Urban Pest Management: a Report REFERENCE COP~ for LIBRAR'l USE ONLY

Total Page:16

File Type:pdf, Size:1020Kb

Urban Pest Management: a Report REFERENCE COP~ for LIBRAR'l USE ONLY This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=19809 Urban Pest Management: A Report (1980) Pages Committee on Urban Pest Management; Environmental 304 Studies Board; Commission on Natural Resources; Size National Research Council 5 x 8 ISBN 0309031257 Find Similar Titles More Information Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts FROM THE ARCHIVES Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. To request permission to reprint or otherwise distribute portions of this publication contact our Customer Service Department at 800-624-6242. Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 REFERENCE COP~ fOR LIBRAR'l USE ONLY lliQM1~ ..Nationa[ AcademJ Press The National Academy Press was created by the National Academy of Sciences to publish the reports issued by the Academy and by the National Academy of Engineering, the Institute of Medicine, and the National Research Council, all operating under the charter granted to the National Academy of Sciences by the Congress of the United States. Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 IJrbaa Pesl M aaagemeal A Report Prepared by the COMMITI'EE ON URBAN PEST MANAGEMENT Environmental Studies Board Commission on Natural Resources National Research Council ,.. .... ~ "" ~ - NATIONAL ACADEMY PRESS 1 ill... rt'fr\..:. Washington, D.C. 1980 MAY 0 6 1981 LIBRARY Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report <;D-Q/http://www.nap.edu/catalog.php?record_id=19809 L/0 C. J NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the Councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the Committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The National Research Council was established by the National Academy of Sciences in 1916 to asaociate the broad community of science and technology with the Academy's purposes of furthering knowledge and of advising the federal government. The Council operates in accordance with general policies determined by the Academy under the authority of its congressional charter of 1863, which establishes the Academy as a private, nonprofit, self-governing membership corporation. The Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in the conduct of their services to the government, the public, and the scientific and engineering communities. It is administered jointly by both Academies and the Institute of Medicine. The National Academy of Engineering and the Institute of Medicine were established in 1964 and 1970, respectively, under the charter of the National Academy of Sciences. This study was supported by the Oflice of Research and Development, U.S. Environmen­ tal Protection Agency, Contract No. 68-01-2430. Library of Congress Catalog Card Number 80-83966 International Standard Book Number 0-309-03125-7 Awn/able from NATIONAL ACADEMY PRESS 2101 Constitution Avenue, N.W. Washington, D.C. 20418 Printed in the United States of America Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 COMMITIEE ON URBAN PEST MANAGEMENT FRANK P. GRAD (Chairman), Columbia University School of Law RAFI AL-llAFIDH, New York City Department of Health JOHN E. DAVIES, University of Miami GoRDON W. FRANKIE, University of California, Berkeley THEODORE A. GRANOVSICY, Texas A&M University LAWRENCE E. HINICLE, JR., New York Hospital-Cornell Medical College WILLIAM B. JACICSON, Bowling Green State University HANNA LEVENSON, Veterans Administration Hospital, San Francisco ROBERT L. METCALF, University of Illinois, Champaign PHILIP J. SPEAR, National Pest Control Association, Vienna, Virginia ROSMARIE VON RUMICER, RvR Consultants, Shawnee Mission, Kansas BAILUS wALICER, JR., Department of Environmental Services, Washing- ton, D.C.; as of September 7, 1979, U.S. Occupational Safety and Health Administration W.R. ZACH WILLEY, Environmental Defense Fund BETTE WOODY' University of Maryland LAWRENCE c. WALLACE, Staff Officer ELIZABETH G. p ANOS, Administrative Assistant iii Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 ENVIRONMENTAL STUDIES BOARD DAVID PIMENTEL (Chairman), Cornell University DANIEL A. OK.UN (Vice-Chairman), University of North Carolina ALVIN ALM, Harvard University RALPH D' ARGE, University of Wyoming ALFRED M. BEETON, University of Michigan JOHN CAIRNES, JR., Virginia Polytechnic Institute JAMES A. FAY, Massachusetts Institute of Technology CHARLES H. KRUGER, JR., Stanford University KAIN. LEE, University of Washington JOSEPH T. LING, 3 M Company JAMES J. MORGAN, California Institute of Technology ALBERT J. ROSENTHAL, Columbia University School of Law CARL M. SHY, University of North Carolina RAPHAEL G. KAsPER, Executive Secretary iv Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 COMMISSION ON NATURAL RESOURCES ROBEllT M. WHITE (Chairman), University Corporation for Atmospheric Research TIMOTHY A TICESON, Steptoe and Johnson STANLEY I. AUERBACH, Oak Ridge National Laboratories NORMAN A. CoPELAND, E.I. du Pont de Nemours & Co., Inc. (retired) GEORGE K. DAVIS, University of Florida EDWARD D. GoLDBERG, Scripps Institution of Oceanography CHARLES J. MANKIN, Oklahoma Geological Survey CHESTER 0. McCoRKLE, University of California NORTON NELSON, New York University Medical Center DANIEL A. OKUN, University of North Carolina DAVID PIMENTEL, Cornell University JOHN E. TILTON, Pennsylvania State University AL VIN M. WEINBERG, Oak Ridge Associated Universities E. BRIGHT WILSON, ex officio, Harvard University WALLACE D. BoWMAN, Executive Director Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 Conlea ls FOREWORD, XV PREFACE, XVII EXECUTIVE SUMMARY, 1 INTRODUCTION, 13 Purpose of the Study, 13 Perspectives on Urban Pest Management, 17 Definition of Urban, 19 Characterization of Urban Pest Management and Some of Its Implications, 21 Contrasts Between Agricultural and Urban Pest Management, 23 Education and Urban Pest Management, 24 Critical Topics in Urban Pest Management, 25 Hazards of Pests in the Urban Environment, 25 Health Concerns Arising from Urban Pesticide Use, 27 Urban Pests and Environmental Policy, 28 Social and Psychological Concerns of Urban Pest Management, 35 Introduction to Pest Surveys, 36 vii Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 viii Contents Scope of Study, 36 Methods of Managing Urban Pests, 36 Notes, 38 References, 39 2 MAJOR URBAN PF.srs, 43 The Impact of Pests on the Human Population, 43 Pest-borne Epidemic Disease, 49 Deaths, Diseases, and Injuries Caused by Pests, 52 Painful and Annoying Assaults, 66 Effects of Urban Habitat on Exposure, 67 Common Pests in Suburban Areas and on the Fringes of Urban Areas, 67 Pests That Frequent Both Rural and Urban Areas, 68 Pests Most Commonly Found In and Around Human Dwellings, 68 Effects of Pests on the Poor, 70 Pest Resistance and Resurgence of Pest- and Vector-bome Diseases, 71 Survey of Pests, 73 Extension Service Survey, 73 Comparison of Lists from California, 73 Evaluation of Principal Pests in Dallas, Texas, 75 Evaluation of Pests by Pest Control Operators, 75 Urban Pests and Pesticide Use: Attitudes and Behavior, 86 Literature Review, 87 Attitudes and Behavior Involving Integrated Pest Management, 95 Research Priorities, 96 References, 98 3 MANAGEMENT OF URBAN PESTS, 104 Chemical Management Methods, 104 Survey of Chemical Controls, 104 Health Concerns with Chemical Management of Urban Pests, 125 Environmental Effects, 142 Alternative Management Methods, 143 Biological Control, 148 Host-Plant Resistance, 154 Copyright © National Academy of Sciences. All rights reserved. Urban Pest Management: A Report http://www.nap.edu/catalog.php?record_id=19809 Contents ix Insect Growth Regulators, 157 Genetic Manipulation, 158 Habitat Modification, 160 Cultural, Mechanical, and Physical Control of
Recommended publications
  • Population Ecology of the Multivoltine Neotropical Gall Midge Eugeniamyia Dispar (Diptera, Cecidomyiidae)
    170 MENDONÇA JR & ROMANOWSKI Population ecology of the multivoltine Neotropical gall midge Eugeniamyia dispar (Diptera, Cecidomyiidae) Milton de S. Mendonça, Jr.1,2 & Helena P. Romanowski1 1. Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bloco IV, Prédio 43435, 91501-970, Porto Alegre, RS, Brazil ([email protected]). 2. Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bloco IV, Prédio 43422, 91501-970, Porto Alegre, RS, Brazil. ABSTRACT. Our understanding of the population ecology of insect gallers is largely built on examples from temperate zones, but tropical and subtropical gallers may present distinct patterns of abundance and distribution across time. Eugeniamyia dispar Maia, Mendonça & Romanowski, 1996 is a multivoltine Neotropical cecidomyiid that induces spongy leaf galls on Eugenia uniflora(Myrtaceae). Galls were censused in the urban area of Porto Alegre, southern Brazil on six plants at two sites, for two years, at roughly weekly intervals. Overall 9,694 eggs, galling attempts and galls were counted. New galls continuously appear on developing leaves, but galls with live inducers are absent from June to at least early August. Galls on a same shoot develop synchronically, thus the shoot is probably the unit for oviposition. Given the also synchronic appearance of galls on different plants on a site, it seems midges can disperse and attack close-by plants. Gall cohorts varied in abundance by two orders of magnitude; there were more galls during summer than for spring and autumn, in a wave-like pattern.
    [Show full text]
  • University of Florida Thesis Or Dissertation
    BIOLOGICAL STUDIES ON THE GUT SYMBIONT BURKHOLDERIA ASSOCIATED WITH BLISSUS INSULARIS (HEMIPTERA: BLISSIDAE) By YAO XU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 1 © 2015 Yao Xu 2 ACKNOWLEDGMENTS I am fortunate to have been mentored by Dr. Drion Boucias during my doctoral program. His constructive criticism, guidance, and generosity of time and resources allowed me to achieve both breadth and depth in research. Without his inspirational ideas and timely feedback, this dissertation would never have been accomplished on time. I owe my deepest gratitude to my co- advisor, Dr. Eileen Buss, for her encouragement, support, and advice on my academic and personal development. I thank her for admitting me, guiding me to enter the world of Southern chinch bugs, and trusting me. I also would like to thank my other committee members, Drs. Frederick Fishel (Department of Agronomy, UF), Kevin Kenworthy (Department of Agronomy, UF), and Cindy McKenzie (United States Department of Agriculture-Agricultural Research Service). I appreciate their time, comments, and encouragement on my research and this dissertation. Many scientists and colleagues have been helpful to me during my doctoral program. First, I thank Dr. Michael Scharf (Department of Entomology, Purdue University) for his valuable comments on the detoxification enzyme work, and especially for hosting me in his laboratory in March 2014. Second, I thank Dr. Paul Linser (Whitney Laboratory for Marine Bioscience, UF) for his guidance on the confocal microscopy and allowing me to use the microscopes in his laboratory in April 2015.
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • Coast Live Oak, Quercus Agrifolia, Susceptibility and Response to Goldspotted Oak Borer, Agrilus Auroguttatus, Injury in Southern California
    G Model FORECO-12550; No. of Pages 14 ARTICLE IN PRESS Forest Ecology and Management xxx (2011) xxx–xxx Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Coast live oak, Quercus agrifolia, susceptibility and response to goldspotted oak borer, Agrilus auroguttatus, injury in southern California Tom W. Coleman a,∗, Nancy E. Grulke b,1, Miles Daly c, Cesar Godinez b, Susan L. Schilling b, Philip J. Riggan b, Steven J. Seybold d a USDA Forest Service, Forest Health Protection, 602 S. Tippecanoe Ave., San Bernardino, CA 92408, USA b USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507, USA c 1927 Goss St., Boulder, CO 80302, USA d Chemical Ecology of Forest Insects, USDA Forest Service, Pacific Southwest Research Station, 720 Olive Drive, Suite D, Davis, CA 95616, USA article info abstract Article history: Oak mortality is often associated with a complex of decline factors. We describe the morphological and Received 11 November 2010 physiological responses of coast live oak, Quercus agrifolia Née, in California to an invasive insect, the Received in revised form 6 February 2011 goldspotted oak borer (GSOB), Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), and evaluate Accepted 7 February 2011 drought as a potential inciting factor. Morphological traits of 356 trees were assessed and physiological Available online xxx traits of 70 of these were monitored intensively over one growing season. Morphological characteristics of tree health included crown thinning and dieback; bole staining resulting from larval feeding; den- Keywords: sity of GSOB adult exit holes; and holes caused by woodpecker feeding.
    [Show full text]
  • Author Index
    AUTHOR INDEX Addington, J., 210 Bentley, J. R., 266 Aldrich, J. M., 256 Berryman, A. A., 259, 260, 261, 339, 340 AI-Hafidh, R., 56, 58, 59 Bess, H. A., 145 Allen, G. E., 351 Bethel, R. S., 356 Allen, H. W., 71, 85 Birch, L. C., 18, 19, 85 Allen, W. W., 276, 277 Bird, F. T., 347 Amidon, E. L., 338 Black, J. H., 353 Amitai, S., 463 Blackburn, R. D., 162 Anderson, W. H., 148 Bodenheimer, F. S., 462, 464 Andres, L. A., 148, 149 Boling, J. C., 227, 230, 231, 232, 236, 237, Andrewartha, H. G., 18, 19 238, 239, 245 Angalet, G. W., 149 Bombosch, S., 207 Applebaum, S. W., 466 Borden, J. H., 261 Argyriou, L. C., 190 Bowen, W. R., 277 Asquith, D., 412 Bowery, T. G., 299 Auer, C., 98 Box, H. E., 85 Avidov, Z., 460, 461 Bradley, J. R., 306 Axelrod, D. J., 264 Braun, A. F., 283 Ayre, G. L., 264 Bravenboer, L., 196 Brazzel, J. R., 351 Brimblecrombe, A. R., 228 Britton, D. W., ~89 Bailey, J. C., 227, 239 Broodryk, S., 48, 177 Bailey, V. A., 27,32,33,97,98,99, 100, Brooks, W. M., 297 101, 103 Browne, L. E., 340 Balch, R. E., 256, 347 Brownlee, R. G., 340 Barr, W. F., 266, 267 Buckner, C. H., 104 Bartlett, B. R., 115, 127, 132, 136, 168, Bullock, H. R., 351, 353 269,270,271,448,449,450 Burges, H. D., 349, 350 Bedard, W. D., Jr., 258, 340 Burkhardt, C. C., 278 Bedard,.W.
    [Show full text]
  • Females to Host Plant Volatiles
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University OLFACTORY RESPONSES OF DASINEURA DIELSI RÜBSAAMEN (DIPTERA: CECIDOMYIIDAE) FEMALES TO HOST PLANT VOLATILES Town M.J. KOTZE Cape of Thesis presented for the Degree of DOCTOR OF PHILOSOPHY Universityin the Department of Zoology of UNIVERSITY OF CAPE TOWN June 2012 Dedicated to Town my mother, Hester WJ Kotze 5 April 1927 – 4 June 2011 Cape of University ii ACKNOWLEDGEMENTS There are several people without whom this thesis and the work it describes would not have been possible at all. It gives me great pleasure to thank all those people who have contributed towards the successful completion of this work. My sincere thanks go to Prof. John Hoffman, my supervisor for this project. John, I arrived on your doorstep with a slightly out-of-the-ordinary story, and you took me on as a student. I am grateful that you were my supervisor. Thank you for giving me freedom to work my project in my own personal style, but at the same time growing my skills as researcher. Thanks for allowing me to investigate some of the side paths that inevitably presented itself, andTown at the same time reminding me of the “storyline”. Thanks specifically for your excitement when I reported the results as it became unveiled; your enthusiasm fuelled my own excitement.Cape of To Dr.
    [Show full text]
  • Insecticide Susceptibility of the Adult Darkling Beetle, Alphitobius
    INSECTICIDE SUSCEPTIBILITY OF THE ADULT DARKLING BEETLE, ALPHITOBIUS DIAPERINUS (COLEOPTERA: TENEBRIONIDAE): TOPICAL TREATMENT WITH BIFENTHRIN, IMIDACLOPRID, AND SPINOSAD by WHITNEY ELIZABETH BOOZER (Under the Direction of Nancy C. Hinkle) ABSTRACT Alphitobius diaperinus is a worldwide pest of poultry. Loss of insecticide susceptibility has been observed in darkling beetle populations worldwide. Topical bioassays were performed using technical grade spinosad (90% active ingredient by weight), bifenthrin (94.88% active ingredient by weight), and imidacloprid (95% active ingredient by weight) to determine susceptibility status of beetle populations in Georgia. LD50s were determined and compared to the LD50 of a susceptible laboratory colony to ascertain resistance ratios. A discriminating dose based on the LD99.9 of the susceptible population (Denmark) was also estimated. Varying levels of resistance to bifenthrin and imidacloprid were observed, with highest resistance occurring to imidacloprid (>3000-fold). Populations treated with spinosad showed only slight tolerance. Data indicate that resistance to bifenthrin is occurring in populations with prior pyrethroid exposure, and that efficacy of imidacloprid may be severely limited due to significant resistance occurring in beetle populations. INDEX WORDS: Alphitobius diaperinus, darkling beetle, insecticide resistance, bifenthrin, spinosad, imidacloprid, broiler house, topical application INSECTICIDE SUSCEPTIBILITY OF THE ADULT DARKLING BEETLE, ALPHITOBIUS DIAPERINUS (COLEOPTERA: TENEBRIONIDAE):
    [Show full text]
  • Mechanisms of Cabbage Seedpod Weevil Resistance
    University of Alberta Mechanisms of cabbage seedpod weevil, Ceutorhynchus obstrictus , resistance associated with novel germplasm derived from Sinapis alba x Brassica napus by James Allen Tansey A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science Department of Agricultural, Food and Nutritional Sciences ©James Allen Tansey Fall, 2009 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. University of Alberta Faculty of Graduate Studies and Research The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled ‘Mechanisms of cabbage seedpod weevil, Ceutorhynchus obstrictus resistance associated with novel germplasm derived from Sinapis alba x Brassica napus ’ submitted by James A. Tansey in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Agricultural, Food and Nutritional Science. Examining Committee Dr. Lloyd M. Dosdall, Agricultural, Food and Nutritional Science Dr.
    [Show full text]
  • Impacts of Antibiotic and Bacteriophage Treatments on the Gut-Symbiont-Associated Blissus Insularis (Hemiptera: Blissidae)
    insects Article Impacts of Antibiotic and Bacteriophage Treatments on the Gut-Symbiont-Associated Blissus insularis (Hemiptera: Blissidae) Yao Xu *, Eileen A. Buss and Drion G. Boucias Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA; eabuss@ufl.edu (E.A.B.); pathos@ufl.edu (D.G.B.) * Correspondence: [email protected]; Tel.: +1-352-273-3959 Academic Editor: Brian T. Forschler Received: 30 August 2016; Accepted: 28 October 2016; Published: 3 November 2016 Abstract: The Southern chinch bug, Blissus insularis, possesses specialized midgut crypts that harbor dense populations of the exocellular symbiont Burkholderia. Oral administration of antibiotics suppressed the gut symbionts in B. insularis and negatively impacted insect host fitness, as reflected by retarded development, smaller body size, and higher susceptibility to an insecticide, bifenthrin. Considering that the antibiotics probably had non-lethal but toxic effects on host fitness, attempts were conducted to reduce gut symbionts using bacteriophage treatment. Soil-lytic phages active against the cultures of specific Burkholderia ribotypes were successfully isolated using a soil enrichment protocol. Characterization of the BiBurk16MC_R phage determined its specificity to the Bi16MC_R_vitro ribotype and placed it within the family Podoviridae. Oral administration of phages to fifth-instar B. insularis, inoculated with Bi16MC_R_vitro as neonates had no deleterious effects on host fitness. However, the ingested phages failed to impact the crypt-associated Burkholderia. The observed inactivity of the phage was likely due to the blockage of the connection between the anterior and posterior midgut regions. These findings suggest that the initial colonization by Burkholderia programs the ontogeny of the midgut, providing a sheltered residence protected from microbial antagonists.
    [Show full text]
  • Dispersal and Foraging Behaviour of Platygaster Californica: Hosts Can't Run, but They Can Hide
    Ecological Entomology (2006) 31, 298–306 Dispersal and foraging behaviour of Platygaster californica : hosts can’t run, but they can hide ANTHONY DARROUZET-NARDI 1 , MARTHA F . HOOPES 2 , JESSE D . WALKER 3 and CHERYL J . BRIGGS 4 1 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, U.S.A. ; 2 Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts, U.S.A. ; 3 Department of Biology, Utah State University, Logan, Utah, U.S.A. ; 4 Department of Integrative Biology, University of California, Berkeley, California, U.S.A. Abstract. 1. Host – parasitoid models often identify foraging behaviour and dispersal distance as important for system persistence. 2. Laboratory observations and field trials were used to characterise foraging behaviour and dispersal capability of Platygaster californica Ashmead (Platygasteridae), a parasitoid of the gall midge Rhopalomyia californica Felt (Cecidomyiidae). 3. Although foraging parasitoids meticulously searched plants in laboratory observations, none of the laboratory trials resulted in 100% parasitism, and the proportion of parasitism declined as midge egg density increased. 4. The field trials showed that the distribution of parasitism over distance from a central release point was hump-shaped, as predicted by a simple diffusion model. Mean parasitoid dispersal distance was 4.5 m, considerably farther than the 1.7 m mean midge dispersal found in previous work. 5. Although the parasitoid appears to search thoroughly for midge eggs and to disperse farther than the midge, the results of this study show how this host – parasitoid system may persist due to spatially variable incomplete parasitism. Key words . Gall midge , host – parasitoid interaction , inverse density dependence , persistence , Rhopalomyia californica .
    [Show full text]
  • A Sex Pheromone in the California Oakworm Phryganidia Californica Packard (Dioptidae)
    Journal of the Lepidopterists' Society 38(3),1984,176-178 A SEX PHEROMONE IN THE CALIFORNIA OAKWORM PHRYGANIDIA CALIFORNICA PACKARD (DIOPTIDAE) MICHAEL E. HOCHBERG AND W. JAN A. VOLNEY Division of Entomology and Parasitology, University of California, Berkeley, California 94720 ABSTRACT. California oak worm (Phryganidia cali/arnica) virgin females confined to sticky traps attracted significantly more males than unbaited control traps. This dem­ onstrates the presence of a sex attractant in this species. The California oakworm (COW), Phryganidia californica Packard, the only species of the family Dioptidae in America north of Mexico, is a major defoliator of oaks in California (Essig, 1958; Brown & Eads, 1965). Previous studies (Harville, 1955; Sibray, 1947) have shown that COW populations erupt sporadically, but the causes of these eruptions are presently unknown. Attractive pheromones, should they exist, could provide a means of detecting sparse populations and incipient out­ breaks and determining the distribution of this species (Daterman, 1978; Carde, 1979). Here we report results that indicate the presence of a female pro­ duced sex pheromone in this species. MATERIALS AND METHODS The study was carried out in October 1982 in a ca. % hectare stand of California live oaks (Quercus agrifolia Nee) on the University of California campus, Berkeley. Adults used in these trials were field collected pupae which were confined individually to 90 x 23 mm shell vials plugged with cotton wool. The insects were reared under a natural photoperiod in the laboratory and allowed to emerge in these vials. Pherocon lC® (Zoecon Corp., Palo Alto, CA) sticky traps were used in all trials. Traps were baited by confining one virgin female to a cylindrical (6 x 12 mm) steel mesh cage suspended from the trap roof.
    [Show full text]
  • Hemiptera: Blissidae), on Resistant and Susceptible St
    Hemipteran-Plant Interactions Symposium QUANTITATIVE ANALYSIS OF FEEDING BEHAVIOR OF SOUTHERN CHINCH BUG, BLISSUS INSULARIS BARBER (HEMIPTERA: BLISSIDAE), ON RESISTANT AND SUSCEPTIBLE ST. AUGUSTINEGRASSES Murugesan Rangasamy1,4; Elaine Backus2; Ron Cherry1; Heather McAuslane1. 1Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32611, USA; [email protected] 2USDA Agric. Research Service, San Joaquin Valley Agric. Sciences Center, Parlier, CA, 93648, USA; 3Department of Entomology, University of Nebraska, Lincoln, NE, 68583, USA; 4Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA. St. Augustinegrass is the most widely planted turfgrass in Florida and other Gulf coast States in the United States. The southern chinch bug, Blissus insularis Barber, is the most serious insect pest of St. Augustinegrass. Host plant resistance has been one of the most successful pest management methods for this insect. ‘Floratam’, a polyploid variety of St. Augustinegrass with resistance to southern chinch bug has long been but few populations of southern chinch bugs have developed resistance to this variety. Although significant progress has been made in identifying new sources of southern chinch bug resistance in St. Augustinegrass lines, such as the polyploid FX-10 and the diploid NUF-76, the mechanisms of resistance in these lines are unknown. Previous studies reported high levels of antixenosis in both lines and possible antibiosis in NUF-76. Understanding the feeding behavior of southern chinch bugs on the resistant FX-10 and NUF-76 is important to elucidate the mechanisms of resistance. For the first time, the electrical penetration graph (EPG) technique was used to quantify southern chinch bug feeding behavior on resistant and susceptible St.
    [Show full text]