Integration of Turbofan Engines Into the Preliminary Design of a High
Total Page:16
File Type:pdf, Size:1020Kb
Lehrstuhl für Luftfahrtsysteme Technische Universität München Integration of turbofan engines into the preliminary design of a high-capacity short-and medium-haul passenger aircraft and fuel efficiency analysis with a further developed parametric aircraft design software David Kalwar LS-MA 15/02 LS-SA/DA lfd Nr. Vertraulichkeit LS-MA 15/02 Öffentlich Titel (und Untertitel) Autor Integration of turbofan engines into the David Kalwar preliminary design of a high-capacity short-and Betreuer 1 medium-haul passenger aircraft and fuel Niclas Randt efficiency analysis with a further developed Technische Universität München parametric aircraft design software Betreuer 2 Daten zur Abgabe und Korrektur der Studienarbeit: 15.04.2015 12.05.2015 28.05.2015 Abgabe der Erstfassung (Datum) Rückgabe der korrigierten Erstfassung (Datum) Abgabe der Endversion (Datum) Bestätigung der Einreichung der abgeschlossenen Studienarbeit durch den Betreuer: Ort, Datum Unterschrift des Betreuers am LLS (Niclas Randt) Anmerkungen: Abstract The growth of passenger numbers in air travel implicates challenges for regions and airports with limited air and ground capacities. Environmental concerns support the need for fuel-efficient aircraft. Research by the Institute of Aircraft Design of the Technische Universit¨atM¨unchen led to the development of a turboprop-powered high capacity aircraft for operation on short and medium range routes. The recalculation of the initial concept led to the readjustment of the ambitious re- quirements. The limited availability of large turboprop engines is another challenge. A turbofan-powered variant is considered feasible. Various methods for the modeling and computation of turbofan engines are integrated into a design tool and feasibility are carried out. Current generation turbofan engines are chosen to power the air- craft. The aircraft is integrated into a fuel efficiency calculation tool according to the necessary parameters and functions to carry out fuel efficiency analyses compared with existing aircraft. Finally, the design tool is integrated into an aircraft design development environment. A two- and a four-engined turbofan variant of the aircraft are created, both prov- ing feasible. The performance is superior to that of the turboprop aircraft, with the four-engined turbofan variant showing a 4% better fuel economy. The aircraft con- cept outperforms existing aircraft on short missions. On longer missions, announced long-haul aircraft can match the fuel efficiency. The work shows the feasibility of the aircraft with both turboprop and turbofan engines. The aircraft has potential to replace current aircraft on routes with high demand and limited airport capacities while improving fuel economy. II Zusammenfassung Das Wachstum der Passagierzahlen im Luftverkehr impliziert Herausforderungen fur¨ Regionen und Flugh¨afen mit limitierten Kapazit¨aten in der Luft und am Boden. Um- weltbelange unterstutzen¨ die Notwendigkeit, sparsame Flugzeuge einzusetzen. For- schungsarbeit am Lehrstuhl fur¨ Luftfahrtsysteme der Technischen Universit¨at Munchen¨ fuhrte¨ zur entwicklung eines Turboprop-angetriebenes Flugzeugs mit hoher Kapazit¨at fur¨ den Betrieb auf Kurz- und Mittelstrecken. Die Neuberechnung des ursprunglichen¨ Konzepts fuhrte¨ zu einer Nachjustierung der ehrgeizigen Anforderungen. Die begrenzte Verfugbarkeit¨ von großen Turboproptrieb- werken ist eine weitere Herausforderung. Eine Turbofan-angetriebene Variante gilt als realisierbar. Verschiedene Methoden zur Modellierung und Berechnung von Turbofan- Triebwerken werden in ein Design Tool integriert und Machbarkeitsstudien fur¨ durch- gefuhrt.¨ Turbofan-Triebwerke aktueller Generation werden ausgew¨ahlt, das Flugzeug anzutreiben. Das Flugzeug wird Anhand der erforderlichen Parameter und Funktio- nen in ein Kraftstoffeffizienz-Berechnungstool integriert, um Kraftstoffeffizienzana- lysen im Vergleich zu existierenden Flugzeugen durchzufuhren.¨ Schließlich wird das Design Tool in eine Flugzeugentwurfs-Entwicklungsumgebung integriert. Eine zwei- und eine viermotorige Variante des Turbofan-Flugzeugkonzepts wird er- stellt, die sich beide als machbar erweisen. Die Leistung ist besser als die der Turboprop- Flugzeuge, wobei die viermotorige Turbofan-Variante einen 4% niedrigeren Kraft- stoffverbrauch zeigt. Das Flugzeug ubertrifft¨ existierenden Flugzeugen auf kurzen Strecken. Auf l¨angeren Strecken kommen angekundigte¨ Langstreckenflugzeuge gleich- auf. Die Arbeit beweist die Machbarkeit des Flugzeugs mit Turboprop- und Turbofan- Triebwerken. Das Flugzeug hat das Potenzial, aktuelle Flugzeuge auf Routen mit hoher Nachfrage und Flugh¨afen mit begrenzten Kapazit¨aten zu ersetzen, und dabei den Kraftstoffverbrauch zu reduzieren. III Contents 1. Introduction1 2. The Propcraft P-420 aircraft concept3 2.1. Development of the initial aircraft concept...............3 2.1.1. Market analysis and requirements................4 2.1.2. Summary of the P-420/A concept................4 2.1.3. Design mission..........................6 2.2. Development of an integrated design tool and modification of the P- 420/A...................................7 2.2.1. Introduction of the Integrated Design Tool (IDT).......7 2.2.2. The P-420/B...........................8 2.3. Trade studies............................... 11 2.4. Analysis and modification of the P-420/B and the IDT........ 11 2.4.1. Propeller mass estimation.................... 12 2.4.2. Taxi power settings........................ 12 2.4.3. Limitation of the Rate Of Climb or Descent (ROCD)..... 13 2.4.4. Usability of the IDT....................... 13 2.5. Definition of requirements........................ 13 3. Theory 15 3.1. Point mass model and total energy method............... 15 3.2. Jet engine thrust............................. 17 3.3. Specific Fuel Consumption (SFC).................... 20 3.4. Takeoff Climb Gradient Requirements.................. 20 4. Integration of turbofan engines into the P-420 aircraft concept 22 4.1. Motivation................................. 22 IV Contents 4.2. Advantages and disadvantages of turbofan engines compared to turbo- prop engines................................ 23 4.2.1. Mass................................ 23 4.2.2. Aerodynamics........................... 24 4.2.3. Thrust characteristics and flight performance.......... 24 4.2.4. Fuel consumption......................... 25 4.2.5. Noise................................ 25 4.2.6. Engine availability........................ 26 4.2.7. Operational aspects........................ 26 4.3. Modification of the IDT......................... 26 4.3.1. Mass................................ 26 4.3.2. Aerodynamics........................... 27 4.3.3. Turbofan engine parameter calculation............. 27 4.4. Turbofan engine choice.......................... 39 4.4.1. General Electric GEnx-1B76................... 39 4.4.2. Pratt & Whitney PW1127G................... 40 4.5. Analysis of aircraft performance..................... 41 4.5.1. Mass................................ 42 4.5.2. Aerodynamics........................... 43 4.5.3. Engine Characteristics...................... 45 4.5.4. Performance............................ 47 4.5.5. Fuel consumption and payload-range characteristics...... 51 4.5.6. Discussion of engine number................... 53 5. Fuel efficiency analysis 56 5.1. Problem statement............................ 56 5.2. Base of Aircraft Data (BADA)...................... 57 5.2.1. Limitations of BADA....................... 57 5.3. Fuel Consumption and Emissions Calculation Tool (FCECT)..... 57 5.3.1. Single Mission Calculator.................... 58 5.3.2. Modifications to the FCECT................... 59 5.4. Derivation of BADA coefficients..................... 60 5.4.1. Operations Performance File (OPF)............... 60 5.4.2. Airline Procedure File (APF).................. 63 5.4.3. SYNONYM ALL.LST file.................... 64 5.5. Analysis.................................. 64 5.5.1. Competitor aircraft........................ 64 5.5.2. Mission parameters and boundary conditions.......... 69 5.6. Results................................... 72 5.6.1. 420 Passengers (PAX) and 5 t cargo.............. 73 5.6.2. 315 PAX and 3.75 t cargo.................... 77 5.6.3. P-420 design mission....................... 78 5.6.4. P-420 versions........................... 79 5.6.5. Summary............................. 81 V Contents 6. Sensitivity Analysis 82 6.1. Identification of sensitivities....................... 82 6.1.1. Taxi times............................. 82 6.1.2. Initial cruise altitude....................... 83 6.1.3. Airspeed.............................. 84 6.2. Results................................... 84 6.2.1. Taxi times............................. 84 6.2.2. Initial cruise altitude....................... 86 6.2.3. Airspeed.............................. 87 6.2.4. Conclusion............................. 88 7. Integration of the Integrated Design Tool into the Aircraft DEsign BOx 89 7.1. Introduction to the Aircraft DEsign BOx (ADEBO).......... 89 7.2. P-420 Configuration........................... 91 7.3. Input and output wrapper........................ 93 7.4. Workflow................................. 93 7.5. Conclusion................................. 94 8. Outlook and conclusion 95 Bibliography 97 A. Appendix 104 A.1. APF.................................... 104 A.1.1. P-420/B APF file......................... 104 A.1.2. P-420/C APF file......................... 105 A.1.3. P-420/G APF file......................... 105 A.1.4. P-420/T APF file......................... 106 A.2. OPF...................................