Eoandromeda and the Origin of Ctenophora

Total Page:16

File Type:pdf, Size:1020Kb

Eoandromeda and the Origin of Ctenophora EVOLUTION & DEVELOPMENT 13:5, 408–414 (2011) DOI: 10.1111/j.1525-142X.2011.00499.x Eoandromeda and the origin of Ctenophora Feng Tang,a,b,∗ Stefan Bengtson,c,∗ Yue Wang,d Xun-lian Wang,e and Chong-yu Yina,b a Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China b Key Laboratory of Stratigraphy and Paleontology, Chinese Academy of Geological Sciences, Beijing, 100037, China c Department of Palaeozoology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden d School of Resources and Environment, Guizhou University, Guiyang, 550003, China e School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China ∗Authors for correspondence (email: [email protected] and [email protected]) SUMMARY The Ediacaran fossil Eoandromeda octo- lacking crown-group synapomorphies such as tentacles, sta- brachiata had a high conical body with eight arms in he- toliths, polar fields, and biradial symmetry. It probably had a licospiral arrangement along the flanks. The arms carried pelagic mode of life. The early appearance in the fossil record transverse bands proposed to be homologous to ctenophore of octoradial ctenophores is most consistent with the Planulo- ctenes (comb plates). Eoandromeda is interpreted as an zoa hypothesis (Ctenophora is the sister group of Cnidaria + early stem-group ctenophore, characterized by the synapo- Bilateria) of metazoan phylogeny. morphies ctenes, comb rows, and octoradial symmetry but INTRODUCTION The new data on Eoandromeda suggest that it represents a stem-group ctenophore, implying that ctenophores were Megascopic biotas of the 635–541 Ma (million years ago) among the first eumetazoan lineages to appear, and that Ediacaran Period represent the foreplay to the “Cambrian planktic predators were present in the ecosystems already Explosion” of animals, but Ediacaran fossils are contentious during the heyday of the Ediacaran biota. as to their affinity (e.g., Dzik 2003; Seilacher et al. 2003; Narbonne 2005; Fedonkin et al. 2007; Budd 2008). The oc- toradial fossil Eoandromeda octobrachiata Tang et al. 2008 was described in two-dimensional preservation from 580– RESULTS 551 Ma black shales of the Doushantuo Formation in southern China (Tang et al. 2008; Zhu et al. 2008) and in Twelve specimens are figured in Fig. 1; three (Fig. 1B–E) semi-relief on bed soles in the Ediacara Member of the were previously figured by Wang et al. (2008) and are re- Rawnsley Quartzite in South Australia (Zhu et al. 2008). figured herein to illustrate some of the anatomical features. Both Tang et al. and Zhu et al. noted possible relationships Like the previous Doushantuo specimens (Tang et al. 2008; to the Ctenophora (comb jellies) and the Cnidaria, but left Zhu et al. 2008), the new ones are preserved as carbonaceous the question of systematic assignment open. films in a silty shale. Zhu et al. (2008) noted that of 38 Aus- Recently collected material from the type locality of E. tralian specimens, where the up versus down orientation was octobrachiata elucidates the anatomy of Eoandromeda and known, all had dextrally coiling arms (i.e., tips pointing in reveals new features that help a direct comparison with Re- the clockwise direction) when viewed from above. Assuming cent and fossil ctenophores. Cambrian ctenophore-like fossils that this symmetry holds true also for the Chinese specimens have been found in the ca. 505 Ma Burgess Shale (Conway (where the stratigraphic orientation is mostly unknown), Morris and Collins 1996) and the ca. 520 Ma Chengjiang Fig.1E,F,K,L,andMshowthefossilfromabove;Fig.1A– (Chen and Zhou 1997; Hou et al. 2004; Hu et al. 2007) de- D, G, and H from below. posits, and the report of a ctenophore embryo from the ca. Specimens hitherto reported from China and Australia 535 Ma Kuanchuanpu Formation extended the record to are symmetrically compressed disks. The specimens in near the beginning of the Cambrian (Chen et al. 2007). Edi- Fig. 1H–J, however, seem to represent obliquely to later- acaran records are problematic, however, notwithstanding ally compressed specimens. The one in Fig. 1H clearly be- Dzik’s (2002, 2003) ingenious attempts to relate sedentary longs to E. octobrachiata, but the center of radiation of the frond-like organisms (“petalonomans”) to the clade. arms is offset toward the periphery, suggesting an oblique 408 C 2011 Wiley Periodicals, Inc. Tang et al. The origin of Ctenophora 409 Fig. 1. Carbonaceous compressions of Eoandromeda octobrachiata. Scale bars 5 mm. Specimens in Institute of Geology, Chinese Academy of Geological Sciences, Beijing (prefix JK); School of Resources and Environment, Guizhou University, Guiyang (prefix JK-A); and School of Earth Sciences and Resource, China University of Geosciences, Beijing (prefix WH-A). (A) JK10909. (B and C) WH-A-04178. C—close-up of B; arrows point to transverse bands. (D) WH-A-04023. (E) WH-A-04209. (F) WH-A-04719. (G) JK-A-55-0025. (H) JK08014. (I) JK-A-54-0089. (J) JK08016. (K) JK-A-40-0013. (L) JK10903. (M) JK10329. 410 EVOLUTION & DEVELOPMENT Vol. 13, No. 5, September–October 2011 Fig. 2. Reconstruction of Eoandromeda octobrachiata. Artwork Javier Herbozo. compression of a high dome. The specimen in Fig. 1I has a agenetic halo), shows that the spiral morphology was fully rounded triangular shape. Although the anatomical features developed already at this growth stage. are poorly preserved, there is clear evidence of spiral arms The central part inside the arms is mostly indistinctly in the lower part. The elliptical specimen in Fig. 1J shows preserved, but two specimens (Fig. 1L and M) show a ring- even less anatomical details, but the longitudinal streaks and like structure, ca. 3 mm in diameter, connected to the inner the clear area near the top indicate that this specimen too is ends of the arms through a narrow neck. In Fig. 1L, the ring, a preservational variety of E. octobrachiata. We thus inter- neck, and central parts of the arms are made up of a lighter pret these three specimens as oblique to lateral compressions (thinner?) material than the rest of the arms. of an originally conical body, about as high as wide, with a The specimens figured herein represent different modes of bluntly rounded apex, and with arms curving down along its taphonomic degradation. The most conspicuous difference flanks (Fig. 1I). regards the expression of the transverse bands of the spiral Zhu et al. (2008) noted that both Chinese and Australian arms. They vary from distinct (Fig. 1A, C, E, F, H, and specimens show evidence of partitions in the arms and con- M), through more indistinct and frayed (Fig. 1D and G), cluded that “the live organism consisted of eight spiral tubu- to largely absent (Fig. 1I–L and parts of the specimens in lar arms with possible transverse structures.” Our new mate- Fig. 1B and H). The fact that different modes of expression rial confirms the existence of transverse structures, showing can be seen in a single specimen (e.g., Fig. 1B) indicates that them to be band-like elements that are regularly distributed this is a taphonomic rather than taxonomic difference. The along the arms (Fig. 1A, C–F, H, and M). The bands are transverse bands, when present, tend to be expressed in a 0.3–2 mm apart and roughly perpendicular to the arms; in darker material than the arm itself, which in turn is darker one specimen, they are particularly distinct and can be seen than the interband area, which in turn is darker than the to keep their perpendicular orientation even when an arm matrix surrounding the specimen (see, e.g., Fig. 1A and H). forms an angular kink (Fig. 1A, upper left). In two speci- They sometimes extend beyond the visible boundaries of mens (Fig. 1D and G), the bands are crescent-shaped, convex the arms, giving the latter a frayed edge (Fig. 1M). These side facing centripetally (Fig. 1D and G, left) or centrifugally observations suggest that the transverse bands represent a (Fig. 1G, right). tissue distinct from that of the arms proper. The tissue between the spiraling arms is usually expressed Other preservational differences are more subtle and by a dark stain, as in the holotype (Tang et al. 2008, Fig. 2A– mostly concern the distinctness of the arms and the expres- G). The arms are consequently not free tentacle-like struc- sion of the tissues within and between the arms. The specimen tures but are incorporated into the body. The specimen in in Fig. 1L has lighter central regions of the arms, suggesting Fig. 1K, the smallest one found (surrounded by a light di- that the center of the arms was thinner or less solid than the Tang et al. The origin of Ctenophora 411 periphery. Some specimens show an aggregation of irregu- Fig. 1L, on the contrary, shows arms with the interior lighter larly sized black grains up to 300 μm in size between the than the rim, suggesting that the interior was less dense. Zhu spiraling arms (Wang et al. 2008, Fig. 3H). These are ab- et al. (2008) interpreted the Australian specimens to show sent from the adjacent shale and may represent taphonomic tubular arms, possibly with transverse structures, and some- degradation of the interarm tissue. what deformed by compaction. A tubular structure is not The two laterally preserved specimens (Fig. 1I–J) have at odds with the preservation in the Doushantuo specimens, poorly expressed arms. This is probably at least partly due to and a homology with the eight meridional canals underlying the fact that they represent two arm-bearing flanks adpressed the eight comb rows in modern ctenophores (Ruppert et al. to one another.
Recommended publications
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • Trends of Aquatic Alien Species Invasions in Ukraine
    Aquatic Invasions (2007) Volume 2, Issue 3: 215-242 doi: http://dx.doi.org/10.3391/ai.2007.2.3.8 Open Access © 2007 The Author(s) Journal compilation © 2007 REABIC Research Article Trends of aquatic alien species invasions in Ukraine Boris Alexandrov1*, Alexandr Boltachev2, Taras Kharchenko3, Artiom Lyashenko3, Mikhail Son1, Piotr Tsarenko4 and Valeriy Zhukinsky3 1Odessa Branch, Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine (NASU); 37, Pushkinska St, 65125 Odessa, Ukraine 2Institute of Biology of the Southern Seas NASU; 2, Nakhimova avenue, 99011 Sevastopol, Ukraine 3Institute of Hydrobiology NASU; 12, Geroyiv Stalingrada avenue, 04210 Kiyv, Ukraine 4Institute of Botany NASU; 2, Tereschenkivska St, 01601 Kiyv, Ukraine E-mail: [email protected] (BA), [email protected] (AB), [email protected] (TK, AL), [email protected] (PT) *Corresponding author Received: 13 November 2006 / Accepted: 2 August 2007 Abstract This review is a first attempt to summarize data on the records and distribution of 240 alien species in fresh water, brackish water and marine water areas of Ukraine, from unicellular algae up to fish. A checklist of alien species with their taxonomy, synonymy and with a complete bibliography of their first records is presented. Analysis of the main trends of alien species introduction, present ecological status, origin and pathways is considered. Key words: alien species, ballast water, Black Sea, distribution, invasion, Sea of Azov introduction of plants and animals to new areas Introduction increased over the ages. From the beginning of the 19th century, due to The range of organisms of different taxonomic rising technical progress, the influence of man groups varies with time, which can be attributed on nature has increased in geometrical to general processes of phylogenesis, to changes progression, gradually becoming comparable in in the contours of land and sea, forest and dimensions to climate impact.
    [Show full text]
  • New Zealand Oceanographic Institute Memoir 100
    ISSN 0083-7903, 100 (Print) ISSN 2538-1016; 100 (Online) , , II COVER PHOTO. Dictyodendrilla cf. cavernosa (Lendenfeld, 1883) (type species of Dictyodendri/la Bergquist, 1980) (see page 24), from NZOI Stn I827, near Rikoriko Cave entrance, Poor Knights Islands Marine Reserve. Photo: Ken Grange, NZOI. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH The Marine Fauna of New Zealand: Index to the Fauna 2. Porifera by ELLIOT W. DAWSON N .Z. Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 100 1993 • This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication DAWSON, E.W. The marine fauna of New Zealand: Index to the Fauna 2. Porifera / by Elliot W. Dawson - Wellington: New Zealand Oceanographic Institute, 1993. (New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 100) ISBN 0-478-08310-6 I. Title II. Series UDC Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson NIWA Oceanographic (NZOI) National Institute of Water and Atmospheric Research Received for publication: 17 July 1991 © NIWA Copyright 1993 2 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 5 SCOPE AND ARRANGEMENT 7 SYSTEMATIC LIST 8 Class DEMOSPONGIAE 8 Subclass Homosclcromorpha ..............................................................................................
    [Show full text]
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
    Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol­ published by his friend Sagot (1873). Although an aristo­ land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon­ Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial­ his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche­ around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat­ (notably Nevis, Sint Eustatius, St.
    [Show full text]
  • Ctenophore Relationships and Their Placement As the Sister Group to All Other Animals
    ARTICLES DOI: 10.1038/s41559-017-0331-3 Ctenophore relationships and their placement as the sister group to all other animals Nathan V. Whelan 1,2*, Kevin M. Kocot3, Tatiana P. Moroz4, Krishanu Mukherjee4, Peter Williams4, Gustav Paulay5, Leonid L. Moroz 4,6* and Kenneth M. Halanych 1* Ctenophora, comprising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propul- sion. However, the ancestral states of traits are debated and relationships among many lineages are unresolved. Here, using 27 newly sequenced ctenophore transcriptomes, publicly available data and methods to control systematic error, we establish the placement of Ctenophora as the sister group to all other animals and refine the phylogenetic relationships within ctenophores. Molecular clock analyses suggest modern ctenophore diversity originated approximately 350 million years ago ± 88 million years, conflicting with previous hypotheses, which suggest it originated approximately 65 million years ago. We recover Euplokamis dunlapae—a species with striated muscles—as the sister lineage to other sampled ctenophores. Ancestral state reconstruction shows that the most recent common ancestor of extant ctenophores was pelagic, possessed tentacles, was bio- luminescent and did not have separate sexes. Our results imply at least two transitions from a pelagic to benthic lifestyle within Ctenophora, suggesting that such transitions were more common in animal diversification than previously thought. tenophores, or comb jellies, have successfully colonized from species across most of the known phylogenetic diversity of nearly every marine environment and can be key species in Ctenophora.
    [Show full text]
  • Geobiological Events in the Ediacaran Period
    Geobiological Events in the Ediacaran Period Shuhai Xiao Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA NSF; NASA; PRF; NSFC; Virginia Tech Geobiology Group; CAS; UNLV; UCR; ASU; UMD; Amherst; Subcommission of Neoproterozoic Stratigraphy; 1 Goals To review biological (e.g., acanthomorphic acritarchs; animals; rangeomorphs; biomineralizing animals), chemical (e.g., carbon and sulfur isotopes, oxygenation of deep oceans), and climatic (e.g., glaciations) events in the Ediacaran Period; To discuss integration and future directions in Ediacaran geobiology; 2 Knoll and Walter, 1992 • Acanthomorphic acritarchs in early and Ediacara fauna in late Ediacaran Period; • Strong carbon isotope variations; • Varanger-Laplandian glaciation; • What has happened since 1992? 3 Age Constraints: South China (538.2±1.5 Ma) 541 Ma Cambrian Dengying Ediacaran Sinian 551.1±0.7 Ma Doushantuo 632.5±0.5 Ma 635 Ma 635.2±0.6 Ma Nantuo (Tillite) 636 ± 5Ma Cryogenian Nanhuan 654 ± 4Ma Datangpo 663±4 Ma Neoproterozoic Neoproterozoic Jiangkou Group Banxi Group 725±10 Ma Tonian Qingbaikouan 1000 Ma • South China radiometric ages: Condon et al., 2005; Hoffmann et al., 2004; Zhou et al., 2004; Bowring et al., 2007; S. Zhang et al., 2008; Q. Zhang et al., 2008; • Additional ages from Nama Group (Namibia), Conception Group (Newfoundland), and Vendian (White Sea); 4 The Ediacaran Period Ediacara fossils Cambrian 545 Ma Nama assemblage 555 Ma White Sea assemblage 565 Ma Avalon assemblage 575 Ma 585 Ma Doushantuo biota 595 Ma 605 Ma Ediacaran Period 615 Ma
    [Show full text]
  • “Modern-Type Plate Tectonics”?
    SILEIR RA A D B E E G D E A O D L Special Session, “A tribute to Edilton Santos, a leader in Precambrian O E I G C I A Geology in Northeastern Brazil”, edited by A.N. Sial and V.P. Ferreira O BJGEO S DOI: 10.1590/2317-4889202020190095 Brazilian Journal of Geology D ESDE 1946 Dawn of metazoans: to what extent was this influenced by the onset of “modern-type plate tectonics”? Umberto G. Cordani1* , Thomas R. Fairchild1 , Carlos E. Ganade1 , Marly Babinski1 , Juliana de Moraes Leme1 Abstract The appearance of complex megascopic multicellular eukaryotes in the Ediacaran occurred just when the dynamics of a cooling Earth allowed establishment of a new style of global tectonics that continues to the present as “modern-type plate tectonics”. The advent of this style was first registered in 620 Ma-old coesite-bearing Ultra-High Pressure eclogites within the Transbrasiliano-Kandi mega-shear zone along the site of the West Gondwana Orogeny (WGO). These eclogites comprise the oldest evidence of slab-pull deep subduction capable of inducing con- tinental collisions and producing high-relief Himalayan-type mega-mountains. Life, prior to this time, was essentially microscopic. Yet with increasing Neoproterozoic oxygenation and intensified influx of nutrients to Ediacaran oceans, resulting from the erosion of these mountains, complex macroscopic heterotrophic eukaryotes arose and diversified, taking the biosphere to a new evolutionary threshold. The repeated elevation of Himalayan-type mega-mountains ever since then has continued to play a fundamental role in nutrient supply and biosphere evolution. Other authors have alluded to the influence of Gondwana mountain-building upon Ediacaran evolution, however we claim here to have identified when and where it began.
    [Show full text]
  • V/ New Cretaceous and Tertiary Decapod Crustaceans from Western
    SCi^y^lfi^^ f-euyj^w/«v/ Bulletin of the Mizunami Fossil Museum, no. 28 (2001), p. 173-210, 19 figs., 3 tables. New Cretaceous and Tertiary decapod crustaceans from western North America Carrie E. Schweitzer and Rodney M. Feldmann Department of Geology, Kent State University, Kent, OH 44242, U.S.A. <[email protected]> and <[email protected]> Abstract Several new decapod crustaceans have been recovered from Cretaceous and Tertiary rocks of west- em North America. New species include Palaeastacus trisulcatus, Glyphea micheleae, Hoploparia tshudyi, Ctenocheles hokoensis, Callianopsis ? inornatus, Palaeopentacheles? starri, Eucorystes platys, Archaeopus lunicarina, Brecanclawu rathbunae gen. nov. amd sp. nov., Pagurus malloryi, Paguristes hokoensis. One new combination has resulted from this work, Paguristes subaequalis comb. nov. (Rathbun, 1926). Family level diagnostic characters of the chelae are given for each paguroid family; chelae are the only portion of paguroid decapods commonly preserved in the fossil record. Palaeopentacheles and Eucorystes appear to have had north polar distributions, and Glyphea and Palaeastacus have bipolar or amphitropical distributions, corroborating the patterns observed by Schweitzer (2001) for Cretaceous and Tertiary decapods of the North Pacific rim. Key words: Cretaceous, Cenozoic, Decapoda, North America Introduction much of that material was made available to us for study. Their collections were supplemented by those of geologists The history of study of fossil decapod crustaceans on the working in Alaska, often under the auspices of the U. S. west coast of North America has been disjunct. Several Geological Survey or petroleum companies. Numerous studies in the latter part of the lO"" Century and the early papers, cited in the work to follow, have resulted from the 20* Century resulted in the recognition of fossil decapods study of this material.
    [Show full text]
  • RELATING EDIACARAN FRONDS 1 T. Alexander Dececchi *, Guy M
    1 RELATING EDIACARAN FRONDS 2 T. Alexander Dececchi *, Guy M. Narbonne, Carolyn Greentree, and Marc 3 Laflamme 4 T. Alexander Dececchi* and Guy M. Narbonne, Department of Geological Sciences 5 and Geological Engineering, Kingston, Queen's University, Ontario, K7L 3N6, Canada. 6 E-mail: [email protected], [email protected]. 7 Carolyn Greentree, School of Earth, Atmosphere and Environment, Monash 8 University, Clayton, Victoria, 3800, Australia. Email [email protected]. 9 Marc Laflamme. Department of Chemical and Physical Sciences, University of 10 Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, 11 Canada. E-mail: [email protected]. 12 13 Abstract 14 Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They 15 represent one of the most widespread and common body forms ranging across all 16 major Ediacaran fossil localities and time slices postdating the Gaskiers glaciation, 17 but uncertainty over their phylogenetic affinities has led to uncertainty over issues 18 of homology and functional morphology between, and within, organisms displaying 19 this ecomorphology. Here we present the first large scale, multi-group cladistic 20 analysis of Ediacaran organisms, sampling 20 ingroup taxa with previously asserted 21 affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly 22 derived morphological character matrix that incorporates multiple axes of potential 23 phylogenetically informative data, including architectural, developmental, and 24 structural qualities, we seek to illuminate the evolutionary history of these 25 organisms. We find strong support for existing classification schema and devise 26 apomorphy-based definitions for each of the three frondose clades examined here. 27 Through a rigorous cladistics framework it is possible to discern the pattern of 28 evolution within, and between, these clades, including the identification of 29 homoplasies and functional constraints.
    [Show full text]
  • Lifestyle of the Octoradiate Eoandromeda in the Ediacaran
    Lifestyle of the Octoradiate Eoandromeda in the Ediacaran Authors: Wang, Ye, Wang, Yue, Tang, Feng, Zhao, Mingsheng, and Liu, Pei Source: Paleontological Research, 24(1) : 1-13 Published By: The Palaeontological Society of Japan URL: https://doi.org/10.2517/2019PR001 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Paleontological-Research on 15 Feb 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Bing Search Engine Paleontological Research, vol. 24, no. 1, pp. 1–13, JanuaryEoandromeda 1, 2020 ’s Lifestyle 1 © by the Palaeontological Society of Japan doi:10.2517/2019PR001 Lifestyle of the Octoradiate Eoandromeda in the Ediacaran YE WANG1, YUE WANG1, FENG TANG2, MINGSHENG ZHAO3 and PEI LIU1 1Resource and Environmental Engineering College, Guizhou University, Huanx 550025, Guiyang, Guizhou, China (e-mail: [email protected]) 2Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Street 100037, Beijing, China 3College of Paleontology, Shenyang Normal Univeristy, 253 Huanhe N Street 110034, Shengyang, Liaoning, China Received May 14, 2018; Revised manuscript accepted January 26, 2019 Abstract.
    [Show full text]