Improvements in Optical Trap Displays
Total Page:16
File Type:pdf, Size:1020Kb
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2020-08-26 Improvements in Optical Trap Displays R. Wesley Rogers Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Engineering Commons BYU ScholarsArchive Citation Rogers, R. Wesley, "Improvements in Optical Trap Displays" (2020). Theses and Dissertations. 8686. https://scholarsarchive.byu.edu/etd/8686 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Improvements in Optical Trap Displays R. Wesley Rogers A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Daniel E. Smalley, Chair Stephen Shultz Ryan Camacho Department of Electrical and Computer Engineering Brigham Young University Copyright © 2020 R. Wesley Rogers All Rights Reserved ABSTRACT Improvements in Optical Trap Displays R. Wesley Rogers Department of Electrical and Computer Engineering, BYU Master of Science This thesis improves on the design of the Optical Trap Display (OTD), presented in 2018 [1]. Contributions include: real time animation; single beam, multiparticle suspension, point primitive anisotropic scattering, and virtual image approximation. First, real time animation was demonstrated on the OTD for the first time in full color at up to 30Hz refresh. Second, multi- particle systems allow for scaling of the display by a multiplicative factor, potentially up to orders of magnitude greater than the first OTD. Third, anisotropic scattering of point primitives was shown for individual suspended particles and multiple simultaneously suspended particles. Fourth, virtual images have been previously considered impossible in volumetric displays but by using perspective projections we have shown in simulation and experiment for the first time that an effect similar to a virtual image can be created. Keywords: optical trap, photophoretic trap, 3D display, volumetric display ACKNOWLEDGMENTS I gratefully acknowledge the patient tutelage of Dr. Daniel Smalley throughout my graduate program. I appreciate the support of my family, as well as the consistent, loving support of my wife Madisyn, without whose encouragement and support I would have never finished a graduate degree. I would also like to thank the generous support of the National Science Foundation (NSF) who have helped fund a portion of this work. TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................ vii CHAPTER 1: INTRODUCTION............................................................................................. 1 1.1 Advancing Volumetric Displays ................................................................................ 1 1.2 Background ............................................................................................................... 2 1.2.1 Volumetric Displays Thus Far ..................................................................... 2 1.2.2 Previous Work on the Optical Trap Display (OTD) ..................................... 4 1.2.3 Visual Cues ................................................................................................. 4 1.2.4 Photophoresis ............................................................................................ 12 1.3 Overview of the Text ............................................................................................... 12 CHAPTER 2: IMPROVING PHOTOPHORETIC TRAP VOLUMETRIC DISPLAYS ... 13 2.1 Abstract ................................................................................................................... 13 2.2 Introduction ............................................................................................................. 14 2.3 Trapping .................................................................................................................. 15 2.4 Scanning .................................................................................................................. 17 2.5 Scaling .................................................................................................................... 17 2.6 Robustness .............................................................................................................. 20 2.7 Safety ...................................................................................................................... 21 2.8 Occlusion ................................................................................................................ 22 2.9 Applications ............................................................................................................ 27 iv 2.9.1. Surveillance ............................................................................................. 28 2.9.2 Medicine ................................................................................................... 28 2.9.3 Corporeal AI Agents ................................................................................. 28 2.10 Conclusion............................................................................................................. 30 2.11 References ............................................................................................................. 30 CHAPTER 3: SIMULATING VIRTUAL IMAGES IN OPTICAL TRAP DISPLAYS ...... 34 3.1 Abstract ................................................................................................................... 34 3.2 Introduction ............................................................................................................. 34 3.3 Theory ..................................................................................................................... 37 3.3.1 Optical Trap Displays ................................................................................ 37 3.3.2 Perspective Projection ............................................................................... 37 3.4 Experiment .............................................................................................................. 38 3.5 Results ..................................................................................................................... 39 3.6 Analysis................................................................................................................... 41 3.7 Conclusion .............................................................................................................. 43 3.8 References ............................................................................................................... 44 CHAPTER 4: CONCLUSION AND FUTURE WORK ........................................................ 45 4.1 Conclusion: ............................................................................................................. 45 4.2 Future Work: ........................................................................................................... 46 Bibliography ............................................................................................................................ 49 v References Included in Chapters 1 and 4: ...................................................................... 49 References Included in Chapter 2: ................................................................................. 50 References included in Chapter 3: ................................................................................. 53 Appendix A: Generating Perspective Projection in MATLAB. ............................................ 55 Appendix B: Blender Simulation of Virtual Image .............................................................. 85 vi LIST OF FIGURES Figure 1- 1. Reproduction of the figure in [3]. The three families of 3D displays are shown with a basic breakdown of strengths and weaknesses. ............................................................................ 3 Figure 1- 2. Reproduction of the figure in [16]. Table showing primary visual cues ranked by influence in three different distance zones (personal, action, and vista) relative the viewer. ......... 5 Figure 1- 3. The Blue block on the left is shown occluding the green block on the left. The right blue and green blocks show the effect of transparency on occlusion. ........................................... 7 Figure 1- 4 Relative density is shown here with a series of identical objects placed in a grid, all equally spaced but appearing more dense in the view as they recede into the distance. ................ 8 Figure 1-5 The green and red cubes pictured are the same size but placed at different distances to the camera. This shows relative size, the red cube looks smaller because it is farther away. This also shows height in the visual field, the red block appears at a different height in the view even though it is at the same height from the plane as the green cube. ................................................. 8 Figure 1- 6. Aerial perspective can be seen in this image. The mountains in the distance appear bluer than they are in reality and are blurred compared to objects closer to the viewer................. 9 Figure 1- 7. Vergence is part of the ocular motor visual cues and is shown here as a pair of eyes looking at objects various distances