Planetary Science Update & Perspectives on Venus Exploration

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Science Update & Perspectives on Venus Exploration Planetary Science Update & Perspectives on Venus Exploration Presentation at VEXAG James L. Green Director, Planetary Science Division May 6, 2008 1 Outline • FY09 Presidents Budget • Venus exploration opportunities: – Plans for next New Frontiers – Plans for next Discovery – Plans for SALMON – R&A opportunities 2 BUDGET BY SCIENCE THEME 3 Planetary Division 4 Planetary Division 5 What Changed, What’s the Same What Changed: • Initiated an Outer Planets Flagship (OPF) study activity joint with ESA/JAXA. • Lunar Science Research augmented to include a series of small lunar spacecraft. • Augments and enhances R&A to return more results from Planetary missions. • Discovery Program: Includes the recently selected MoOs (EPOXI and Stardust-NExT), adds Aspera-3 2nd extension (ESA/Mars Express), and selected GRAIL. • Preserves critical ISP work FY08 thru FY10, but deletes outyear activities in favor of more critical R&A and RPS enhancements. • Completes the Advanced Stirling RPS development and prepares for flight demonstration. • Mars Scout 2011 delayed to 2013 due to conflict of interest discovered during proposal evaluation. • Direction to the Mars Program to study Mars Sample Return (MSR) as a next decade goal • Expands US participation on the ESA/ExoMars mission by funding the potential selection of BOTH candidate U.S. instruments and EDL support. What’s the Same: • Discovery Program: MESSENGER, Dawn, Mars Express/Aspera-3, Chandraayn/MMM • New Frontiers Program: Juno and New Horizons • Mars Program: Odyssey, MER, MRO, Phoenix, MSL • Research Program: Lunar Science, PDS, ESA/Rosetta, JAXA/Hayabusa 6 7 TBD 8 New Frontiers & Discovery SALMON & ROSES 9 Just Released NRC NOSSE Report • “Opening New Frontiers in Space: Choices for the Next New Frontiers AO” - NASA should: – R1: Emphasize science objectives – R2: Expand the list of candidate missions – R3: Limit to the list below unless compelling science • Complete NF target list in alphabetic order: – Asteroid Rover/Sample Return* – Comet Surface Sample Return – Ganymede Observer* – Io Observer* – Jupiter Polar Orbiter with Probes - Juno – Kuiper Belt/Pluto -> New Horizons – Lunar South Pole Aitken Basin Sample Return – Network Science* – Trojan/Centaur Reconnaissance* – Venus In-Situ Explorer * Additions 10 Current NF AO Status • NRC’s recommendations lists new targets to be considered • All missions proposed must fit NF3 mission cost, timescale, and launch vehicle constraints • Proposed missions must also be consistent with the unavailability of radioisotope power sources • Launch Vehicle in or out of cost cap • NF3 Schedule: – Draft in September 2008 – AO in December 2008 • Expect NF3 AO to be greatly simplified • PI experience requirements have been posted • Final decisions for these elements have been made by Dr. Weiler and should be posted shortly 11 Discovery Program Mars evolution: Lunar formation: NEO characteristics: Mars Pathfinder (1996-1997) Lunar Prospector (1998-1999) NEAR (1996-2001) d e t e l p m o C t Solar wind sampling: Comet diversity: Nature of dust/coma: h g Genesis (2001-2004) CONTOUR Stardust (1999-2006 ) i l F n I / A u L d g o e s t 1 t e 5 l 2 p 0 0 m 2 o C t n Main-belt asteroids: Lunar Interior & Gravity: e Comet internal structure: Mercury environment: m Deep Impact (2005-2006) MESSENGER (2004-2012) Dawn (2007-2015) GRAIL (2011) p o l e v e D / t h g i l F n I 12 Next Discovery AO • Expected release in FY09 • Contents to be determined: – Cost Cap – Launch Vehicle in or out of cost cap – Use of Stirling Radioisotope Power System as GFE • Final approval for these elements are with Dr. Weiler 13 Advanced Stirling Radioisotope Generator Engineering Unit Lockheed Martin/Sunpower • Operation in space and on surface of atmosphere- bearing planets and moons • Characteristics: – !14 year lifetime – Nominal power : 140 We – Mass ~ 20 kg – System efficiency: ~ 30 % – 2 GPHS (“Pu238 Bricks”) modules – Uses 0.8 kg Pu238 • Final wiring and connections Paired converters with interconnect for ASRG engineering unit sleeve assembly underway • Reliability to be demonstrated by the end of 2009 Outboard Housing and Paired ASC-Es 14 Discovery & Mars Scout Capability Enhancement NRA • Program solicited mission concept proposals for small planetary missions that require the ASRG power source – Two Stirling Engines ~140 Watts each (as GFE) • Intended to foster science exploration in planetary science by missions enabled by ASRG • Mission design assistance for these 6 month mission concept studies will be offered by NASA • Selected 9 proposals – 40 proposals submitted with average budget of $271K – NRA directed proposers to budget $200,000-$300,000 15 DSMCE Selections Aerial Polar VALOR: The Feasibility of A Nuclear-Powered Long- Baines, Kevin JPL Venus Vehicle Duration Balloon Mission to Explore the Poles of Venus Los Alamos National Locating and Characterizing Lunar Polar Volatiles: Feasibility Elphic, Richard Moon Lander Laboratory of a Discovery-Class Mission Journey to the land of Eternal Darkness and Ice (JEDI): A Jolliff, Bradley Washington University Moon Rover Lunar Polar Volatile Explorer Rivkin, Andrew Applied Physics Lab Asteroid Lander Ilion: An ASRG-Enabled Trojan Asteroid Mission Concept A tour through Martian history: An ASRG-powered polar ice Hecht, Michael JPL Mars Lander borehole. Stofan, Ellen Proxemy Research Outer Planets Lander Titan Mare Explorer (TiME) McEwen, Alfred University of Arizona Outer Planets Orbiter Mission Concept: Io Volcano Observer (IVO) Sample Concept Study for a Comet Coma Rendezvous Sample Sandford, Scott NASA/AMES Comet Return Return Mission Sunshine, Jessica Univeristy of Maryland Comet Lander Comet Hopper 16 Current SALMON AO Schedule • SALMON Solicitation Development Sept 2007 – Feb 2008 • Release Draft for comment March 2008 • Revise SALMON based on comments April 2008 • SALMON Release – Program Element Cycle I May 2008 • Proposals Due August 2008 • Selections Announced NLT February 2009 • SALMON Amendments (notional) – Program Element Cycle II (special) May 2008 – Program Element Cycle III (regular) May 2009 • Final approval for the release of this AO has been made by Dr. Weiler expect an announcement soon 17 Types of Missions of Opportunity • Traditional MoOs – Investigations involving participation in non-NASA space missions (ie: science instrument, technology demonstrations, hardware components …) • U.S. Participating Investigator – Co-Investigator (non-hardware) for a science or technology experiment to be built and flown by an agency other than NASA • New Science Missions using Existing Spacecraft – Investigations that propose a new scientific use of existing NASA spacecraft (ie: NExT, EPOXI …) • Small Complete Missions – Science investigations that can be realized within the specified cost cap (includes all phases from access to space through data publication) • Focused Opportunities – Investigations that address a specific, NASA-identified flight opportunity 18 PSD R&A Opportunities • ROSES 2008: – Discovery Data Analysis Program (DDAP) -> Planetary Mission Data Analysis Program (PMDAP) • Participating Scientist Program for Venus Climate Orbit is under discussion • A comparative Climatology of Venus-Earth-Mars is under consideration for ROSES 2009 19 NASA’s “Flyby, Orbit, Land, Rove, and Return Samples” 20 Outer Planets Flagship 21 Cassini Mission • Prime mission July 2004 – July 2008 – Cassini spacecraft virtually 100% operational • Approved extended mission goes to Sept. 2010 • Extended mission science goals include: – Titan (26 encounters) The extended mission plan includes 2 ~ 25 km passes – Enceladus (7 encounters + Rhea, Dione) thru Enceladus’ plume. – Observe Saturn system thru Aug. ‘09 equinox Prime observations on curved line. • Estimate ~46% of hydrazine will remains at end of the extended mission – Depending on health an XXM is viable – Important for end of life to retain adequate fuel • Cassini costs: – LLC to end of prime mission: $3.27B ($2.6B US, $660M ESA) – Yearly operations: $80M 22 Flagship Mission Studies Europa Jupiter System Titan Enceladus 23 Background • Phase I - January 2007 four studies initiated: – Europa Explorer - Led by JPL – Jupiter System Observer - Led by JPL – Titan - Led by APL – Enceladus - Led by GSFC • Final study reports submitted August 29th to Science Panel & NASA Technical Management and Cost (TMC) Review Teams • Dec. 23, 2007 NASA announced the Phase II studies: – NASA leads: Europa Explorer & Titan – ESA leads: Jupiter System Orbiter 24 Background (cont.) • Phase II studies to concentrate on the findings from Science & TMC panels • Other Programmatic changes include: – Focused missions (not like Cassini, Galileo) – Europa Jupiter System Mission (EJSM) consisting of NASA Europa Orbiter, ESA Jupiter Planetary Orbiter, JAXA Magnetospheric Orbiter – Titan Saturn System Mission (TSSM) consisting of NASA Titan Orbiter, ESA insitu vehicles (lander & balloon) – NASA cost cap ($2.1B FY07), MMRTGs only, 34m DSN 25 Schedule & Next Steps • August 4-Sept. 12: Independent review of reports by Science and TMC panels • Sept. 12 - Oct. 22: Teams respond to findings • Oct. 22: Updated Phase II report due • Nov.- Dec.: Final down-select to a single mission by NASA & ESA – Mission must be above the “floor” of Planetary Decadal level science – Technical feasible (ex: low or medium/low) within budget • NASA and ESA jointly study one Phase A mission, establish consistent schedule 26.
Recommended publications
  • Autonomous Onboard Science Data Analysis for Comet Missions
    AUTONOMOUS ONBOARD SCIENCE DATA ANALYSIS FOR COMET MISSIONS David R. Thompson(1), Daniel Q. Tran(1), David McLaren(1), Steve A. Chien(1), Larry Bergman(1), Rebecca Castaño(1), Richard Doyle(1), Tara Estlin(1), Matthew Lenda(1), (1) Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA 91109, USA Email: [email protected], all others [email protected] Figure 1. Plume detection by identifying the nucleus. Left: computational edge detection. Center: a convex hull of edge points. Right: bright areas outside the nucleus are plumes. Image credit: NASA/JPL/UMD. ABSTRACT active geologic processes including scarps and outflows [1]. Its surface undergoes continuous modification, Coming years will bring several comet rendezvous with visible change during the years between two missions. The Rosetta spacecraft arrives at Comet flybys. The EPOXI flyby of comet Hartley 2 shows 67P/Churyumov–Gerasimenko in 2014. Subsequent skyscraper-size spires, flat featureless plains that outgas rendezvous might include a mission such as the H O, regions of rough and mottled texture, bands of proposed Comet Hopper with multiple surface landings, 2 various shapes, and diverse surface albedo. Comets’ as well as Comet Nucleus Sample Return (CNSR) and active areas range from 10-90%, changing over time Coma Rendezvous and Sample Return (CRSR). These and distance to the sun. They manifest as both localized encounters will begin to shed light on a population that, jets and diffuse regions (Figure 1). Still more exotic, despite several previous flybys, remains mysterious and recently discovered “active asteroids” suggest that poorly understood.
    [Show full text]
  • Agile Science Operations David R
    Agile Science Operations David R. Thompson Machine Learning and Instrument Autonomy Jet Propulsion Laboratory, California Institute of Technology Engineering Resilient Space Systems Keck Institute Study, July 31 2012. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Copyright 2012 California Institute of Technology. All Rights Reserved; U. S. Government Support Acknowledged. Image: Hartley 2 (EPOXI), NASA/JPL/UMD Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 1 Agenda Motivation: science at primitive bodies Critical Path Analysis and reaction time A survey of onboard science data analysis Case study – how could onboard data analysis impact missions? Image: Hartley 2 (EPOXI), NASA/JPL/UMD Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 2 Primitive bodies Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 3 Typical encounter (Lutetia 21, Rosetta) Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 4 Primitive bodies: key measurements Reproduced from Castillo-Rogez, Pavone, Nesnas, Hoffman, “Expected Science Return of Spatially-Extended In-Situ Exploration at Small Solar System Bodies,” IEEE Aerospace 2012. Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate
    [Show full text]
  • Dust Environment and Dynamical History of a Sample of Short-Period Comets II
    A&A 571, A64 (2014) Astronomy DOI: 10.1051/0004-6361/201424331 & c ESO 2014 Astrophysics Dust environment and dynamical history of a sample of short-period comets II. 81P/Wild 2 and 103P/Hartley 2 F. J. Pozuelos1;3, F. Moreno1, F. Aceituno1, V. Casanova1, A. Sota1, J. J. López-Moreno1, J. Castellano2, E. Reina2, A. Climent2, A. Fernández2, A. San Segundo2, B. Häusler2, C. González2, D. Rodriguez2, E. Bryssinck2, E. Cortés2, F. A. Rodriguez2, F. Baldris2, F. García2, F. Gómez2, F. Limón2, F. Tifner2, G. Muler2, I. Almendros2, J. A. de los Reyes2, J. A. Henríquez2, J. A. Moreno2, J. Báez2, J. Bel2, J. Camarasa2, J. Curto2, J. F. Hernández2, J. J. González2, J. J. Martín2, J. L. Salto2, J. Lopesino2, J. M. Bosch2, J. M. Ruiz2, J. R. Vidal2, J. Ruiz2, J. Sánchez2, J. Temprano2, J. M. Aymamí2, L. Lahuerta2, L. Montoro2, M. Campas2, M. A. García2, O. Canales2, R. Benavides2, R. Dymock2, R. García2, R. Ligustri2, R. Naves2, S. Lahuerta2, and S. Pastor2 1 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain e-mail: [email protected] 2 Amateur Association Cometas-Obs, Spain 3 Universidad de Granada-Phd Program in Physics and Mathematics (FisyMat), 18071 Granada, Spain Received 3 June 2014 / Accepted 5 August 2014 ABSTRACT Aims. This paper is a continuation of the first paper in this series, where we presented an extended study of the dust environment of a sample of short-period comets and their dynamical history. On this occasion, we focus on comets 81P/Wild 2 and 103P/Hartley 2, which are of special interest as targets of the spacecraft missions Stardust and EPOXI.
    [Show full text]
  • Jjmonl 1603.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 3 March 2016 GRAIL - On the Trail of the Moon's Missing Mass GRAIL (Gravity Recovery and Interior Laboratory) was a NASA scientific mission in 2011/12 to map the surface of the moon and collect data on gravitational anomalies. The image here is an artist's impres- sion of the twin satellites (Ebb and Flow) orbiting in tandem above a gravitational image of the moon. See inside, page 4 for information on gravitational anomalies (mascons) or visit http://solarsystem. nasa.gov/grail. The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Paul Woodell Tom Heydenburg Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ............................... 4 SUNRISE AND SUNSET ...................................................... 13 MARE HUMBOLDTIANIUM AND THE NORTHEAST LIMB ......... 5 JUPITER AND ITS MOONS ................................................. 13 ONE YEAR IN SPACE ....................................................... 6 TRANSIT OF JUPITER'S RED SPOT ....................................
    [Show full text]
  • Grail): Extended Mission and Endgame Status
    44th Lunar and Planetary Science Conference (2013) 1777.pdf GRAVITY RECOVERY AND INTERIOR LABORATORY (GRAIL): EXTENDED MISSION AND ENDGAME STATUS. Maria T. Zuber1, David E. Smith1, Sami W. Asmar2, Alexander S. Konopliv2, Frank G. Lemoine3, H. Jay Melosh4, Gregory A. Neumann3, Roger J. Phillips5, Sean C. Solomon6,7, Michael M. Watkins2, Mark A. Wieczorek8, James G. Williams2, Jeffrey C. Andrews-Hanna9, James W. Head10, Wal- ter S. Kiefer11, Isamu Matsuyama12, Patrick J. McGovern11, Francis Nimmo13, G. Jeffrey Taylor14, Renee C. Weber15, Sander J. Goossens16, Gerhard L. Kruizinga2, Erwan Mazarico3, Ryan S. Park2 and Dah-Ning Yuan2. 1Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02129, USA ([email protected]); 2Jet Propulsion Laboratory, California Institute of Technol- ogy, Pasadena, CA 91109, USA; 3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; 4Dept. of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA; 5Planetary Science Directorate, Southwest Research Institute, Boulder, CO 80302, USA; 6 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA; 7Dept. of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA; 8Institut de Physique du Globe de Paris, 94100 Saint Maur des Fossés, France; 9Dept. of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO 80401, USA; 10Dept. of Geological Sciences, Brown University, Providence, RI 02912, USA; 11Lunar and Planetary Institute, Houston, TX 77058, USA; 12Lunar and Planetary Laborato- ry, University of Arizona, Tucson, AZ 85721, USA; 13Dept. of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA; 14Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA; 15NASA Marshall Space Flight Center, Huntsville, AL 35805, USA, 16University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
    [Show full text]
  • LAST CALL for the DAS Dinner Meeting Tuesday, May17th
    Vol. 56, No. 5, May, 2011 Next Meeting – May 17th, 2011 at 6:00 PM ~ Annual Dinner Meeting at the Hilton Wilmington/Christiana ~ See Pages 4 & 5 for full Details on this Event Celebrating the DAS Amateur Astronomer of the Year FROM THE PRESIDENT ! Bill Hanagan To start off, I’d like to thank Bill McKibben for his LAST CALL for the presentation at the April meeting on the Ancient Astronomy of Machu Picchu and Greg Lee for his presentation on DAS Dinner Meeting “What’s Up in the Sky”. If you missed the April meeting, you also missed my presentation on the sizing, positioning, and th surface quality of Newtonian secondary mirrors. Tuesday, May 17 Our May meeting is the annual “dinner” meeting of the DAS and it will be held on Tuesday, May 17 at the Christiana You’ll need to call Treasurer McKibben Hilton, the same location as last year. Social hour begins at at this late hour for Reservations. 6:00 P.M. followed by dinner at 7:00 P.M. After dinner, we’ll view a short video of time lapse astrophotos followed by the Andrew K. Johnston presentation of the Amateur Astronomer of the Year Award. We’ll conclude the evening with a talk titled “Navigating across from the the Solar System” by Mr. Andrew K. Johnston from the National Smithsonian Air and Space Museum. Mr. Johnston is the co-author of the “Smithsonian Atlas of Space Exploration” and his talk will give National Air & us a look at the history and technology of solar system explora- tion.
    [Show full text]
  • List of Missions Using SPICE (PDF)
    1/7/20 Data Restorations Selected Past Users Current/Pending Users Examples of Possible Future Users Apollo 15, 16 [L] Magellan [L] Cassini Orbiter NASA Discovery Program Mariner 2 [L] Clementine (NRL) Mars Odyssey NASA New Frontiers Program Mariner 9 [L] Mars 96 (RSA) Mars Exploration Rover Lunar IceCube (Moorehead State) Mariner 10 [L] Mars Pathfinder Mars Reconnaissance Orbiter LunaH-Map (Arizona State) Viking Orbiters [L] NEAR Mars Science Laboratory Luna-Glob (RSA) Viking Landers [L] Deep Space 1 Juno Aditya-L1 (ISRO) Pioneer 10/11/12 [L] Galileo MAVEN Examples of Users not Requesting NAIF Help Haley armada [L] Genesis SMAP (Earth Science) GOLD (LASP, UCF) (Earth Science) [L] Phobos 2 [L] (RSA) Deep Impact OSIRIS REx Hera (ESA) Ulysses [L] Huygens Probe (ESA) [L] InSight ExoMars RSP (ESA, RSA) Voyagers [L] Stardust/NExT Mars 2020 Emmirates Mars Mission (UAE via LASP) Lunar Orbiter [L] Mars Global Surveyor Europa Clipper Hayabusa-2 (JAXA) Helios 1,2 [L] Phoenix NISAR (NASA and ISRO) Proba-3 (ESA) EPOXI Psyche Parker Solar Probe GRAIL Lucy EUMETSAT GEO satellites [L] DAWN Lunar Reconnaissance Orbiter MOM (ISRO) Messenger Mars Express (ESA) Chandrayan-2 (ISRO) Phobos Sample Return (RSA) ExoMars 2016 (ESA, RSA) Solar Orbiter (ESA) Venus Express (ESA) Akatsuki (JAXA) STEREO [L] Rosetta (ESA) Korean Pathfinder Lunar Orbiter (KARI) Spitzer Space Telescope [L] [L] = limited use Chandrayaan-1 (ISRO) New Horizons Kepler [L] [S] = special services Hayabusa (JAXA) JUICE (ESA) Hubble Space Telescope [S][L] Kaguya (JAXA) Bepicolombo (ESA, JAXA) James Webb Space Telescope [S][L] LADEE Altius (Belgian earth science satellite) ISO [S] (ESA) Armadillo (CubeSat, by UT at Austin) Last updated: 1/7/20 Smart-1 (ESA) Deep Space Network Spectrum-RG (RSA) NAIF has or had project-supplied funding to support mission operations, consultation for flight team members, and SPICE data archive preparation.
    [Show full text]
  • EPOXI COMET ENCOUNTER FACT SHEET Nov
    EPOXI COMET ENCOUNTER FACT SHEET Nov. 2, 2010 Quick Facts Flyby Spacecraft Dimensions: 3.3 meters (10.8 feet) long, 1.7 meters (5.6 feet) wide, and 2.3 meters (7.5 feet) high Weight: 601 kilograms (1,325 pounds) at launch, consisting of 517 kilograms (1,140 pounds) spacecraft and 84 kilograms (185 pounds) fuel. On 10/25/10 there was 4 kilograms (8.8 pounds) of fuel remaining. Power: 2.8-meter-by-2.8-meter (9-foot-by-9 foot) solar panel providing up to 750 watts, depending on distance from sun. Power storage via small, 16-amp- hourrechargeable nickel hydrogen battery Comet Hartley 2 Nucleus shape: Elongated Nucleus size (estimated): About 2.2 kilometers (1.4 miles) long Nucleus mass: Roughly 280 million metric tons Nucleus rotation period: About 18 hours Nucleus composition: Water ice, carbon dioxide ice, silicate dust Mission Launch: Jan. 12, 2005 Launch site: Cape Canaveral Air Force Station, Florida Launch vehicle: Delta II 7925 with Star 48 upper stage Impact with Tempel 1: 10:52 p.m. PDT July 3, 2005 (1:52 a.m. EDT July 4, 2005) Earth-comet distance at time of impact: 133.6 million kilometers (83 million miles) Total distance traveled by spacecraft from Earth to Tempel 1: 431 million kilometers (268 million miles) Flyby of Hartley 2: About 10 a.m. EDT or 7 a.m. PDT Nov. 4, 2010 Additional distance traveled by spacecraft to Hartley 2: About 4.6 billion kilometers (2.9 billion miles) Program Cost of Deep Impact: $267 million total (not including launch vehicle), consisting of $252 million spacecraft development and $15 million mission operations Cost of EPOXI extended mission: $42 million, for operations from 2007 to end of project at the end of fiscal year 2011.
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions
    NASA/TM—2015-218885 Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions Anthony J. Colozza Vantage Partners, LLC, Brook Park, Ohio Robert L. Cataldo Glenn Research Center, Cleveland, Ohio October 2015 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientifi c and Series, which includes the following report types: technical material pertinent to NASA’s mission. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major signifi cant phase program, see the following: of research that present the results of NASA programs and include extensive data or theoretical • Access the NASA STI program home page at analysis.
    [Show full text]
  • Reviewing the Contribution of GRAIL to Lunar Science and Planetary Missions Maria T
    EPSC Abstracts Vol. 12, EPSC2018-575, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Reviewing the contribution of GRAIL to lunar science and planetary missions Maria T. Zuber and David E. Smith Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139- 4307, USA. ([email protected], [email protected]) Abstract Q of the Moon determined to be 41±4 at the monthly frequency. The GRAIL Discovery mission to the Moon in 2011 provided an unprecedentedly accurate gravity field model for the Moon. The goal of the mission was to provide insight into the structure of the Moon from its interior to the surface but it also made significant contributions to lunar spacecraft operations for all future lunar missions to the Moon. We discuss the science and the broader contributions from this mission that completed its objectives in December 2012 when the spacecraft impacted the lunar surface. 1. Introduction Figure 1: Free-air gravity of the Moon from GRAIL. GRAIL was a mission designed to measure the Full uniform resolution spherical harmonic models gravity field of the Moon with both high accuracy were obtained out to degree & order 1200 with and high resolution. The measurement goal was to special fields with higher resolutions over certain obtain the gravity at resolutions that would enable areas to degree and order 1800. interpretation of the crust at fractions of its thickness, estimated at the time of launch to be about 45 km. To 3. Mission Operations obtain a surface resolution of less than 10 km required the spacecraft to orbit the Moon at less than The significant improvement in our knowledge of the 20 km, an altitude that was considered dangerous at gravity field of the Moon by GRAIL enabled the re- that time without an accurate gravity field model.
    [Show full text]
  • Comet Hopper Moves to 'Final Round' in NASA Selection Process 12 May 2011
    Comet Hopper moves to 'final round' in NASA selection process 12 May 2011 the team include Deputy PI Michael A'Hearn, who led NASA's Deep Impact and EPOXI comet missions. The Comet Hopper mission would be managed by NASA Goddard Space Flight Center in Greenbelt, Md. Other partners include Lockheed Martin, KinetX, the Johns Hopkins University Applied Physics Laboratory, University of Bern, Jet Propulsion Laboratory and Discovery Communications. "We've had some amazing cometary flybys but they have given us only snapshots of one point in time of what a comet is like," said Sunshine. "Comets are exciting because they are dynamic, changing throughout their orbits. With this new mission, we will start out with a comet that is in the cold, outer reaches of its orbit and watch its activity come alive as it moves closer and closer to the sun." The Comet Hopper mission would study the evolution of 46P/Wirtanen by landing on the comet Credit: NASA/GSFC/University of Maryland multiple times and observing its changes as it interacts with the sun. Comet Hopper would observe the comet by making detailed in situ measurements from various locations on the (PhysOrg.com) -- A University of Maryland-led surface and in the innermost coma as the comet mission proposal know as Comet Hopper has been moves through its orbit. The innermost coma is the chosen to compete for final selection as a new atmosphere of the comet just off the surface of the planetary mission in NASA's Discovery Program. nucleus where outgassing and jets originate. "We The team will receive $3 million to further develop would extensively explore the surface of a comet, its mission proposal concept.
    [Show full text]