plant Geography to the Superorganism and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Community Concepts in Plant Ecology: from Humboldtian Plant Geography to the Superorganism and Beyond Nicolson, M. (2013) Community concepts in plant ecology: from Humboldtian plant geography to the superorganism and beyond. Web Ecology, 13. pp. 95-102. ISSN 2193-3081 Copyright © 2013 The Author http://eprints.gla.ac.uk/92864 Deposited on: 01 April 2014 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Web Ecol., 13, 95–102, 2013 www.web-ecol.net/13/95/2013/ doi:10.5194/we-13-95-2013 © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Web Ecology Community concepts in plant ecology: from Humboldtian plant geography to the superorganism and beyond M. Nicolson Centre for the History of Medicine, School of Social and Political Sciences, University of Glasgow, Glasgow, G12 8RT, UK Correspondence to: M. Nicolson ([email protected]) Received: 12 March 2013 – Revised: 7 November 2013 – Accepted: 21 November 2013 – Published: 13 December 2013 Abstract. The paper seeks to provide an introduction to, and review of, the history of concepts of the plant community. Eighteenth-century naturalists recognised that vegetation was distributed geographically and that different species of plants and animals were interconnected in what would later be called ecological relation- ships. It was not, however, until the early nineteenth century that the study of vegetation became a distinctive and autonomous form of scientific inquiry. Humboldt was the first to call communities of plants “associa- tions”. His programme for the empirical study of plant communities was extended by many European and North American botanists, throughout the nineteenth and into the twentieth century. There developed an al- most complete consensus among ecologists that vegetation was made up of natural communities, discrete entities with real boundaries. However, there was little agreement about the nature of the putative unit or how it should be classified. Gleason advanced the alternative view that vegetation was an assemblage of individual plants, with each species being distributed according to its own physiological requirements and competitive interactions. This debate was never wholly resolved and the divergent opinions can be discerned within early ecosystem theory. 1 Introduction These are issues that have occupied botanists and ecologists since vegetation first began to be studied systematically. This paper aims to provide a historical overview of the concept of Vegetation has always been an important aspect of human- the plant community, from its background before Humboldt, ity’s experience. We can assume that, from the earliest times, until the development of systems ecology in the latter half of a coherent and communicable classification of plant cover the twentieth century. was an essential aid to successful food gathering, hunting and the choosing of sites for agriculture. Words which iden- tify features of the Earth’s plant cover are in common use. 2 The eighteenth-century background Terms such as moor, heath, machair, tiaga, steppe, maquis, and many more, refer to familiar and apparently distinc- Early in the 18th century, Richard Bradley, professor of tive collective groupings of plants, to types of vegetation. botany at the University of Cambridge, noted that each It was not, however, until the early nineteenth century that species of insect tended to feed only upon a particular species plant communities became objects of scientific investigation. of plant (Bradley, 1718, p. 3, 58–59; Egerton, 1973). Like Alexander von Humboldt was the first explicitly to recom- many of his contemporaries, Bradley realised that differ- mend to botanists the study of what he termed “socially or- ent species of plants and animals were interconnected in ganized plant life” (von Humboldt and Bonpland, 1807, p. 7, what would later be called ecological relationships. Gilbert 2009, p. 67). But on what sort of unit should the study of White’s The Natural History of Selborne, published in 1789, vegetation be based? How could it be characterised and dis- is a classic expression of this recognition of the interdepen- tinguished from other groups? How extensive should it be? dence of species within the “oeconomy of nature” (White, Published by Copernicus Publications on behalf of the European Ecological Federation (EEF). 96 M. Nicolson: Community concepts in plant ecology 1789). Similar ideas had, however, already been well devel- 3 Alexander von Humboldt and the origins of oped in the earlier work of Carl Linnaeus (Egerton, 2007). vegetational geography As a widely travelled, practical collector of plants, Lin- naeus knew that plant species tended to grow in characteris- However, it was the work of one of Willdenow’s students tic “stations”, a concept broadly similar to the modern idea that established the study of vegetation as a distinctive and of “habitat” (Linnaeus, 1762; Limoges, 1972). He observed, autonomous form of scientific inquiry (Nicolson, 1987). In moreover, that groups of different species tend to be found 1793, Alexander von Humboldt first set out the programme growing together in similar situations, as in his famous floris- for a new form of plant geography, which was distinctively tic characterisations of the bog and marsh vegetation of Scan- different from the floristic studies of the Linnean tradition. dinavia (Du Rietz, 1957). Linnaeus also described the zona- He argued that botanists should not confine themselves to the tion of vegetation around the shores of lakes, and noted how, study of descriptive taxonomy and nomenclature, nor should over time, the plants of one zone replaced those of another. they be preoccupied with the distribution of individual plant Both Linnaeus and Albrecht von Haller described the alti- species. The central concern of the plant geographer should tudinal zonation of vegetation on the slopes of mountains be, by contrast, the collective phenomena of vegetation: (Browne, 1983). Observation of individual parts of trees or grass Eighteenth-century naturalists were, thus, well aware that is by no means to be considered plant geography; vegetation was distributed geographically and that species rather plant geography traces the connections and were interdependent upon one another. Botanists frequently relations by which all plants are bound together found it convenient to refer to vegetational features, em- among themselves, designates in what lands they ploying layperson’s terminology for this purpose. Such ref- are found, in what atmospheric conditions they live erences were often quite specific. Linnaeus, for example, in (von Humboldt, 1793, p. 9–10; Hartshorne, 1958, his Philosophia Botanica of 1751 distinguished twenty-five p. 100). different plant habitats and gave the genera characteristic of each one (Moss, 1910, p. 27). He was often very perceptive Fourteen years later, Humboldt published a fuller outline in his remarks on the distribution of vegetation. But all his of the new plant geography, the Essai sur la géographie observations on vegetation in this context were made as an des plantes (von Humboldt and Bonpland, 1807, 2009). adjunct to his concerns in plant collecting and systematics – The Essai contains an elaborate engraving, entitled Tableau they were secondary to his floristic activities. Reference to physique des Andes et pays voisins, which depicts a cross- vegetational features allowed him to specify more accurately sectional profile of the Andes, from coast to coast. In this pic- the species he was describing and where it was to be found. ture are mapped or tabulated: which plant and animal species Around the turn of the eighteenth century, the German live where, where the altitudinal zones of vegetation begin botanist Karl Ludwig Willdenow made observations of, and and end, the underlying geological structures, and physical theorised about, the relationship between climate and the ge- or meteorological data. The object was to give, in a single il- ography of plants (1792, 1805, p. 337). His Principles of lustration, a complete impression of a natural vegetational re- Botany contained much fine observation of vegetation. There gion – the “régions équinoctiales” of South America (Nicol- was, for instance, a perceptive account of what was later to son, 1996a). be termed “plant succession”: The Tableau physique also represented more local differ- entiation. Within the “régions équinoctiales” were found, The decay of these mosses and smaller plants pro- high on the mountains, a “région des lichens” and, lower duces, by degrees, a thin stratum of earth, which down, a “région des Cinchona”. These smaller sorts of veg- increases with years, and now even allows some etational region were characterised by physiognomic life shrubs and trees to grow in it, till finally, after forms, by the general appearance and habit of growth of a long series of years, where once naked barren the constituent plants. For example, “régions des lichens” rocks stood, larger forests with their magnificent were distinguishable by the obvious profusion of a number branches delight the wanderer’s eye (Willdenow, of species, all with the same lichenous life form. The study of 1805, p. 393–394). plant physiognomy was an important feature of Humboldt’s Willdenow also described the corresponding successional botanical enterprise and was one of the most decisive ways in process which begins with open water. But, like Linnaeus, which he departed from Linnaean taxonomic methods. Clas- Willdenow did not investigate vegetation for its own sake. sification of vegetation by life form was essentially indepen-
Recommended publications
  • Redacted for Privacy Abstract Approved: Mary Jo Nye
    AN ABSTRACT OF THE THESIS OF Linda Hahn for the degree of Master of Science in History of Science presented on February 4. 2000. Title: In the Midst of a Revolution: Science, Fish Culture and the Oregon Game Commission. 1935-1949. Redacted for privacy Abstract approved: Mary Jo Nye This thesis will address the transformation of biological sciences during the 1930s and 1940s and it effects on fisheries science. It will focus on Oregon State College and specifically the Department of Fish and Game Management and the interaction with the Oregon Game Commission. Support for mutation theory and neo- Lamarckism lasted throughout this study's time frame. The resulting belief that the environment can directly affect species fitness could have been a factor in fisheries managers' support for fish hatcheries. Throughout this time frame the science of ecology was emerging, but the dominant science of agricultural breeding science within wildlife management took precedence over ecology. Two case studies show changing ideas about agricultural breeding science as applied to wildlife management. In the first case study, the debate concerning fishways over Bonneville Dam shows that fish hatcheries were counted on to mitigate the loss of salmon habitat due to construction, and to act as a failsafe should the fishways fail. When the 1934 Oregon Game Commission members failed to enthusiastically support the construction of the dam and the fishway plans, this thesis argues that the commission members were dismissed in 1935. The second case study addresses the actions of the Oregon Game Commission in placing some high dams on tributaries of the Willameue River, the Willamette Valley project.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Biological Soil Crust Rehabilitation in Theory and Practice: an Underexploited Opportunity Matthew A
    REVIEW Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited Opportunity Matthew A. Bowker1,2 Abstract techniques; and (3) monitoring. Statistical predictive Biological soil crusts (BSCs) are ubiquitous lichen–bryo- modeling is a useful method for estimating the potential phyte microbial communities, which are critical structural BSC condition of a rehabilitation site. Various rehabilita- and functional components of many ecosystems. How- tion techniques attempt to correct, in decreasing order of ever, BSCs are rarely addressed in the restoration litera- difficulty, active soil erosion (e.g., stabilization techni- ture. The purposes of this review were to examine the ques), resource deficiencies (e.g., moisture and nutrient ecological roles BSCs play in succession models, the augmentation), or BSC propagule scarcity (e.g., inoc- backbone of restoration theory, and to discuss the prac- ulation). Success will probably be contingent on prior tical aspects of rehabilitating BSCs to disturbed eco- evaluation of site conditions and accurate identification systems. Most evidence indicates that BSCs facilitate of constraints to BSC reestablishment. Rehabilitation of succession to later seres, suggesting that assisted recovery BSCs is attainable and may be required in the recovery of of BSCs could speed up succession. Because BSCs are some ecosystems. The strong influence that BSCs exert ecosystem engineers in high abiotic stress systems, loss of on ecosystems is an underexploited opportunity for re- BSCs may be synonymous with crossing degradation storationists to return disturbed ecosystems to a desirable thresholds. However, assisted recovery of BSCs may trajectory. allow a transition from a degraded steady state to a more desired alternative steady state. In practice, BSC rehabili- Key words: aridlands, cryptobiotic soil crusts, cryptogams, tation has three major components: (1) establishment of degradation thresholds, state-and-transition models, goals; (2) selection and implementation of rehabilitation succession.
    [Show full text]
  • Nomenclatural Studies Toward a World List of Diptera Genus-Group Names
    Nomenclatural studies toward a world list of Diptera genus-group names. Part V Pierre-Justin-Marie Macquart Evenhuis, Neal L.; Pape, Thomas; Pont, Adrian C. DOI: 10.11646/zootaxa.4172.1.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Evenhuis, N. L., Pape, T., & Pont, A. C. (2016). Nomenclatural studies toward a world list of Diptera genus- group names. Part V: Pierre-Justin-Marie Macquart. Magnolia Press. Zootaxa Vol. 4172 No. 1 https://doi.org/10.11646/zootaxa.4172.1.1 Download date: 02. Oct. 2021 Zootaxa 4172 (1): 001–211 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4172.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:22128906-32FA-4A80-85D6-10F114E81A7B ZOOTAXA 4172 Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part V: Pierre-Justin-Marie Macquart NEAL L. EVENHUIS1, THOMAS PAPE2 & ADRIAN C. PONT3 1 J. Linsley Gressitt Center for Entomological Research, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA. E-mail: [email protected] 2 Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark. E-mail: [email protected] 3Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Whitmore: 15 Aug. 2016; published: 30 Sept. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 NEAL L.
    [Show full text]
  • Clear-Cutting Thrown Into Sharp Relief
    264 Clear-Cutting thrown into sharp relief. Nonetheless, the effect to a new tree species through planting or seeding; of the NPDES program is visible in the dramatic to provide forest habitat for species that rely upon recovery of Lake Erie water qua lity and fisheries, edge and high-density, even-aged stands; and to the improvement of previously dead rivers in the mimic the effects of large-scale, catastrophic wild­ industrial northeast, and the drive to develop the fires or hurricanes. technology that allows polluters to meet or exceed Conservationists, on the other hand, point to the required effluent reductions. detrimental effects of clear-cutting, since the prac­ tice can result in fragmented landscapes, landslides, SEE AL SO: Nutrients (as contaminants of water); Pollu­ increases in flamma ble "slash" left on forest floors, tion, Sewage and Sewer Systems; Total Maximum Daily watershed degradation, habitat degradation and Loads (TMDLs); Water; Water Law; Wetlands; Wetlands loss, soil erosion, soil temperature increases, aes­ Mitigation. thetic blight, species extinction, and loss of a forest's age and species diversity. BIBLIOGRAPHY. Robert Adler, Jessica Landman, and Diane Cameron, The Clean Water Act 20 Years Later DOMINANT METHOD OF LOGGING (Island Press, 1993); Robin Kundis Craig, Clean Water Act and the Constitution (Environmental Law Institute, Clear-cutting, while financially efficient, a useful 2004); Mark Ryan, The Clean Water Act Handbook management tool, and historically a standard prac­ (American Bar Association, 2004). tice, is often applied to forests that do not benefit from the practice. During the 1970s, it is estimated MORGAN ROBERTSON that clear-cutting took place on more than 250,000 UNIVERSITY OF KENTUCKY acres each year, or an acre every two minutes.
    [Show full text]
  • BIOLOGICAL CONTROL of the BLACK CUTWORM, <Em>AGROTIS IPSILON</Em> (LEPIDOPTERA: NOCTUIDAE), and ENDOPHYTE MEDIATED T
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 BIOLOGICAL CONTROL OF THE BLACK CUTWORM, AGROTIS IPSILON (LEPIDOPTERA: NOCTUIDAE), AND ENDOPHYTE MEDIATED TRITROPHIC INTERACTIONS IN TURFGRASS Andrea Jeanne Bixby-Brosi University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Bixby-Brosi, Andrea Jeanne, "BIOLOGICAL CONTROL OF THE BLACK CUTWORM, AGROTIS IPSILON (LEPIDOPTERA: NOCTUIDAE), AND ENDOPHYTE MEDIATED TRITROPHIC INTERACTIONS IN TURFGRASS" (2011). University of Kentucky Doctoral Dissertations. 183. https://uknowledge.uky.edu/gradschool_diss/183 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andrea Jeanne Bixby-Brosi The Graduate School University of Kentucky 2011 BIOLOGICAL CONTROL OF THE BLACK CUTWORM, AGROTIS IPSILON (LEPIDOPTERA: NOCTUIDAE), AND ENDOPHYTE MEDIATED TRITROPHIC INTERACTIONS IN TURFGRASS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andrea Jeanne Bixby-Brosi Lexington, Kentucky Director: Dr. Daniel A. Potter, Professor of Entomology Lexington, Kentucky 2011 Copyright © Andrea Jeanne Bixby-Brosi 2011 ABSTRACT OF DISSERTATION BIOLOGICAL CONTROL OF THE BLACK CUTWORM, AGROTIS IPSILON (LEPIDOPTERA: NOCTUIDAE), AND ENDOPHYTE MEDIATED TRITROPHIC INTERACTIONS IN TURFGRASS Components of successful pest management programs must be complementary and not antagonistic. This project examined interactions between natural enemies of the black cutworm, Agrotis ipsilon (Hufnagel), an important turfgrass pest, and host plant resistance by endophytic grass.
    [Show full text]
  • Glossary and Acronyms Glossary Glossary
    Glossary andChapter Acronyms 1 ©Kevin Fleming ©Kevin Horseshoe crab eggs Glossary and Acronyms Glossary Glossary 40% Migratory Bird “If a refuge, or portion thereof, has been designated, acquired, reserved, or set Hunting Rule: apart as an inviolate sanctuary, we may only allow hunting of migratory game birds on no more than 40 percent of that refuge, or portion, at any one time unless we find that taking of any such species in more than 40 percent of such area would be beneficial to the species (16 U.S.C. 668dd(d)(1)(A), National Wildlife Refuge System Administration Act; 16 U.S.C. 703-712, Migratory Bird Treaty Act; and 16 U.S.C. 715a-715r, Migratory Bird Conservation Act). Abiotic: Not biotic; often referring to the nonliving components of the ecosystem such as water, rocks, and mineral soil. Access: Reasonable availability of and opportunity to participate in quality wildlife- dependent recreation. Accessibility: The state or quality of being easily approached or entered, particularly as it relates to complying with the Americans with Disabilities Act. Accessible facilities: Structures accessible for most people with disabilities without assistance; facilities that meet Uniform Federal Accessibility Standards; Americans with Disabilities Act-accessible. [E.g., parking lots, trails, pathways, ramps, picnic and camping areas, restrooms, boating facilities (docks, piers, gangways), fishing facilities, playgrounds, amphitheaters, exhibits, audiovisual programs, and wayside sites.] Acetylcholinesterase: An enzyme that breaks down the neurotransmitter acetycholine to choline and acetate. Acetylcholinesterase is secreted by nerve cells at synapses and by muscle cells at neuromuscular junctions. Organophosphorus insecticides act as anti- acetyl cholinesterases by inhibiting the action of cholinesterase thereby causing neurological damage in organisms.
    [Show full text]
  • Methodstocharacterizeh
    WARNING: These printed materials may be out of date. Please ensure you have the current version that can be found on www.nyc.gov/oec. METHODS TO CHARACTERIZE HABITAT The following are some methods that can be employed to characterize habitat: ECOLOGICAL COMMUNITIES ANALYSIS Every detailed natural resources evaluation should incorporate an ecological community analysis. This consists of identifying, describing, and mapping the community types present within the project area. The characterization of ecological communities is primarily based on vegetative types, but it may also consider abiotic factors and wildlife usage. Descriptions of ecological communities should generally follow Ecological Communities of New York State. In some cases, the dominant plant species listed in the community descriptions contained in this document may differ from the matching urban commu- nities found in New York City. Descriptions of the various plant communities can vary widely with re- spect to the species composition in New York City. It is important to note that all species listed under a particular plant community composition are not required to be present at each location to classify that particular plant community. Rather, each location must be viewed in context with the potential altered elements of the system, such as, past site disturbances, filling and depletion of soils and hydro- logic alterations to the site and adjacent areas that influence the vegetation composition. Therefore, relation to the these changes and additional collection of field data with respect to dominant and co- dominant vegetation, understory species composition, soils, and hydrology provides additional infor- mation as to the appropriate ecological community classification.
    [Show full text]
  • Chapter 27: Ecology and Plant Communities
    Chapter 27 Ecology and Plant Communities THE NATURE OF PLANT COMMUNITIES Each Plant Community Has Unique Attributes Plant Communities Change over Time VEGETATION TYPES Tundra Vegetation Occurs beyond Timberline Boreal Forest Is the Taiga of North America Eastern Deciduous Forest Has a Complex Physiognomy Grasslands Cover One-Fifth of North America Desert Scrub Is Dominated by Shrubs Chaparral and Woodland Are Mediterranean Vegetation Types Pacific Coast Conifer Forests Are the Most Massive in the World Upland Conifer Forests Have a Wide Distribution Wetlands and Aquatic Ecosystems Are Productive CONSERVATION BIOLOGY Ecosystem Restoration SUMMARY PLANTS, PEOPLE, AND THE ENVIRONMENT: Nature in Flux or Nature in Balance? 1 KEY CONCEPTS 1. A plant community is a group of recurring species that: share a characteristic habitat; collectively create a unique physiognomy; attain a typical range of species richness, annual productivity, and standing biomass; and through which nutrients and energy pass at predictable rates and with predictable efficiency. North America contains thousands of plant communities. 2. A vegetation type is composed of many communities that differ only in the identity of dominant or associated species, or both, but that otherwise share a similar physiognomy and environment. Two-thirds of North America is covered by only three major vegetation types: boreal forest, grassland, and tundra. 3. Successional plant communities change over time, whereas climax plant communities do not show any directional change, although they may fluctuate from year to year. 4. Conservation biology is a relatively new science that investigates ways to preserve, restore, and maintain biotic diversity in the face of human exploitation of natural ecosystems.
    [Show full text]
  • Plant Community Variability in Ponderosa Pine Forest Has
    RESEARCH ARTICLE ABSTRACT: Ponderosa pine plant community and forest structure were compared among three staI)ds in Grand Canyon National Park, Arizona: one stand had 120 years of artificial fire exclusion (NOBURN) and the other two nearby stands had been frequently burned (BURN-E and BURN-W). These forests are valuable places to gauge-anthropogenic changes associated· with European settlement, due to· their land history of limited livestock grazing and no logging. Precipitation varied greatly between sampling years (260 mm in 2000, 505 mm in 2001). Tree density was significantly higher at NOBURN (1424 • trees ha-1) with significantly higher rotten coarse woody debris (23.2 Mg ha-1) and duff depth (4.3 cm) than at the burned sites, as expected in the absence of fire. Although species richness was not signifi­ Plant Community cantly different among sites (48-89 species), richness differed significantly by year. Shannon's index of diversity increased by approximately 10% from the dry year to the wet year on all sites. Community composition and plant cover at NOBURN differed significantly from the two burned sites in both years Variability in in non-metric multidimensional scaling ordinations. Increasing duff depth was related to decreased plant cover. Two of the three dominant species were different at the fire-excluded site compared to the burned sites. We conclude that although plant community structure was related to fire history, environmental Ponderosa stress and within-stand variability were also important drivers. We suggest selecting reference sites in close proxinlity to the site to be restored and using a multi-scale, multi-year, multi-site approach to Pine Forest Has measure reference conditions in ponderosa pine.
    [Show full text]
  • The “Plant Drosophila”: E. B. Babcock, the Genus Crepis, and the Evolution of a Genetics Research Program at Berkeley, 1915–1947
    HSNS3903_02 6/26/09 11:04 AM Page 300 ∗ VASSILIKI BETTY SMOCOVITIS The “Plant Drosophila”: E. B. Babcock, the Genus Crepis, and the Evolution of a Genetics Research Program at Berkeley, 1915–1947 The student of genetics must be ready to resort to the use of any living organism that gives promise of revealing the natural laws upon which the future science of breeding will be grounded. E. B. Babcock, 19131 The Crepis investigations carried on by the Babcock group are the American evolutionary investigations that seem to have attracted the largest attention outside of America next to the Drosophila investigations. One reason for this is their wider systematical aspect. Jens Clausen, 19342 *Departments of Zoology and History, Affiliate in Botany, University of Florida, Bartram Hall, Gainesville, FL 32611; [email protected]fl.edu, [email protected]fl.edu. The following abbreviations are used: APS, American Philosophical Society Library, Philadel- phia, PA; CAS, California Academy of Sciences, San Francisco, CA; CIW, Carnegie Institution of Washington; CP, Carnegie Papers, Missouri Botanical Garden Archives, St. Louis, MO; EBB, Ernest Brown Babcock Papers, TBL; JHB, Journal of the History of Biology; JAJ, James Angus Jenkins Papers, TBL; RG, Rockefeller Foundation Archives, Sleepy Hollow, NY, http://www.rockarch.org/collections/rf/; TBL, The Bancroft Library, University of California, Berkeley; UC, University of California; UCGD, University of California, Berkeley, Genetics Department, APS. Interviews with G. Ledyard Stebbins are transcribed and in the author’s possession. 1. “Division of Genetics: Report to the Director of the Experiment Station, 11 June 1913,” EBB, Folder The Division of Genetics of the Department of Agriculture.
    [Show full text]
  • The Emergence of Ecology from Natural History Keith R
    The emergence of ecology from natural history Keith R. Benson The modern discipline of biology was formed in the 20th century from roots deep in the natural-history tradition, which dates from Aristotle. Not surprisingly, therefore, ecology can also be traced to natural history, especially its 19th-century tradition emphasizing the adaptive nature of organisms to their environment. During the 20th century, ecology has developed and matured from pioneering work on successional stages to mathematically rich work on ecosystem energetics. By the end of the century, ecology has made a return to its natural-history heritage, emphasizing the importance of the integrity of ecosystems in considering human interactions with the environment. Today, the field of biology includes a vast array of diver- like molecular biology, ecology emerged as a distinct gent and unique subdisciplines, ranging from molecular area in biology only at the turn of the century but very biology to comparative endocrinology. With very few quickly developed its own conventions of biological exceptions, most of these specialty areas were created by discourse. Unlike molecular biology and several other biologists during the 20th century, giving modern biology biological subsciplines, ecology’s roots are buried deep its distinctive and exciting character1. However, before within natural history, the descriptive and often romantic 1900, the field was much different because even the term tradition of studying the productions of nature. biology was seldom used2. Indeed, most of those who studied the plants and animals scattered over the earth’s Perspectives on the natural world before the surface referred to themselves as naturalists: students of 20th century natural history3.
    [Show full text]