Proceedings of the ICMC, Ohio State University, Columbus - Beyis, I? 1991 Chaos and Creativity the Dynamic Systems Approach to Musical Composition

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the ICMC, Ohio State University, Columbus - Beyis, I? 1991 Chaos and Creativity the Dynamic Systems Approach to Musical Composition ------_-----_--_---------------------------------------- -------------------m Papers s+J Minneapolis, Minnesota U.S.A. : November 3 -7,1993 Papers FISEA 93 PUBLISHED BY: Minneapolis College of Art and Design COVER DESIGN BY: Joseph D.R. O’Leary, Veto Design, Minneapolis SYMPOSIUM IDENTITY BY: Alex Tylevich PRINTED BY: Dorholt Printing CREDITS THE ART FACTOR: Papers THE FOURTH INTERNATIONAL SYMPOSIUM ON ELECTRONIC ART FISEA 93 FISEA 88, Utrecht, Netherlands / SISEA 90: Gronin en, Netherlands / TISEA 92, Sydney, Australia / FISEA 93, Minneapolis, U.S.A. / ISEA 94, Helsinkr, Finlan ii / ISEA 95, Montreal, Canada FISEA 93 is hosted by the Minneapolis College of Art and Design, in affiliation with the Inter- Society for the Electronic Arts: Minneapolis College of Art and Design ISEA 2501 Stevens Avenue South P.O. Box &l&6,3009 AR Rotterdam, Netherlands Minneapolis, Minnesota 55404 U.S.A. Telephone: 31-10-2020850,31-79-612930 Telephone: (612) 874-3754 Fax: 31-79-611737 Emarl: [email protected] Email: [email protected] (Board1 or [email protected] FISEA 93 IS ENDORSED BY: ISEA Inter-Society for the Electronic Arts ISAST International Society for the Arts, Sciences & Technology ANAT Australian Network for Art and Technology YLEM Artists Using Science and Technology , FISEA 93 INTERNATIONAL PROGRAM ADVISORS: *Roy ASCOTS (UK,), *Peter I?eyIs (Belgium), Annick Bureaud (France), ‘Jii en Claus (German 1, Emanuel Dimas de Melo Prmenta (Portu 11, Greg Garvey (Canada), Ross Harley T Australia), rra &&arris (U.S.A.), Theo Hesper (Indonesia), Errik Tl uhtamo (Finland), Ftsuo Sakane (Japan), John Lansdown .K.), Nadia Ma nenat-Thalmann (Switzerland), *Roger Malina (U.S.A.), l Artemrs Moroni (Brazil), +Simon Penny (LIEA) l W’ rm van der Plas (Netherlands), Stephen PO (U.S.A.), Cynthia Rubin (U.S.A.), Christine Scho f (A&&$) *Re’ ne Spitz (Brazil), Minna Tarkka (Fmlan r 1, Philippe Q&au (France), ‘Yoshiyuki Abe (Japant; l FliEA 8 presenter or plenary session ofj?a7 PROGRAM DEVELOPMENT: Program Director: Roman Verostko, Professor, Minneapolis College of Art and Desi n / Program Committee Coordinator: Dr. Alice Wagstaff, Psychologrst / Senior Consultant: Dr. i?loyd Uhan, Music Department, University of Minnesota EVENT CHAIRPERSONS/CURATORS: Sound Performance Events and Listenin Chamber: Dr. Homer G. Lambrecht, Composer, MIDI Instrumentalist and Associate Professor, 8 niversity of Wisconsin-River Falls / Electronic Theater and Interactive Art Gallery: Dr. Scott A. Sayre, Manager of Interactive Media, Interactive Media Group, The Minneapolis Institute of Arts / Gallery Installations and Exhibition: Brian Szott, Gallery Director, Minnea lis College of Art and Design / FAX Art Exhibits: Craig Ede, Artist and Teacher / SIide Show: Judith s”ourman, Artist and Assistant Professor, St. Olaf College PROGRAM SUPPORT SERVICES: FISEA Workshop Coordinator: Beth Giles, Continuing Studies Pro am Coordinator, Minneapolis College of Art and Design / FISEA Publications Editoc Susan V. Hanna-B1 % us, Grants Manager, Minneapolis College of Art and Design / FISEA Corn uter Services: Andrew B. Mickel, Corn uter Center Director, Minneapolis College of Art and Design P FISEA Equipment Manager: Bradford !zmith, Media Center Director, Minneapolis College of Art and Design ADMINlSTRATlON: WITH SPECIAL THANKS TO: Dana M. Brodt, Millesande Charles, Lisa Daehlin, Mark Fe ereisen, John Fillwalk, Linda Fisher, Jan Zita Grover, Bill Haman, Brent Hamilton, Bruce Jenkins, Larry Lam b, Barry McMahon, Thomas E. Morin, Russ Mroaek, Richard Mueller, Aribert Mummer, Richard Paske, Anthony Riddle, Nell Seiling, Linda Shapiro, Michael Simmons, Steve Solum, Mark Stanley, Vem Sutton, Alex Tylevich, Fred Zinn FISEA 93 IS PRESENTED IN PARTNERSHIP WITH: Minneapolis Community Co11 e / The Minneapolis Institute of Arts / Minneapolis Hilton and Towers / University of Minnesota / Wa ?izer Art Center FISEA 93 IS MADE POSSIBLE THROUGH THE GENEROUS SUPPORT OF: Apple Computer, Inc. / Bolger Publications and Creative Printing / Cisco Systems, Inc. / Crash and Sue’s / Cray Research, Inc. / Dennis Fazio, The Minnesota Re ‘onal Network Co oration fMRNet) / Hendrick’s Pianos, Edina with s e&l thanks to Ralph Bauer and kb+4opan / Lamb% Coyy / 3M Compmy / Northwest Airlines, Pnc. / ProColor, Inc., a full-service di ta rmagmg center an custom photo lab Roger Dodger Music with special thanks to Roger Dumas ! Scm ling Travel / Silicon Graphics, Inc. / zerhaeuser Paper Company / Yamaha Corporation of America, Keyboard Dtwslon / Zeos International, . TABLE OF CONTENTS PAGE PREFACE Roman Verostko, Program Director V BOOK OF PAPERS Ascott, Roy From Appearance to Apparition: communications 1 and wnsciousness in fk cybersphere Barilleaux, RenC Paul Holography and tk Laruisuzpe Tradition 9 Beyls, Peter Creatioity and computation. Tracingattifudes and 19 mofiws. Claus, Jiirgen Art in tk Solar Age 29 Gigliotti, Carol, Ph.D. Aesthetics of a Vi&& World 43 Gold, Rich Art in tk Age of Ubiquitous Computing 55 Halaby, Samia A. Technology, Abstraction and Kinetic Painting 57 Harris, Craig Configuring Hospitable Space 67 Herman, Martin LXerministic Chaos, Iteratim Models, Dynamical 79 S stems and Their Application in Algorithmic 2 omposifion Maxwell, Delle and A User’s Guide to the Electronic Click! 83 Annette Weintraub Miranda, Eduardo Reck Cellular Automata Music Composition: a bi+ 95 logical inspirafion Neumark, Norie interact& Journeys: making room to moae in tk 111 cultural territories of interactioity Reagan, Trudy Myrrh Scientists Doing Art, Artists Doing Science 125 Search, Patricia The Semiotics of tk Digital Image 137 Settel, Zack and Live inferaction Applications for Real-time FFT- 147 Cort L.ippe based Resynthesis Shortess, George K. Creatizx PfobIem Solving as Aesthetic Experience 153 Spitz, Rejane Qualitafizx, dialectical, and eqxr-ienriaI domains of 161 Electronic Art Whitecross, Iain The Electric Garden 167 Wilson, Stephen Light and Dark Visions: Tk Relafionship of Cultural 173 - Theory to Art That Uses Emerging Technologies Witte, Mary Stieglitz, Ph.D. Art Imaging with Color Copiers: A Survey of 183 Artworksfrom North America and Europe / Papers received in advance of the symposium are ublished here. Additional presenters at FISEA 93 are Mar o K. A stolos, Ph.D. (Red nrng tk State of t Fe Art), Louis Bet (AesfkGcs and the Epistemolo Artz -/ii*aul LfeT , Brian Evans (The Pmplicate Beauty of tk Algorithm), Christian MBller (Interactive Arc flYoftecture), F. Kenton Musgrave (FonnaI logic and Self Expression), Leni Schwendiger (Urban Sites Inform Sculptural Light Works). Openin sessions are resented by Jan Hoet, Belgium (Art and Technology: pradox or challenge. 1 and Brenda Laurel, 8 .S.A. (ArtjTe j: Collaboratzons: Some Tips on Getting Along). S posium panelists are Rob fisher, chair, Stewart Dickson, Timothy Duffield, Helaman Fergusoq, Bruce I-E m&on, Frank McGuire, David Morris, Steve Pevnick (Tk C feras a Tool for Sculptors: sculptm in qberspace); Simon Penny, chair, Peter Lunenfeld, Lev Manovich,T effxy Schultz (Coping with Hyperc~ 4 ture: technoZo ‘Cal than e and tk pace o cultural adaptation); Greg Garvey, chair, Ro Ascott, Brenda Laurel, Carl Eugene% effler PThe Network J lthout Walls: tk re-definitlon of art in an age or telewmmuniwtions). PREFACE By way of introduction to these symposium papers let us say a brief word first on the term “electronic art”and secondly on the focus of the symposium, “the art factor.” Our task is twofold: (1) to specify more clearly what we mean by “electronic art” and (2) to begin developing the critical understanding necessary for filtering out the finest artistic manifestations of its use. ELECTRONIC ART. Recently a colleague suggested that the term “electronic art” was an oxymoron. By this I believe she meant a self contradictory term. Several years ago when we contemplated this symposium I also questioned the use of the term “electronic” as did our committees and many others. But no longer. Changing technologies in the practice of art are not new. They have been with us from prehistoric times. Thus the art of the brushed Chinese character is “shufa”; the art of the manuscript is “calligraphy”; and the art of typesetting is “typography.“ Since World War II the field of electronics has achieved radically new capabilities and has attracted hundreds of artists to experiment with its use. There are over 1800 entries in the 1993 edition of the International Directory of EIecfronic Art. Although reference to “electronic” music dates back to as early as the sine-wave tones of Leon Theremin in 1924, it was the perfection of the tape recorder in the 1940’s that thrust electronic music forward. For the arts in general, the term has been in substantial use for several decades with a pronounced presence since the founding of “Ars Electronica” in 1979 at Linz, Austria. What is the new post WWII technology in electronics? It is the integrated circuit (1948) making possible the use of sophisticated logic circuitry in everything from desktop computers to cruise missiles. Today’s electronic controllers exhibit an uncanny capability - a semblance of “intelligence,” capable of flying airplanes, simulating the human voice and controlling vast networks of information. These controllers are driven by electronic circuits capable of processing logical procedures lending them a seemingly intelligent behavior. These procedures may be software controllable (open for instruction) and self adjusting to the environment they are designed to control. Procedures may be designed to simulate practically
Recommended publications
  • Monday, 08:00–10:00 CLEO: QELS-Fundamental Science
    07:00–18:00 Registration, Concourse Level Executive Ballroom Executive Ballroom Executive Ballroom Executive Ballroom 210A 210B 210C 210D CLEO: QELS-Fundamental Science 08:00–10:00 08:00–10:00 08:00–10:00 08:00–10:00 FM1A • Quantum FM1B • Topological Photonics I FM1C • Novel Phenomena in FM1D • Coherent Phenomena Optomechanics & Transduction Presider: To Be Announced Classical Nano-Optics in Coupled Resonator Networks Monday, 08:00–10:00 Monday, Presider: Gabriel Molina Terriza; Presider: Mo Mojahedi; Univ. of Presider: To Be Announced Centro de Fisica de Materiales, Toronto, USA Spain FM1A.1 • 08:00 FM1B.1 • 08:00 FM1C.1 • 08:00 FM1D.1 • 08:00 Invited Ultralow Dissipation Mechanical Resona- Spin-Preserving Chiral Photonic Crystal Brightness Theorems for Nanophoton- Solving Hard Computational Problems with 1,2 1 1 tors for Quantum Optomechanics, Nils Mirror, Behrooz Semnani , Jeremy Flan- ics, Hanwen Zhang , Chia Wei Hsu , Owen Coupled Lasers, Nir Davidson1; 1Weizmann 1 1 2 2 2 1 1 Johan Engelsen , Sergey A. Fedorov , Amir nery , Zhenghao Ding , Rubayet Al Maruf , Miller ; Yale Univ., USA. We present nano- Inst. of Science, Israel. We present a new a 1 1 2,1 1 H. Ghadimi , Mohammad J. Bereyhi , Alberto Michal Bajcsy ; ECE, Univ. of Waterloo, photonic ‘’brightness theorems’’, a set of new system of coupled lasers in a modified 1 1 2 2 Beccari , Ryan Schilling , Dalziel J. Wilson , Canada; Inst. for Quantum Computing, power-concentration bounds that generalize degenerate cavity that is used to solve dif- 1 1 Tobias J. Kippenberg ; Ecole Polytechnique Canada. We report on experimental realiza- their ray-optical counterparts, and motivate ficult computational tasks.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Quantum Dot Lasers for Silicon Photonics Permalink https://escholarship.org/uc/item/8p01r83d Author Norman, Justin Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Quantum Dot Lasers for Silicon Photonics A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Materials by Justin Colby Norman Committee in charge: Professor John Bowers, Co-Chair Professor Arthur Gossard, Co-Chair Professor Chris Palmstrøm Professor Dirk Bouwmeester December 2018 The dissertation of Justin Colby Norman is approved. ____________________________________________ Professor Dirk Bouwmeester ____________________________________________ Professor Chris Palmstrøm Professor Arthur Gossard, Committee Co-Chair ____________________________________________ Professor John Bowers, Committee Co-Chair December 2018 Quantum Dot Lasers for Silicon Photonics Copyright © 2018 by Justin Colby Norman iii Dedicated to April Norman iv ACKNOWLEDGEMENTS If a thesis were like a journal article and all contributors given credit in the author list, then my title page would exceed entire length of this body of work. Pursuing a Ph.D. is not a simple endeavor, and its pursuit begins long before a student begins their journey in graduate school. To do proper justice to everyone in my life who contributed to my efforts would not be possible in the limited scope of this document, but I will attempt to acknowledge the key individuals who got me here, helped along the way in my scientific endeavors, and who helped me maintain the tenuous grip on sanity inherent to graduate studies.
    [Show full text]
  • Symposium on Undergraduate Research
    SYMPOSIUM ON UNDERGRADUATE RESEARCH Division of Laser Science of A.P.S - LS XXXIV - 17 September 2018.- Washington DC PARTICIPANTS’ LUNCHEON - Ballroom East - 12:00 The participants' luncheon will bring together the Symposium students and distinguished laser scientists. Sandwich lunches will be provided for participants and invited guests only. REMINDER: Group Photo Break 3:55 PM - PLEASE assemble at the designated place!!! POSTER SESSION - International Ballroom East - 1:00 Session LM4G (poster) 1:00 - 3:55 PM, Ballroom East – Dr. Keith Stein, Bethel Univ., Presider LM4G - 1 Using the Instantaneous Velocity of a Brownian Particle in an Optical Tweezer to Measure Changes in Mass. Gabriel H. Alvarez1, Julia E. Orenstein2, Lichung Ha2, Diney S. Ether Jr.2, and Mark G. Raizen2. 1) Stanford Univ., Stanford, CA 94305, 2) Univ. of Texas, Austin, TX 78712. Using a fast detector to observe the light deflected by silica mi- crospheres trapped in an optical tweezer, we obtain positional information from which instantaneous velocities are calcu- lated and fit to the Maxwell-Boltzmann distribution to extract mass. We plan to use this technology to characterize the onset of heterogeneous ice nucleation. LM4G - 2 Optical Tweezing Experiments with Dielectric Microbeads Willa Dworschack1,2, Chiu Yin Lee1, Perri Zilberman1, Martin Cohen1, Harold Metcalf 11) Stony Brook Univ., Stony Brook, NY 11794, 2) Lawrence Univ., Appleton, WI 54911 Optical tweezing utilizes the momentum carried by light to manipulate micro-scale objects. We designed and constructed an optical tweezing apparatus that enabled precision control of dielectric microbeads using a He-Ne laser and an inverted microscope. Its piconewton force capabilities were demonstrated.
    [Show full text]
  • UNIVERSITY of CALGARY Two-Sided Transparent
    UNIVERSITY OF CALGARY Two-Sided Transparent Display as a Collaborative Medium by Jiannan Li A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN COMPUTER SCIENCE CALGARY, ALBERTA JANUARY, 2015 © Jiannan Li 2015 THE UNIVERSITY OF CALGARY FACULTY OF GRADUATE STUDIES The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled “Two-Sided Transparent Display as a Collaborative Medium” submitted by Jiannan Li in partial fulfillment of the requirements for the degree Master of Science. Supervisor, Ehud Sharlin Department of Computer Science Co-Supervisor, Saul Greenberg Department of Computer Science Examiner, Sonny Chan Department of Computer Science External Examiner, Joshua Taron Faculty of Environmental Design Date Abstract Transparent displays are ‘see-through’ screens: a person can simultaneously view both the graphics on the screen and real-world content visible through the screen. Interactive transparent displays can serve as an important medium supporting face-to-face collaboration, where people interact with both sides of the display and work together. Such displays enhance workspace awareness, which smooths collaboration: when a person is working on one side of a transparent display, the person on the other side can see the other’s hand gestures, gaze, and what s/he is currently manipulating on the shared screen. Even so, we argue that in order to provide effective support for collaboration, designing such transparent displays must go beyond current offerings. We propose using two-sided transparent displays, which can present different content on both sides.
    [Show full text]
  • III-NITRIDE SELF-ASSEMBLED QUANTUM DOT LIGHT EMITTING DIODES and LASERS by Animesh Banerjee a Dissertation Submitted in Partial
    III-NITRIDE SELF-ASSEMBLED QUANTUM DOT LIGHT EMITTING DIODES AND LASERS by Animesh Banerjee A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2014 Doctoral Committee: Professor Pallab K. Bhattacharya, Chair Associate Professor Pei-Cheng Ku Professor Joanna Mirecki-Millunchick Professor Jamie D. Phillips Animesh Banerjee © 2014 All Rights Reserved To my parents who have always stood by me, and have showered their blessings, unconditional love and unwavering support ii ACKNOWLEDGMENT I would like to express my sincere gratitude to my advisor Prof. Pallab Bhattacharya for his continuous support and motivation, his immense knowledge, enthusiasm and patience powering me along the way during my PhD years. He is a great motivator and educator. He was always available to discuss my research and any technical problem that I encountered. His sheer persistence and determination in solving any problem is something I really admire and aspire to pursue for the rest of my life. It has been truly an honor to work with Prof. Bhattacharya. I am also grateful to my committee memebers, Prof. Pei-Cheng Ku, Prof. Jamie Phillips, and Prof. Joanna Mirecki-Millunchick, for their time, insightful comments, and valuable suggestions. I would like to specially thank Prof. Millunchick for her valuable discussions and inputs during our collaborative endeavor. I am thankful to Dr. Meng Zhang and Dr. Wei Guo, my mentors in this group for getting me aquainted with epitaxial growth, fabrication and characterization. I would like to thank Dr. Junseok Heo for guiding me in my first research project here.
    [Show full text]
  • Solid State Laser
    SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H.
    [Show full text]
  • Zhang Gsas.Harvard 0084L 10989.Pdf (11.58Mb)
    Manipulating Light on Wavelength Scale The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Zhang, Yinan. 2012. Manipulating Light on Wavelength Scale. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11051175 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Manipulating Light on Wavelength Scale Y Z T S E A S D P E E H U C, M D © - Y Z A . esis advisor: Marko Loncar Yinan Zhang Manipulating Light on Wavelength Scale A Light, at the length-scale on the order of its wavelength, does not simply behave as “light ray”, but instead diffracts, scaers, and interferes with itself, as governed by Maxwell’s equations. A profound understanding of the underlying physics has inspired the emergence of a new frontier of materials and devices in the past few decades. is thesis explores the concepts and approaches for manipulating light at the wavelength-scale in a variety of topics, including anti-reective coatings, on- chip silicon photonics, optical microcavities and nanolasers, microwave particle accelerators, and optical nonlinearities. In Chapter , an optimal tapered prole that maximizes light transmission be- tween two media with different refractive indices is derived from analytical theory and numerical modeling. A broadband wide-angle anti-reective coating at the air/silicon interface is designed for the application of photovoltaics.
    [Show full text]
  • Front Cover CS V6mg.Indd 1 31/08/2017 16:10 Untitled-1 1 26/07/2017 09:21 Viewpoint by Dr Richard Stevenson, Editor
    Volume 23 Issue 6 August / September 2017 @compoundsemi www.compoundsemiconductor.net Lighting up silicon with InAs quantum dots MACOM Enabling breakthroughs in optical bandwidth density Novel cooling aid high-power laser diodes Easing the use of GaN power electronics An abundance of key elements for chipmakers Ultraviolet LEDs take aim at disinfection News Review, News Analysis, Features, Research Review, and much more... inside Free Weekly E News round up go to: www.compoundsemiconductor.net Front Cover CS v6MG.indd 1 31/08/2017 16:10 Untitled-1 1 26/07/2017 09:21 Viewpoint By Dr Richard Stevenson, Editor Telling our story POPULAR SCIENCES BOOKS aim to educate the layman. By better is to tell the story the way Johnstone does. It begins with eradicating equations, offering analogies and telling a story with a meeting of visionaries that plot out the rate of improvement a human touch, Joe Public can be entertained while learning in these devices, see where they are destined to go, and put the basics of a subject. plans in place to make this happen. Instrumental in the success is the backing by government, which uses its money very But that’s not the only benefi t of these books. They can be read effectively, alongside the introduction of standards that quash by experts, so that when they are at social gatherings and are the availability of inferior bulbs. asked what they do for a living, they can draw on what’s been written to give an answer that’s engaging and understandable. Read this book and you will also be able to wax lyrical about the benefi ts of LEDs in It is for that reason that I recommend Bob Johnstone’s new agriculture, and how the tuning of the book L.E.D.
    [Show full text]
  • Techniques for High-Speed Direct Modulation of Quantum Dot Lasers Yan Li
    University of New Mexico UNM Digital Repository Optical Science and Engineering ETDs Engineering ETDs 7-21-2008 Techniques for high-speed direct modulation of quantum dot lasers Yan Li Follow this and additional works at: https://digitalrepository.unm.edu/ose_etds Recommended Citation Li, Yan. "Techniques for high-speed direct modulation of quantum dot lasers." (2008). https://digitalrepository.unm.edu/ose_etds/ 17 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Optical Science and Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Yan Li Candidate Department of Electrical and Computer Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication on microfilm: Approved by the Dissertation Committee: , Chairperson Accepted: Dean, Graduate School Date TECHNIQUES FOR HIGH-SPEED DIRECT MODULATION OF QUANTUM DOT LASERS BY YAN LI M.S. Optics, Sichuan University, 2000 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Optical Science and Engineering The University of New Mexico Albuquerque, New Mexico May, 2008 ACKNOWLEDGEMENTS My deepest gratitude is to my advisor, Prof. Luke F. Lester. I was fortunate to have his support to continue my research in the semiconductor laser area. His guidance, perspective and encouragement are always a major driving force for me to fulfill my dissertation and will benefit my future career. I really appreciate his infinite understanding and patience during the last four years. I also would like to thank Prof.
    [Show full text]
  • The Study of Coupling in Ingaas Quantum Rings Grown by Droplet Epitaxy
    The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Samar M. Alsolamy May 2013 © 2013 Samar M. Alsolamy. All Rights Reserved. 2 This thesis titled The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy by SAMAR M. ALSOLAMY has been approved for the Department of Physics and Astronomy and the College of Arts and Sciences by Eric A. Stinaff Associate Professor of Physics and Astronomy Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT ALSOLAMY, SAMAR, M., M.S., May 2013, Physics and Astronomy The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy Director ofThesis: Eric A. Stinaff The use of metal droplet epitaxy may provide a novel method of growing laterally coupled nanostructures. We will present optical studies of InAs/GaAs nanostructures which result in twin quantum dots (QD) formed on a single quantum ring (QR). Previous studies have investigated the coupling between vertically grown quantum dot pairs. In this thesis, we have used photoluminescence (PL) and photoluminescence excitation (PLE) to examine the possibility of energy transfer and coupling between quantum dot pairs in a single InGaAs quantum ring grown by droplet epitaxy. Power dependent photoluminescence spectra reveal a few peaks at low power, which are identified with emission from the ground state of the individual dots. As the power is increased we observe multi-exciton and excited state emission. We then perform PLE, tuning the excitation laser energy continuously from the high energy ring emission down to the individual dot states.
    [Show full text]
  • A Solution-Processed 1.53 Μm Quantum Dot Laser with Temperature
    A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, E. H. Sargent The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Toronto, ON, Canada, M5S 3G4 [email protected]; [email protected] Abstract: Sources of coherent, monochromatic short-wavelength infrared (1-2 μm) light are essential in telecommunications, biomedical diagnosis, and optical sensing. Today’s semiconductor lasers are made by epitaxial growth on a lattice-matched single-crystal substrate. This strategy is incompatible with direct growth on silicon. Colloidal quantum dots synthesized in solution can, in contrast, be coated onto any surface. Here we show a 1.53 μm laser fabricated using a remarkably simple process: dipping a glass capillary into a colloidal suspension of semiconductor quantum dots. We developed the procedures to produce a smooth, low-scattering-loss film inside the capillary, resulting in a whispering gallery mode laser with a well-defined threshold. While there exist three prior reports of optical gain in infrared-emitting colloidal quantum dots [1, 2, 3], this work represents the first report of an infrared laser made using solution processing. We also report dλmax/dT, the temperature-sensitivity of lasing wavelength, of 0.03 nm/K, the lowest ever reported in a colloidal quantum dot system and 10 times lower than in traditional semiconductor quantum wells. ©2006 Optical Society of America OCIS codes: (140.5960) Semiconductor lasers; (160.3380) Laser materials; (999.999) Nanocrystal quantum dots. References and links 1. R.
    [Show full text]
  • Demystifying the Future of the Screen
    Demystifying the Future of the Screen by Natasha Dinyar Mody A thesis exhibition presented to OCAD University in partial fulfillment of the requirements for the degree of Master of Design in DIGITAL FUTURES 49 McCaul St, April 12-15, 2018 Toronto, Ontario, Canada, April, 2018 © Natasha Dinyar Mody, 2018 AUTHOR’S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize OCAD University to lend this thesis to other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public. I further authorize OCAD University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. Signature: ii ABSTRACT Natasha Dinyar Mody ‘Demystifying the Future of the Screen’ Master of Design, Digital Futures, 2018 OCAD University Demystifying the Future of the Screen explores the creation of a 3D representation of volumetric display (a graphical display device that produces 3D objects in mid-air), a technology that doesn’t yet exist in the consumer realm, using current technologies. It investigates the conceptual possibilities and technical challenges of prototyping a future, speculative, technology with current available materials. Cultural precedents, technical antecedents, economic challenges, and industry adaptation, all contribute to this thesis proposal. It pedals back to the past to examine the probable widespread integration of this future technology. By employing a detailed horizon scan, analyzing science fiction theories, and extensive user testing, I fabricated a prototype that simulates an immersive volumetric display experience, using a holographic display fan.
    [Show full text]