Headquarters Update

Total Page:16

File Type:pdf, Size:1020Kb

Headquarters Update Outline Planetary Science Division Update • Administration • Upcoming Opportunities & Selections • National Academy Studies Presentation at the OPAG • Mars Science Laboratory • Mission Status and Plans James L. Green Director, Planetary Science Division November 6, 2008 1 2 Administration • Moving on: – John Rummel (Hq CS) - Astrobiology – Dennon Clardy (MSFC detailee) - Assistant for Flight Program – Kelly Snook (GSFC detailee) - Lunar Science Recent Selections, – Carlos Liceaga (LaRC detailee) - SALMON AO • Recent Personnel Additions: Opportunities & Studies – Mary Voytek (USGS detailee) - Astrobiology – Tibor Kremic (GRC detailee) - Assistant for Flight Program – Jennifer Heldmann (ARC detailee) - Lunar Science • Government transition: – Congress may pass budget before end of year – NASA preparing for the transition 3 4 Mars Scout-13 Selection Astrobiology Selections CAN #5 - 10 selections with a 27% success rate – 5 new 5 returning teams but 2 with new PIs • Mark Allen, JPL, Titan as a prebiotic chemical system • Ariel Anbar, ASU, Follow the elements • George Cody, Carnegie Inst. Wash., Astrobiology Pathways • David DesMarais, ARC, Early habitable environments • Chris House, PSU, Signatures of life • Isik Kanik, JPL, Icy Worlds • Karen Meech, UH, Water and its relation to life • Mike Mumma, GSFC, Organics in planetary systems Mars Atmosphere & Volatile EvolutioN • Doug Whittet, RPI, Setting the stage for life • Loren Williams, GIT, Ribosome adaption & evolution 5 6 Upcoming 2008 Opportunities Academy Studies • Congress: NASA will fund National Academy studies: • Lunar Advanced Science and Exploration Research (LASER) – R&A - Balance with missions – ESMD is not participating in the 2008 ROSES call but will maintain all their • To be headed by Len Fiske 2007 ROSES commitments – Radioisotope Power System Requirements & availability of Plutonium – ESMD participation in ROSES 2009 under discussion • Proceeding well, several meetings & site visits have occurred – PSD will continue with its commitment to support LASER ($2-3M/yr new awards) – NEO - address issues in the detection and mitigation • Jointly requested by NASA and NSF • NASA Lunar Science Institute Nodes • 1st meeting mid-December 9-10, 2008 at Keck Building – 32 proposals received – ESMD will be part of the selection and fund at least one node • NASA directed both near completion: – Expect to select 5-6 nodes with announcement before end of Jan. 2009 – Science Opportunities Enabled by NASA’s Constellation Sys. – Planetary Protection for Mars Sample Return • Stand-Alone Mission of Opportunity Notification (SALMON) – Released: September 3, 2008 – Preproposal conference held: September 26, 2008 – Each proposal opportunity has its own due date – LADEE Dust Detection Instrument has closed 7 8 Academy Studies (continued) Decadal Task Overview • Planetary Science Decadal • An overview of planetary science - what it is, its relationship to other – Finalizing the Statement of Task (SOT) with NSF scientific endeavors, and why it is compelling • Expect ground-based planetary astronomy facilities & • A broad survey of the current state of knowledge of the solar system capabilities to be addressed • An inventory of the top-level scientific questions that should guide flight programs and supporting research programs – Expect SOT to be submitted to Academy in November • Recommendations on the optimum balance among small, medium, and • National Academy responsible for organization, large missions and supporting activities process, filling in panel structure • A discussion of high value technology development needs – Expect Assessment Groups, Recent & Current Science • A prioritized list of major flight investigations to be initiated over the Definition Teams to be critical input decade 2011-2020 • Recommendations for supporting research required to maximize the • Town hall discussions: science return from the flight investigations – DPS (completed) • Covers Solar System including the Mars & Moon – Fall AGU (December 18th @ 6:15pm)- PLEASE ATTEND! • Extrasolar planets are covered in the Astrophysics Decadal 9 10 Mars Science Laboratory Current Status and Plans Under Study 11 12 Mars Science Lab Background Meeting with the Administrator • MSL confirmed at $1.6B in August 2006 • Meeting with the Administrator on Oct. 10th – JPL, SRB, MEP office: Reviewed the technical, schedule, and cost – Cost determined at the end of Phase B challenges - presented recommendations – Reported to Congress – Major flight elements have been delivered • Overguide status through FY08 – Instrument development proceeding well – Preparing to start launch/cruise environmental testing in November – Requested & received an overguide of $200M (FY08) – MSL has a “reasonable” chance of meeting the 2009 LRD with – Exceeded 15% overguide threshold of NASA Authorization Act - acceptable risk regular reporting to Congress • Based on this input the Administrator supports a 2009 launch for – Budget Plan: $223M (FY09); $64M (FY10); $55M (FY11) MSL – Next Administrator review of MSL progress is in January 2009 • All missions >$1B are regularly reviewed by NASA • It is in the best interest of the Planetary community that MSL Administrator launch in 2009 a delayed launch date will have significant cost • Early October PSD received word that JPL was coming in impacts – JPL continues to make “reasonable” technical progress at this time with another overrun for FY09 • Total overrun and funding strategy will be reviewed by OMB and Congress (stay tuned!) 13 14 MSL HW Status Lessons-Learned • Project, Program Office and NASA Headquarters will perform L-L • Also expect to conduct an independent team evaluation • Elements to look at: – Technical readiness - (ie: changed heat shield material) – Was Phase-B long enough to adequately identify and retire risks – Scalability and Heritage – Manufacturing, assembly, test programs 15 16 2nd flyby Oct. 6th Steins flyby Sept 5th Planetary Mission Status 25km Enceladus flyby Oct. 9th 17 18 Set for launch Oct. 22 LaserCom Demo Lunar Program Wallops Launch on Minotaur V Extended Themis Mission International geophysical network Will require backside communications 19 20 New Frontier Program Status • Open competition for PI class missions of strategic importance to Planetary Science • AO make great progress: New Frontiers & Discovery – Draft to be released and posted for community comment for about 3 months before final AO • First use of the new standard AO for PI-led missions Future Opportunities • Follows NOSSE recommendations 1 & 2 New Frontiers Program 21 Discovery Program 22 nd rd 1st NF mission 2 NF mission 3 NF mission AO Mars evolution: Lunar formation: NEO characteristics: JUNO: Mars Pathfinder (1996-1997) Lunar Prospector (1998-1999) NEAR (1996-1999) New Horizons: South Pole - Aitken Basin Sample Pluto-Kuiper Belt Jupiter Polar Orbiter Return Mission Mission Comet Surface Sample Return Completed Venus In Situ Solar wind sampling: Comet diversity: Nature of dust/coma: Explorer Genesis (2001-2004) CONTOUR Stardust(1999-2006 ) Aug 15 2002 Network Science Lost Completed / In Flight Trojan/Centaur Comet internal structure: Mercury environment: Main-belt asteroids: Lunar Internal Structure Asteroid Sample Return Deep Impact (2005-2006) MESSENGER (2004-2012) Dawn (2007-2015) GRAIL (2011-2012 ) Io Observer Launched January 2006 August 2011 launch Arrives July 2015 In Flight / Development Ganymede Observer 23 No RPS were used on any of these 24 DSMCE Program Overview DSMCE Selections Aerial Polar VALOR: The Feasibility of A Nuclear-Powered Long- • Discovery-Scout Mission Capability Enhancement Baines, Kevin JPL Venus Vehicle Duration Balloon Mission to Explore the Poles of Venus Los Alamos National Locating and Characterizing Lunar Polar Volatiles: Feasibility Elphic, Richard Moon Lander • Program solicited mission concept proposals for Laboratory of a Discovery-Class Mission Journey to the land of Eternal Darkness and Ice (JEDI): A Jolliff, Bradley Washington University Moon Rover small planetary missions that require the ASRG Lunar Polar Volatile Explorer power source Rivkin, Andrew Applied Physics Lab Asteroid Lander Ilion: An ASRG-Enabled Trojan Asteroid Mission Concept A tour through Martian history: An ASRG-powered polar ice – Two Stirling Engines with ~140 Watts each (as GFE) Hecht, Michael JPL Mars Lander borehole. • Intended to foster science exploration in planetary Stofan, Ellen Proxemy Research Outer Planets Lander Titan Mare Explorer (TiME) science by missions enabled by ASRG McEwen, Alfred University of Arizona Outer Planets Orbiter Mission Concept: Io Volcano Observer (IVO) Sample Concept Study for a Comet Coma Rendezvous Sample Sandford, Scott NASA/AMES Comet Return Return Mission • Mission design assistance for these 6 month mission Sunshine, Jessica Univeristy of Maryland Comet Lander Comet Hopper concept studies will be offered by NASA • Selected 9 proposals out of 40 submitted • Next Discovery AO about 6 months after NF • GFE Stirling as part of the AO is TBD 25 26 OPF Studies • NASA-ESA joint studies of Jupiter System and Saturn System Science – Studies to concentrate on costing the “sweet spot” science missions – Align schedule with ESA: 2018-2022 launch date Outer Planets Flagship Status • Studies have been delivered to NASA for review – More details to be provide by Curt Niebur • Complete a technical evaluation during Nov/Dec. • Presentation to NASA & ESA science heads in Jan. 2009 • One destination will go forward as a NASA/ESA effort – ESA: Continue as a part of
Recommended publications
  • Autonomous Onboard Science Data Analysis for Comet Missions
    AUTONOMOUS ONBOARD SCIENCE DATA ANALYSIS FOR COMET MISSIONS David R. Thompson(1), Daniel Q. Tran(1), David McLaren(1), Steve A. Chien(1), Larry Bergman(1), Rebecca Castaño(1), Richard Doyle(1), Tara Estlin(1), Matthew Lenda(1), (1) Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA 91109, USA Email: [email protected], all others [email protected] Figure 1. Plume detection by identifying the nucleus. Left: computational edge detection. Center: a convex hull of edge points. Right: bright areas outside the nucleus are plumes. Image credit: NASA/JPL/UMD. ABSTRACT active geologic processes including scarps and outflows [1]. Its surface undergoes continuous modification, Coming years will bring several comet rendezvous with visible change during the years between two missions. The Rosetta spacecraft arrives at Comet flybys. The EPOXI flyby of comet Hartley 2 shows 67P/Churyumov–Gerasimenko in 2014. Subsequent skyscraper-size spires, flat featureless plains that outgas rendezvous might include a mission such as the H O, regions of rough and mottled texture, bands of proposed Comet Hopper with multiple surface landings, 2 various shapes, and diverse surface albedo. Comets’ as well as Comet Nucleus Sample Return (CNSR) and active areas range from 10-90%, changing over time Coma Rendezvous and Sample Return (CRSR). These and distance to the sun. They manifest as both localized encounters will begin to shed light on a population that, jets and diffuse regions (Figure 1). Still more exotic, despite several previous flybys, remains mysterious and recently discovered “active asteroids” suggest that poorly understood.
    [Show full text]
  • Agile Science Operations David R
    Agile Science Operations David R. Thompson Machine Learning and Instrument Autonomy Jet Propulsion Laboratory, California Institute of Technology Engineering Resilient Space Systems Keck Institute Study, July 31 2012. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Copyright 2012 California Institute of Technology. All Rights Reserved; U. S. Government Support Acknowledged. Image: Hartley 2 (EPOXI), NASA/JPL/UMD Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 1 Agenda Motivation: science at primitive bodies Critical Path Analysis and reaction time A survey of onboard science data analysis Case study – how could onboard data analysis impact missions? Image: Hartley 2 (EPOXI), NASA/JPL/UMD Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 2 Primitive bodies Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 3 Typical encounter (Lutetia 21, Rosetta) Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 4 Primitive bodies: key measurements Reproduced from Castillo-Rogez, Pavone, Nesnas, Hoffman, “Expected Science Return of Spatially-Extended In-Situ Exploration at Small Solar System Bodies,” IEEE Aerospace 2012. Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate
    [Show full text]
  • LAST CALL for the DAS Dinner Meeting Tuesday, May17th
    Vol. 56, No. 5, May, 2011 Next Meeting – May 17th, 2011 at 6:00 PM ~ Annual Dinner Meeting at the Hilton Wilmington/Christiana ~ See Pages 4 & 5 for full Details on this Event Celebrating the DAS Amateur Astronomer of the Year FROM THE PRESIDENT ! Bill Hanagan To start off, I’d like to thank Bill McKibben for his LAST CALL for the presentation at the April meeting on the Ancient Astronomy of Machu Picchu and Greg Lee for his presentation on DAS Dinner Meeting “What’s Up in the Sky”. If you missed the April meeting, you also missed my presentation on the sizing, positioning, and th surface quality of Newtonian secondary mirrors. Tuesday, May 17 Our May meeting is the annual “dinner” meeting of the DAS and it will be held on Tuesday, May 17 at the Christiana You’ll need to call Treasurer McKibben Hilton, the same location as last year. Social hour begins at at this late hour for Reservations. 6:00 P.M. followed by dinner at 7:00 P.M. After dinner, we’ll view a short video of time lapse astrophotos followed by the Andrew K. Johnston presentation of the Amateur Astronomer of the Year Award. We’ll conclude the evening with a talk titled “Navigating across from the the Solar System” by Mr. Andrew K. Johnston from the National Smithsonian Air and Space Museum. Mr. Johnston is the co-author of the “Smithsonian Atlas of Space Exploration” and his talk will give National Air & us a look at the history and technology of solar system explora- tion.
    [Show full text]
  • Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions
    NASA/TM—2015-218885 Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions Anthony J. Colozza Vantage Partners, LLC, Brook Park, Ohio Robert L. Cataldo Glenn Research Center, Cleveland, Ohio October 2015 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientifi c and Series, which includes the following report types: technical material pertinent to NASA’s mission. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major signifi cant phase program, see the following: of research that present the results of NASA programs and include extensive data or theoretical • Access the NASA STI program home page at analysis.
    [Show full text]
  • Comet Hopper Moves to 'Final Round' in NASA Selection Process 12 May 2011
    Comet Hopper moves to 'final round' in NASA selection process 12 May 2011 the team include Deputy PI Michael A'Hearn, who led NASA's Deep Impact and EPOXI comet missions. The Comet Hopper mission would be managed by NASA Goddard Space Flight Center in Greenbelt, Md. Other partners include Lockheed Martin, KinetX, the Johns Hopkins University Applied Physics Laboratory, University of Bern, Jet Propulsion Laboratory and Discovery Communications. "We've had some amazing cometary flybys but they have given us only snapshots of one point in time of what a comet is like," said Sunshine. "Comets are exciting because they are dynamic, changing throughout their orbits. With this new mission, we will start out with a comet that is in the cold, outer reaches of its orbit and watch its activity come alive as it moves closer and closer to the sun." The Comet Hopper mission would study the evolution of 46P/Wirtanen by landing on the comet Credit: NASA/GSFC/University of Maryland multiple times and observing its changes as it interacts with the sun. Comet Hopper would observe the comet by making detailed in situ measurements from various locations on the (PhysOrg.com) -- A University of Maryland-led surface and in the innermost coma as the comet mission proposal know as Comet Hopper has been moves through its orbit. The innermost coma is the chosen to compete for final selection as a new atmosphere of the comet just off the surface of the planetary mission in NASA's Discovery Program. nucleus where outgassing and jets originate. "We The team will receive $3 million to further develop would extensively explore the surface of a comet, its mission proposal concept.
    [Show full text]
  • NASA's FY14 Management and Performance, Addressing
    Management and Performance ADDRESSING MANAGEMENT CHALLENGES AND IMPROVING PERFORMANCE An essential phase in NASA’s performance management cycle is to evaluate Agency performance against its plans. Managers assess performance throughout the year and pay particular attention when NASA’s performance falls short of its goals. They seek explanations, develop plans to improve performance, and track results for as long as necessary. NASA leadership also evaluates trends across the portfolio of programs and over longer periods of time to identify and resolve persistent issues. The Government Performance and Results Act Modernization Act of 2010 reinforced NASA’s approach to performance management by introducing requirements for unmet program performance. Specifically, Congress required agencies and the Office of Management and Budget to provide analysis of trends in unmet performance targets. When a NASA program does not meet its commitment as stated in the annual performance plan, responsible program officials must explain the performance shortfall and provide an improvement plan for correcting the issue. This section provides the explanations and performance improvement plans for any unmet performance measures in FY 2012 and, where applicable, the link to the prior year’s performance. For FY 2012, NASA discusses performance trends in the following categories: • Cost and Schedule Performance, • Commercial Spaceflight Development, and • Diversity. To provide better performance improvement plans, NASA assesses the explanations for unmet performance and looks for trends in root causes. The results of this root cause analysis inform senior management when crosscutting corrective actions are warranted. In addition, NASA uses information on management and performance challenges, as identified by NASA’s Office of Inspector General (OIG) and the Government Accountability Office (GAO), to better understand root causes and to guide setting improvement plans.
    [Show full text]
  • Planetary Science Update & Perspectives on Venus Exploration
    Planetary Science Update & Perspectives on Venus Exploration Presentation at VEXAG James L. Green Director, Planetary Science Division May 6, 2008 1 Outline • FY09 Presidents Budget • Venus exploration opportunities: – Plans for next New Frontiers – Plans for next Discovery – Plans for SALMON – R&A opportunities 2 BUDGET BY SCIENCE THEME 3 Planetary Division 4 Planetary Division 5 What Changed, What’s the Same What Changed: • Initiated an Outer Planets Flagship (OPF) study activity joint with ESA/JAXA. • Lunar Science Research augmented to include a series of small lunar spacecraft. • Augments and enhances R&A to return more results from Planetary missions. • Discovery Program: Includes the recently selected MoOs (EPOXI and Stardust-NExT), adds Aspera-3 2nd extension (ESA/Mars Express), and selected GRAIL. • Preserves critical ISP work FY08 thru FY10, but deletes outyear activities in favor of more critical R&A and RPS enhancements. • Completes the Advanced Stirling RPS development and prepares for flight demonstration. • Mars Scout 2011 delayed to 2013 due to conflict of interest discovered during proposal evaluation. • Direction to the Mars Program to study Mars Sample Return (MSR) as a next decade goal • Expands US participation on the ESA/ExoMars mission by funding the potential selection of BOTH candidate U.S. instruments and EDL support. What’s the Same: • Discovery Program: MESSENGER, Dawn, Mars Express/Aspera-3, Chandraayn/MMM • New Frontiers Program: Juno and New Horizons • Mars Program: Odyssey, MER, MRO, Phoenix, MSL • Research
    [Show full text]
  • Versatile Stirling Technology for Radioisotope and Fission Power Systems
    VERSATILE STIRLING TECHNOLOGY FOR RADIOISOTOPE AND FISSION POWER SYSTEMS. L. S. Mason1, J. F. Zakrajsek1, and D.T. Palac1, 1NASA Glenn Research Center, 21000 Brookpark Road, Cleveland OH 44135, [email protected], [email protected], [email protected]. Introduction: Free-piston Stirling technology has The FPS Stirling development has been sponsored been under development at NASA Glenn Research by the Space Technology Mission Directorate (STMD) Center (GRC) since the 1970s. The current focus is on under the Nuclear Systems Project. A 12 kWe AC 100-watt class convertor technology for Radioisotope Power Conversion Unit (PCU) with two dual opposed Power Systems (RPS) and multi-kilowatt convertor and thermodynamically-coupled Stirling engines, technology for Fission Power Systems (FPS). shown in Fig. 3, is in the final stages of development at The NASA Science Mission Directorate (SMD) Sunpower with delivery to GRC expected in Spring has sponsored the RPS Stirling development. The 2014 [3]. technology is at a high Technology Readiness Level (TRL) based on the Advanced Stirling Convertor (ASC) from Sunpower Inc. The ASC, shown in Fig. 1, is designed to produce 80 We AC at 32% thermal-to- electric efficiency. The high efficiency allows a four- fold reduction in the amount of Pu-238 fuel as com- pared to Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) technology. Figure 3. 12 kWe PCU The PCU will be integrated into a fission Technol- ogy Demonstration Unit (TDU) that includes an elec- trically-heated reactor simulator with a pumped sodi- um-potassium (NaK) heat transfer loop that couples directly to the Stirlings [4].
    [Show full text]
  • Autonomous Onboard Science Data Analysis for Comet Missions
    AUTONOMOUS ONBOARD SCIENCE DATA ANALYSIS FOR COMET MISSIONS David R. Thompson(1), Daniel Q. Tran(1), David McLaren(1), Steve A. Chien(1), Larry Bergman(1), Rebecca Castaño(1), Richard Doyle(1), Tara Estlin(1), Matthew Lenda(1), (1) Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA 91109, USA Email: [email protected], all others [email protected] Figure 1. Plume detection by identifying the nucleus. Left: computational edge detection. Center: a convex hull of edge points. Right: bright areas outside the nucleus are plumes. Image credit: NASA/JPL/UMD. ABSTRACT active geologic processes including scarps and outflows [1]. Its surface undergoes continuous modification, Coming years will bring several comet rendezvous with visible change during the years between two missions. The Rosetta spacecraft arrives at Comet flybys. The EPOXI flyby of comet Hartley 2 shows 67P/Churyumov–Gerasimenko in 2014. Subsequent skyscraper-size spires, flat featureless plains that outgas rendezvous might include a mission such as the H2O, regions of rough and mottled texture, bands of proposed Comet Hopper with multiple surface landings, various shapes, and diverse surface albedo. Comets’ as well as Comet Nucleus Sample Return (CNSR) and active areas range from 10-90%, changing over time Coma Rendezvous and Sample Return (CRSR). These and distance to the sun. They manifest as both localized encounters will begin to shed light on a population that, jets and diffuse regions (Figure 1). Still more exotic, despite several previous flybys, remains mysterious and recently discovered “active asteroids” suggest that poorly understood. Scientists still have little direct primitive ice could survive for billions of years in the knowledge of interactions between the nucleus and inner solar system.
    [Show full text]
  • Global Challenges
    6–10 JANUARY 2020 | ORLANDO, FL DRIVING AEROSPACE SOLUTIONS FOR GLOBAL CHALLENGES What’s going on in Page 25 aiaa.org/scitech #aiaaSciTech From the forefront of innovation to the frontlines of the mission. No matter the mission, Lockheed Martin uses a proven approach: engineer with purpose, innovate with passion and define the future. We take time to understand our customer’s challenges and provide solutions that help them keep the world secure. Their mission defines our purpose. Learn more at lockheedmartin.com. © 2019 Lockheed Martin Corporation FG19-23960_002 AIAA sponsorship.indd 1 12/10/19 3:20 PM Live: n/a Trim: H: 8.5in W: 11in Job Number: FG18-23208_002 Bleed: .25 all around Designer: Kevin Gray Publication: AIAA Sponsorship Gutter: None Communicator: Ryan Alford Visual: Male and female in front of screens. Resolution: 300 DPI Due Date: 12/10/19 Country: USA Density: 300 Color Space: CMYK NETWORK NAME: SciTech ON-SITE Wi-Fi From the forefront of innovation › PASSWORD: 2020scitech to the frontlines of the mission. CONTENTS Technical Program Committee .................................................................4 Welcome ........................................................................................................5 Sponsors and Supporters ..........................................................................7 Forum Overview ...........................................................................................8 Pre-Forum Activities .................................................................................
    [Show full text]
  • Jim Green Director, Planetary Science May 23, 2012 Planetary Science Objectives
    Eris Jim Green Director, Planetary Science May 23, 2012 Planetary Science Objectives NASA’s goal in Planetary Science is to “Ascertain the content, origin, and evolution of the solar system, and the potential for life elsewhere.” • Planetary Program seeks to answer fundamental science questions: 1. What is the inventory of solar system objects and what processes are active in and among them? 2. How did the Sun’s family of planets, satellites, and minor bodies originate and evolve? 3. What are the characteristics of the solar system that lead to habitable environments? 4. How and where could life begin and evolve in the solar system? 5. What are characteristics of small bodies and planetary environments that pose hazards and/or provide resources? Planetary Science accomplishes these goals through a series of strategic-large, medium, small mission and supporting research 2 Planetary Science Division Division Director: Jim Green Deputy Director: Vacant Assistant Director for Missions: Andrea Razzaghi / GSFC Support & Communication Assistant Director for StratCom & Integ: Kristen Erickson • LaJuan Moore/PAAC Lead Secretary: Paulette Moore Access to Space Program Executive • Steven Williams/NASM PSS/Admin Support: Jackie Mackall (SMD) Rhoda Hornstein Mars Exploration Program Solar System Exploration Programs Planetary Research Doug McCuistion Vacant/Acting--New Hire (TBD) Jonathan Rall • Lil Reichenthal/Exec Officer/GSFC Secretary : Paulette Moore Secretary: Paulette Moore Michael Meyer, Chief Mars Scientist Janelle Turner/ Mars E/PO Lead
    [Show full text]
  • Mission Design for Safe Traverse of Planetary Hoppers
    Mission Design for Safe Traverse of Planetary Hoppers by Babak E. Cohanim B.S., Iowa State University (2002) S.M., Massachusetts Institute of Technology (2004) Submitted to the Department of Aeronautics & Astronautics in Partial Fulfillment of the Requirements for the Degree of Doctor of Science in Aeronautics & Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2013 © 2013 Babak E. Cohanim. All rights reserved Signature of Author......................................................................................... Certified by..................................................................................................... Thesis Committee Chairman: Jeffrey A. Hoffman Professor of the Practice, Aeronautics & Astronautics Certified by..................................................................................................... Thesis Committee Member: Olivier L. de Weck Associate Professor, Aeronautics & Astronautics and Engineering Systems Certified by..................................................................................................... Thesis Committee Member: David W. Miller Professor, Aeronautics & Astronautics Certified by..................................................................................................... Thesis Committee Member: Tye M. Brady Space Systems Group Leader, Draper Laboratory Accepted by.................................................................................................... Aeronautics & Astronautics Graduate Chairman: Eytan H. Modiano Professor, Aeronautics
    [Show full text]