Labeling: Physician’S Package Insert

Total Page:16

File Type:pdf, Size:1020Kb

Labeling: Physician’S Package Insert TEXT OF PROPOSED LABELING: PHYSICIAN’S PACKAGE INSERT Caution: Federal law prohibits dispensing without a prescription. ORTHO-PREFEST™ (17b -estradiol/norgestimate) tablets DESCRIPTION The ORTHO-PREFEST™ regimen provides for a single oral tablet to be taken once daily. The pink tablet containing 1.0 mg estradiol is taken on days one through three of therapy; the white tablet containing 1.0 mg estradiol and 0.09 mg norgestimate is taken on days four through six of therapy. This pattern is then repeated continuously to produce the constant estrogen/intermittent progestogen regimen of ORTHO-PREFESTÔ. The estrogenic component of ORTHO-PREFEST™ is 17b-estradiol. It is a white, crystalline solid, chemically described as estra-1,3,5(10)-triene-3,17b-diol. It has an empirical formula of C18H24O2 and molecular weight of 272.39. The structural formula is: The progestational component of ORTHO-PREFEST™ is micronized norgestimate, a white powder which is chemically described as (17a)-17-(Acetyloxyl)-13-ethyl-18,19-dinorpregn-4-en-20-yn-3- one3-oxime. It has an empirical formula of C23H31NO3 and a molecular weight of 369.50. The structural formula is: CH3 OCOCH3 CH2 C CH HON Each tablet for oral administration contains 1.0 mg estradiol alone or 1.0 mg estradiol and 0.09 mg of norgestimate, and the following inactive ingredients: croscarmellose sodium, microcrystalline cellulose, magnesium stearate, ferric oxide red, and lactose monohydrate. 1 CLINICAL PHARMACOLOGY Estrogens are important in the development and maintenance of the female reproductive system and secondary sex characteristics. By a direct action, they cause growth and development of the uterus, fallopian tubes, and vagina. With other hormones, such as pituitary hormones and progesterone, they cause enlargement of the breasts through promotion of ductal growth, stromal development, and the accretion of fat. Estrogens are intricately involved with other hormones, especially progesterone, in the processes of the ovulatory menstrual cycle and pregnancy and affect the release of pituitary gonadotropins. They also contribute to the shaping of the skeleton, maintenance of tone and elasticity of urogenital structures, changes in the epiphyses of the long bones that allow for the pubertal growth spurt and its termination, and pigmentation of the nipples and genitals. Although circulating estrogens exist in a dynamic equilibrium of metabolic interconversions, estradiol is the principal intracellular human estrogen and is substantially more potent than its metabolites, estrone and estriol at the receptor level. The primary source of estrogen in adult women with normal menstrual cycles is the ovarian follicle, which secretes 70 to 500 micrograms of estradiol daily, depending on the phase of the menstrual cycle. After menopause, most endogenous estrogens are produced by conversion of androstenedione, secreted by the adrenal cortex, to estrone by the peripheral tissues. Thus, estrone and the sulfate conjugated form, estrone sulfate, are the most abundant circulating estrogens in postmenopausal women. Circulating estrogens modulate the pituitary secretion of the gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH) through a negative feedback mechanism and estrogen replacement therapy acts to reduce the elevated levels of these hormones seen in postmenopausal women. Norgestimate is a derivative of 19-nortestosterone and binds to androgen and progestogen receptors, similar to that of the natural hormone progesterone; it does not bind to estrogen receptors. Progestins counter the estrogenic effects by decreasing the number of nuclear estradiol receptors and suppressing epithelial DNA synthesis in endometrial tissue. Pharmacokinetics Absorption: Estradiol reaches its peak serum concentration (Cmax) at approximately 7 hours in postmenopausal women receiving ORTHO-PREFEST™ (Table 1). Norgestimate is completely metabolized; it’s primary active metabolite, 17-deacetylnorgestimate, reaches Cmax at approximately 2 hours after dose (Table 1). Upon co-administration of ORTHO-PREFESTÔ with a high fat meal, the Cmax values for estrone and estrone sulfate were increased by 14% and 24% respectively, and the Cmax for 17- deacetylnorgestimate was decreased by 16%. The AUC values for these analytes were not significantly affected by food. Distribution: The distribution of exogenous estrogens is similar to that of endogenous estrogens. Estrogens are widely distributed in the body and are generally found in higher concentrations in the sex hormone target organs. Estradiol is bound mainly to sex hormone binding globulin (SHBG), and to albumin. 17-deacetylnorgestimate, the primary active metabolite of norgestimate, does not bind to SHBG but 2 to other serum proteins. The percent protein binding of 17-deacetylnorgestimate is approximately 99%. Metabolism: Exogenous estrogens are metabolized in the same manner as endogenous estrogens. Circulating estrogens exist in a dynamic equilibrium of metabolic interconversions. These transformations take place mainly in the liver. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women a significant portion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens. Norgestimate is extensively metabolized by first-pass mechanisms in gastrointestinal tract and/or liver. Norgestimate’s primary active metabolite is 17-deacetylnorgestimate. Excretion: Estradiol, estrone, and estriol are excreted in the urine along with glucuronide and sulfate conjugates. Norgestimate metabolites are eliminated in the urine and feces. The half-life (t1/2) of estradiol and 17-deacetylnorgestimate in postmenopausal women receiving ORTHO-PREFEST™ is approximately 16 and 37 hours, respectively. Special Populations Pediatric: ORTHO-PREFEST™ is not indicated in children. Geriatric: ORTHO-PREFEST™ has not been studied in geriatric patients Gender: ORTHO-PREFEST™ is indicated in women only. Effects of Race, Age, and Body Weight: The effects of race, age, and body weight on the pharmacokinetics of 17b-estradiol, norgestimate, and their metabolites were evaluated in 164 healthy postmenopausal women (100 Caucasians, 61 Hispanics, 2 Blacks, and 1 Asian). No significant pharmacokinetic difference was observed between the Caucasian and the Hispanic postmenopausal women. No significant difference due to age (40-66 years) was observed. No significant difference due to body weight was observed in women in the 60 to 80 kg weight range. Women with body weight higher than 80 kg, however, had approximately 40% lower peak serum levels of 17- deacetylnorgestimate, 30% lower AUC values for 17-deacetylnorgestimate and 30% lower Cmax values for norgestrel. The clinical relevance of these observations is unknown. Renal Insufficiency: It has been reported in the literature that at both baseline and after estradiol ingestion, postmenopausal women with end stage renal disease (ESRD) had higher free serum estradiol levels than the control subjects. No pharmacokinetic study with norgestimate or a hormone combination with norgestimate has been conducted in postmenopausal women with ESRD. Hepatic Insufficiency: No pharmacokinetic study for ORTHO-PREFESTTM has been conducted in postmenopausal women with hepatic impairment. 3 1 Table 1: Mean Pharmacokinetic Parameters of E2, E1, E1S, and 17d-NGM Following Single and Multiple Dosing of ORTHO-PREFEST™ First First Dose Multiple Dose Multiple Dose 2 Analyte Parameter Units Dose E2 E2/NGM E2 E2/NGM E2 Cmax pg/mL 27.4 39.3 49.7 46.2 tmax h 7 7 7 7 AUC(0-24 h) pg. h/mL 424 681 864 779 E1 Cmax pg/mL 210 285 341 325 tmax h 6 6 7 6 AUC(0-24 h) pg. h/mL 2774 4153 5429 4957 E1S Cmax ng/mL 11.1 13.9 14.9 14.5 tmax h 5 4 6 5 AUC(0-24 h) ng.h/mL 135 180 198 198 3 17d-NGM Cmax pg/mL NA 515 NA 643 tmax h NA 2 NA 2 AUC(0-24 h) pg. h/mL NA 2146 NA 5322 t½ h NA 37 NA NA 1 E2 = 17b-Estradiol, E1 = Estrone, E1S = Estrone Sulfate, 17d-NGM = 17-deacetylnorgestimate. Baseline uncorrected data are reported for E2, E1 and E1S 2 Cmax = peak serum concentration, tmax = time to reach peak serum concentration, AUC(0-24 h) = area under serum concentration vs. time curve from 0 to 24 hours after dose, t½ = half-life 3 NA= Not available or not applicable Drug-Drug Interactions Estradiol, norgestimate, and their metabolites inhibit a variety of P450 enzymes in human liver microsomes. However, the clinical and toxicological consequences of such interaction are likely to be insignificant because, under the recommended dosing regimen, the in vivo concentrations of these steroids, even at the peak serum levels, are relatively low compared to the inhibitory constant (Ki). Results of a subset population (n=24) from a clinical study conducted in 36 healthy postmenopausal women indicated that the steady state serum estradiol levels during the estradiol plus norgestimate phase of the regimen may be lower by 12-18% as compared with estradiol administered alone. The serum estrone levels may decrease by 4% and the serum estrone sulfate levels may increase by 17% during the estradiol plus norgestimate phase as compared with estradiol administered alone. The clinical relevance of these observations
Recommended publications
  • Estrone Sulfate
    Available online at www.sciencedirect.com Journal of Steroid Biochemistry & Molecular Biology 109 (2008) 158–167 Estrone sulfate (E1S), a prognosis marker for tumor aggressiveness in prostate cancer (PCa)ଝ Frank Giton a,∗, Alexandre de la Taille b, Yves Allory b, Herve´ Galons c, Francis Vacherot b, Pascale Soyeux b, Claude Clement´ Abbou b, Sylvain Loric b, Olivier Cussenot b, Jean-Pierre Raynaud d, Jean Fiet b a AP-HP CIB INSERM IMRB U841eq07, Henri Mondor, Facult´edeM´edecine, 94010 Cr´eteil, France b INSERM IMRB U841 eq07, CHU Henri Mondor, Facult´edeM´edecine, 94010 Cr´eteil, France c Service de Chimie organique, Facult´e de Pharmacie Paris V, 75006 Paris, France d Universit´e Pierre et Marie Curie, 75252 Paris, France Received 26 December 2006; accepted 26 October 2007 Abstract Seeking insight into the possible role of estrogens in prostate cancer (PCa) evolution, we assayed serum E2, estrone (E1), and estrone sulfate (E1S) in 349 PCa and 100 benign prostatic hyperplasia (BPH) patients, and in 208 control subjects in the same age range (50–74 years). E1 (pmol/L ± S.D.) and E1S (nmol/L ± S.D.) in the PCa and BPH patients (respectively 126.1 ± 66.1 and 2.82 ± 1.78, and 127.8 ± 56.4 and 2.78 ± 2.12) were significantly higher than in the controls (113.8 ± 47.6 and 2.11 ± 0.96). E2 was not significantly different among the PCa, BPH, and control groups. These assays were also carried out in PCa patients after partition by prognosis (PSA, Gleason score (GS), histological stage, and surgical margins (SM)).
    [Show full text]
  • Detectx® Serum 17Β-Estradiol Enzyme Immunoassay Kit
    DetectX® Serum 17β-Estradiol Enzyme Immunoassay Kit 1 Plate Kit Catalog Number KB30-H1 5 Plate Kit Catalog Number KB30-H5 Species Independent Sample Types Validated: Multi-Species Serum and Plasma Please read this insert completely prior to using the product. For research use only. Not for use in diagnostic procedures. www.ArborAssays.com KB30-H WEB 210308 TABLE OF CONTENTS Background 3 Assay Principle 4 Related Products 4 Supplied Components 5 Storage Instructions 5 Other Materials Required 6 Precautions 6 Sample Types 7 Sample Preparation 7 Reagent Preparation 8 Assay Protocol 9 Calculation of Results 10 Typical Data 10-11 Validation Data Sensitivity, Linearity, etc. 11-13 Samples Values and Cross Reactivity 14 Warranty & Contact Information 15 Plate Layout Sheet 16 ® 2 EXPECT ASSAY ARTISTRY KB30-H WEB 210308 BACKGROUND 17β-Estradiol, C18H24O2, also known as E2 or oestradiol (1, 3, 5(10)-Estratrien-3, 17β-diol) is a key regulator of growth, differentiation, and function in a wide array of tissues, including the male and female reproductive tracts, mammary gland, brain, skeletal and cardiovascular systems. The predominant biological effects of E2 are mediated through two distinct intracellular receptors, ERα and ERβ, each encoded by unique genes possessing the functional domain characteristics of the steroid/thyroid hormone superfamily of nuclear receptors1. ERα is the predominant form expressed in the breast, uterus, cervix, and vagina. ERβ exhibits a more limited pattern and is primarily expressed in the ovary, prostate, testis, spleen, lung, hypothalamus, and thymus2. Estradiol also influences bone growth, brain development and maturation, and food intake3, and it is also critical in maintaining organ functions during severe trauma4,5.
    [Show full text]
  • A Guide to Feminizing Hormones – Estrogen
    1 | Feminizing Hormones ​ ​ A Guide to Feminizing Hormones Hormone therapy is an option that can help transgender and gender-diverse people feel more comfortable in their bodies. Like other medical treatments, there are benefits and risks. Knowing what to expect will help us work together to maximize the benefits and minimize the risks. What are hormones? Hormones are chemical messengers that tell the body’s cells how to function, ​ when to grow, when to divide, and when to die. They regulate many functions, including growth, sex drive, hunger, thirst, digestion, metabolism, fat burning & storage, blood sugar, cholesterol levels, and reproduction. What are sex hormones? Sex hormones regulate the development of sex characteristics, including the sex ​ organs such as genitals and ovaries/testicles. Sex hormones also affect the secondary sex characteristics that typically develop at puberty, like facial and body hair, bone growth, breast growth, and voice changes. There are three categories of sex hormones in the body: • Androgens: testosterone, dehydroepiandrosterone (DHEA), ​ dihydrotestosterone (DHT) • Estrogens: estradiol, estriol, estrone ​ • Progestin: progesterone ​ Generally, “males” tend to have higher androgen levels, and “females” tend to have higher levels of estrogens and progestogens. What is hormone therapy? Hormone therapy is taking medicine to change the levels of sex hormones in your body. Changing these levels will affect your hair growth, voice pitch, fat distribution, muscle mass, and other features associated with sex and gender. Feminizing hormone therapy can help make the body look and feel less “masculine” and more “feminine" — making your body more closely match your identity. What medicines are involved? There are different kinds of medicines used to change the levels of sex hormones in your body.
    [Show full text]
  • Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
    Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment.
    [Show full text]
  • Gender-Affirming Hormone Therapy
    GENDER-AFFIRMING HORMONE THERAPY Julie Thompson, PA-C Medical Director of Trans Health, Fenway Health March 2020 fenwayhealth.org GOALS AND OBJECTIVES 1. Review process of initiating hormone therapy through the informed consent model 2. Provide an overview of masculinizing and feminizing hormone therapy 3. Review realistic expectations and benefits of hormone therapy vs their associated risks 4. Discuss recommendations for monitoring fenwayhealth.org PROTOCOLS AND STANDARDS OF CARE fenwayhealth.org WPATH STANDARDS OF CARE, 2011 The criteria for hormone therapy are as follows: 1. Well-documented, persistent (at least 6mo) gender dysphoria 2. Capacity to make a fully informed decision and to consent for treatment 3. Age of majority in a given country 4. If significant medical or mental health concerns are present, they must be reasonably well controlled fenwayhealth.org INFORMED CONSENT MODEL ▪ Requires healthcare provider to ▪ Effectively communicate benefits, risks and alternatives of treatment to patient ▪ Assess that the patient is able to understand and consent to the treatment ▪ Informed consent model does not preclude mental health care! ▪ Recognizes that prescribing decision ultimately rests with clinical judgment of provider working together with the patient ▪ Recognizes patient autonomy and empowers self-agency ▪ Decreases barriers to medically necessary care fenwayhealth.org INITIAL VISITS ▪ Review history of gender experience and patient’s goals ▪ Document prior hormone use ▪ Assess appropriateness for gender affirming medical
    [Show full text]
  • Quantitative High-Throughput Profiling of Environmental Chemicals and Drugs That Modulate Farnesoid X Receptor
    OPEN Quantitative High-Throughput Profiling of SUBJECT AREAS: Environmental Chemicals and Drugs that SCREENING SMALL MOLECULES Modulate Farnesoid X Receptor Chia-Wen Hsu1, Jinghua Zhao1, Ruili Huang1, Jui-Hua Hsieh2, Jon Hamm3, Xiaoqing Chang3, Keith Houck4 Received & Menghang Xia1 27 June 2014 Accepted 1National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 2Division of the National 29 August 2014 Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 3Integrated Laboratory Systems, Inc., Morrisville, NC, 4U.S. Environmental Protection Agency, Research Triangle Park, NC. Published 26 September 2014 The farnesoid X receptor (FXR) regulates the homeostasis of bile acids, lipids, and glucose. Because endogenous chemicals bind and activate FXR, it is important to examine which xenobiotic compounds Correspondence and would disrupt normal receptor function. We used a cell-based human FXR b-lactamase (Bla) reporter gene assay to profile the Tox21 10K compound collection of environmental chemicals and drugs. requests for materials Structure-activity relationships of FXR-active compounds revealed by this screening were then compared should be addressed to against the androgen receptor, estrogen receptor a, peroxisome proliferator-activated receptors d and c, and M.X. ([email protected]. the vitamin D receptor. We identified several FXR-active structural classes including anthracyclines, gov) benzimidazoles, dihydropyridines, pyrethroids, retinoic acids, and vinca alkaloids. Microtubule inhibitors potently decreased FXR reporter gene activity. Pyrethroids specifically antagonized FXR transactivation. Anthracyclines affected reporter activity in all tested assays, suggesting non-specific activity. These results provide important information to prioritize chemicals for further investigation, and suggest possible modes of action of compounds in FXR signaling.
    [Show full text]
  • Estrogen Pharmacology. I. the Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) in Man
    Estrogen Pharmacology. I. The Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) in Man Mark N. Mueller, Attallah Kappas J Clin Invest. 1964;43(10):1905-1914. https://doi.org/10.1172/JCI105064. Research Article Find the latest version: https://jci.me/105064/pdf Journal of Clinical Investigation Vol. 43, No. 10, 1964 Estrogen Pharmacology. I. The Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) inMan* MARK N. MUELLER t AND ATTALLAH KAPPAS + WITH THE TECHNICAL ASSISTANCE OF EVELYN DAMGAARD (From the Department of Medicine and the Argonne Cancer Research Hospital,§ the University of Chicago, Chicago, Ill.) This report 1 describes the influence of natural biological action of natural estrogens in man, fur- estrogens on liver function, with special reference ther substantiate the role of the liver as a site of to sulfobromophthalein (BSP) excretion, in man. action of these hormones (5), and probably ac- Pharmacological amounts of the hormone estradiol count, in part, for the impairment of BSP dis- consistently induced alterations in BSP disposal posal that characterizes pregnancy (6) and the that were shown, through the techniques of neonatal period (7-10). Wheeler and associates (2, 3), to result from profound depression of the hepatic secretory Methods dye. Chro- transport maximum (Tm) for the Steroid solutions were prepared by dissolving crystal- matographic analysis of plasma BSP components line estradiol and estriol in a solvent vehicle containing revealed increased amounts of BSP conjugates 10% N,NDMA (N,N-dimethylacetamide) 3 in propylene during estrogen as compared with control pe- glycol. Estradiol was soluble in a concentration of 100 riods, implying a hormonal effect on cellular proc- mg per ml; estriol, in a concentration of 20 mg per ml.
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]
  • Testosterone, DHP, Progesterone, Es
    UC Davis Clinical Endocrinology Laboratory Volume Required: Testosterone: 2 mL serum AMH equine: 1 ml serum Estrone Sulfate, Progesterone: 1 mL serum each. Inhibin: 1 ml serum, sent overnight on ice. AMH Canine/Feline Spaychek: 200 µL serum, fasted, 30 days post- surgery. Send 0.5 ml for Progesterone/AMH and 2 ml for testosterone/AMH. Cryptorchid Panel: 2 mL serum Pregnancy Panel: 2 mL serum Granulosa Cell Tumor Panel: 3 mL serum Sample Handling and Shipment Requirements: PLEASE SEND SERUM ONLY, no whole or clotted blood. Blood contains active enzymes which may affect the results. The use of serum separator tubes is not recommended; they may degrade the analytes, particularly progesterone and AMH, and may invalidate results. Draw in a tube with no additive (red top). If you do use a serum separator tube, transfer the serum to a new tube as soon as possible. For AMH and inhibin testing: Please separate the serum and ship priority overnight on an ice pack. Store the sample in the freezer if shipping will be delayed, but you may ship it on an ice pack, dry ice is not required. Do not ship the sample via the US Postal Service, as the delivery will be delayed in the campus mailroom for up to a week, causing sample degradation. Do not ship the samples to arrive on a holiday or a weekend, as UPS and Fed Ex will not deliver it to us, and it will sit at the shipping facility, causing sample degradation. Please check our site for university holidays. For steroid hormone (testosterone, DHP, progesterone, estrone) testing: These hormones are more stable; however, they may be degraded by poor handling conditions, and shipment as whole or clotted blood.
    [Show full text]
  • PRIMOLUT N (NORETHISTERONE) How Does It Work? Contraindications
    PRIMOLUT N (NORETHISTERONE) How Does it Work? Primolut N tables contain the active ingredient norethisterone, which is a synthetic hormone similar to the naturally occurring sex hormone, progesterone. It is used in a wide range of menstrual disorders. (NB: Norethisterone is also available without a brand name, ie as the generic medicine). In women, progesterone is responsible for the development of a healthy womb lining (endometrium) that is necessary for pregnancy. The body produces progesterone at certain times of the menstrual cycle, causing the womb lining to flourish. If a fertilised egg does not attach to the womb lining by the end of the monthly cycle, progesterone levels in the body decrease. This causes the body to shed the womb lining (a menstrual period). If a fertilised egg successfully attaches to the womb lining by the end of the monthly cycle, progesterone levels in the body remain high. This helps maintain a healthy womb lining for the ongoing pregnancy. Norethisterone mimics the effects of your natural progesterone and so can help regulate the healthy growth and normal shedding of the womb lining. It may be used in the treatment of menstrual disorders such as irregular or painful menstrual periods, premenstrual syndrome and endometriosis. It may also be used to delay the onset of menstruation for special circumstances, such as if travelling or taking part in a sporting event. Norethisterone is usually taken on selected days during the menstrual cycle, depending on the disorder that is being treated. You will be advised by Dr. Rasmuson when to commence and cease this medication.
    [Show full text]
  • Studies on Phenolic Steroids in Human Subjects. VII. Metabolic Fate of Estriol and Its Glucuronide
    Studies on Phenolic Steroids in Human Subjects. VII. Metabolic Fate of Estriol and Its Glucuronide Avery A. Sandberg, W. Roy Slaunwhite Jr. J Clin Invest. 1965;44(4):694-702. https://doi.org/10.1172/JCI105181. Research Article Find the latest version: https://jci.me/105181/pdf Journal of Clinical Investigation Vol. 44, No. 4, 1965 Studies on Phenolic Steroids in Human Subjects. VII. Metabolic Fate of Estriol and Its Glucuronide * AVERY A. SANDBERG t AND W. RoY SLAUNWHITE, JR. (From the Roswell Park Memorial Institute, Buffalo, N. Y.) Estriol has been considered a metabolic product of enzymes capable of oxidizing the hydroxyl of the more active estrogens, estrone (1, 2) and group at position 16, a finding not reported in the indirectly estradiol. Recently, an alternative path- past. way has been proposed (3) based on the observa- The attention of investigators has recently been tions that 16a-hydroxydehydroepiandrosterone is directed toward steroid conjugates, not only be- present in high concentrations in cord blood and cause they are excreted in that form, but owing to that it is aromatized by placental enzymes. During the demonstration that steroid sulfates may, in pregnancy the placenta has been thought the some instances, serve as biosynthetic intermediates source of the mother's urinary estriol, but recent (12-14), that dehydroepiandrosterone sulfate is evidence indicates that the fetus (4-6) and, in par- secreted by the adrenal cortex (15), that estrone ticular, the fetal liver (7) may play an important circulates in the blood as a sulfate (16), and that role in the conversion of the estrone to estriol steroid sulfates appear to be biologically active (8).
    [Show full text]
  • TX-004HR Vaginal Estradiol Has Negligible to Very Low Systemic Absorption of Estradiol
    Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Obstetrics and Gynecology Faculty Publications Obstetrics and Gynecology 12-19-2016 TX-004HR vaginal estradiol has negligible to very low systemic absorption of estradiol. David F Archer Ginger D Constantine James A Simon George Washington University Harvey Kushner Philip Mayer See next page for additional authors Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_obgyn_facpubs Part of the Female Urogenital Diseases and Pregnancy Complications Commons, Obstetrics and Gynecology Commons, and the Women's Health Commons APA Citation Archer, D., Constantine, G., Simon, J., Kushner, H., Mayer, P., Bernick, B., Graham, S., Mirkin, S., & REJOICE Study Group. (2016). TX-004HR vaginal estradiol has negligible to very low systemic absorption of estradiol.. Menopause (New York, N.Y.), 24 (5). http://dx.doi.org/10.1097/GME.0000000000000790 This Journal Article is brought to you for free and open access by the Obstetrics and Gynecology at Health Sciences Research Commons. It has been accepted for inclusion in Obstetrics and Gynecology Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Authors David F Archer, Ginger D Constantine, James A Simon, Harvey Kushner, Philip Mayer, Brian Bernick, Shelli Graham, Sebastian Mirkin, and REJOICE Study Group. This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/smhs_obgyn_facpubs/146 CE: M.S.; MENO-D-16-00223; Total nos of Pages: 7; MENO-D-16-00223 Menopause: The Journal of The North American Menopause Society Vol. 24, No.
    [Show full text]