Les « Plumes » De L'édiacarien, Un Groupe Animal Disparu ?

Total Page:16

File Type:pdf, Size:1020Kb

Les « Plumes » De L'édiacarien, Un Groupe Animal Disparu ? 1/7 Les « plumes » de l'Édiacarien, un groupe animal disparu ? 19/09/2018 Auteur(s) : Cyril Langlois ENS Lyon - Préparation à l'agrégation SV-STU Publié par : Olivier Dequincey Résumé Stromatoveris et autres fossiles ”édiacariens” en frondes, en plumes ou en pneu : nouvelle phylogénie basée sur une idée ancienne et l'étude comparative de nombreux spécimens récemment exhumés. Table des matières Rappel : les fossiles de l'Édiacarien Stromatoveris, l'édiacarien du Cambrien Conclusion Bibliographie Les fossiles découverts dès 1946 dans les collines d'Édiacara, en Australie, mais aussi, entre autres, en Russie et en Namibie, et datés de la fin du Protérozoïque, intriguent les paléontologues depuis plusieurs décennies. Si certains des fossiles décrits ont pu être rattachés à des groupes d'organismes déjà connus ou encore existants, d'autres restent énigmatiques. Ces derniers présentent, pour la plupart, une morphologie caractéristique en « plume » ou en « fronde » subdivisée en rameaux et branches selon une structure fractale. Leur position phylogénétique comme leur mode de vie ont fait l'objet de diverses interprétations : groupe entièrement disparu ? Sous-ensemble de Cnidaires ? Osmotrophes ? Détritivores ? Récemment, des fossiles semblables ont été exhumés dans un site chinois plus récent, daté du Cambrien, preuve que ces organismes existaient encore au début du Phanérozoïque. Par un examen approfondi de ces fossiles et de leurs homologues protérozoïque, portant sur plus de 200 spécimens, une chercheuse britannique et son collègue chinois proposent une analyse phylogénétique qui regroupe l'ensemble de ces organismes dans un unique clade monophylétique, entièrement disparu, groupe-frère de tous les autres animaux (Hoyal Cuthill et Han, 2018 [3]). Rappel : les fossiles de l'Édiacarien Jusqu'aux années 1950, l'apparition d'organismes pluricellulaires macroscopiques dans le registre fossile était supposé remonter au début du Cambrien, vers 541 Ma. Commençait alors le Phanérozoïque, l'éon des « animaux visibles », qui suit le Protérozoïque, « d'avant les animaux ». Depuis lors, un nombre croissant de formations rocheuses datées de la fin du Protérozoïque ont livré des fossiles d'organismes macroscopiques, pour la plupart interprétés comme des animaux, Cnidaires (éponges…) ou Eumétazoaires, animaux « vrais ». L'apparition des pluricellulaires semble remonter ainsi non plus à 541 Ma, mais à 600 Ma au moins, à la sortie des trois grands épisodes glaciaires d'échelle mondiale (les « Terre boule de neige » ou “Snowball Earth” ») identifiés depuis les années 1990 (Kirschvink, 1992 [4]) (glaciations Sturtienne, de 715 à 680 Ma environ, Marinoenne, entre 650 et 635 Ma, et Gaskiers, plus brève et moins intense, vers 580 Ma). https://planet-terre.ens-lyon.fr/ressource/Stromatoveris-Ediacara.xml - Version du 07/04/21 2/7 Ces fossiles sont maintenant rassemblés sous l'appellation de « faune » ou « biote » d'Édiacara, du nom de l'un des gisements majeurs où ils ont été décrits, dans les collines d'Ediacara, en Australie. Les fossiles décrits dans les différents sites connus aujourd'hui (Figure 1), d'âges différents, ont été regroupés en trois « assemblages » d'âge et d'écologie distincts (Waggoner, 2003 [8]) (Figure 2), déjà présentés dans un précédent article (cf. De Burgess à Franceville (Gabon) : les plus anciennes traces fossiles de pluricellulaires). Source - © 2018 Cyril Langlois Figure 1. Quelques sites majeurs ayant fourni des fossiles édiacariens. Les fossiles récoltés sur les sites datés de l'Édiacarien sont le plus souvent des moules ou des empreintes dans des grès ou des schistes. Parmi ces fossiles, certains ont été interprétés comme des représentants précoces de groupes connus (même si des discussions persistent). Ainsi Tribrachidium (Figure 2) pourrait-il être un échinoderme primitif, à symétrie 3 et non 5, et Kimberella un mollusque. D'autres au contraire, les plus caractéristiques de ce « biote » d'Édiacara, sont restés inclassables pendant des années. Ce sont ces derniers qui viennent de faire l'objet d'un ré-examen, à la lumière de nouveaux fossiles exhumés dans le gisement plus récent de Chengjiang, en Chine du Sud, d'âge cambrien (lui aussi déjà présenté dans l'article De Burgess à Franceville (Gabon) : les plus anciennes traces fossiles de pluricellulaires). Source - © 2009 Xiao et Laflamme [9] Figure 2. Distribution temporelle (barres) et enregistrement stratigraphique (disques) des genres caractéristiques de l'Édiacarien. Les fossiles représenteraient trois assemblages écologiques différents : Avalon[1], Mer Blanche[2], Nama[3]. Ces fossiles à multiples rameaux, caractéristiques des gisements édiacariens, ont évidemment fait l'objet de tentative de classification e t d'interprétation. Plusieurs sous-ensembles en ont été proposés : les Rangeomorphes (Charnia, Fractosuchus, Rangea…), formes en « frondes » ou en « plumes » rapprochées du type Rangea, et les Erniettomorphes (Ernietta, Pteridinum, Swarpuntia…) ou Dickinsiniomorphes (si l'on y inclut le fossile Dickinsonia), en lames aplaties attachées à un sillon médian et subdivisées en bandes fines et serrées, leur donnant l'aspect d'un « pneu » (Figure 3). https://planet-terre.ens-lyon.fr/ressource/Stromatoveris-Ediacara.xml - Version du 07/04/21 3/7 Source - © 2009 Droser et al. [2] Figure 3. Reconstitution des trois assemblages biologiques édiacariens proposés par Ben Waggoner en 2003. L'organisation singulière de ces fossiles a donné lieu à un grand nombre d'attributions phylogénétiques. Leur appartenance à un seul et même ensemble a également été mis en question. Plus gênant encore, dans la mesure où certaines « espèces » de morphologies différentes se retrouvent associées sur un même site et parfois une même strate, certains chercheurs ont rappelé que plusieurs interprétations restaient envisageables (Figure 4) : des espèces différentes, reliées phylogénétiquement ; des écomorphotypes différents, c'est-à-dire des variations morphologiques entre individus d'une même espèce, associées à des conditions de milieu distinctes ; des étapes d'un même cycle de développement (Brasier et Antcliffe, 2004 [1]). Source - © 2004 D'après Brasier et Antcliffe [1], modifié Figure 4. Les relations possibles entre certaines formes édiacariennes. Une majorité de chercheurs concluait cependant qu'il s'agissait d'organismes animaux, mais discutait de leur position par rapport aux Spongiaires, aux Cnidaires (coraux, méduses) et aux Eumétazoaires (animaux bilatériens, anciennement appelés triploblastiques). Stromatoveris, l'édiacarien du Cambrien En 2006, une équipe sino-anglo-japonaise publia la description de fossiles exhumés dans les couches du Cambrien inférieur de deux localités du célèbre lagerstätte de Chengjiang, en Chine (cette appellation correspond https://planet-terre.ens-lyon.fr/ressource/Stromatoveris-Ediacara.xml - Version du 07/04/21 4/7 en réalité à un complexe de plusieurs fouilles proches) (Shu et al., 2006 [7]). Ces spécimens (Figure 6), attribués à la nouvelle espèce Stromatveris psygmoglena, présentent des ressemblances avec les formes édiacariennes. On y retrouverait une structure ancré sur le substrat par un « pied » d'où se ramifient des branches elles-mêmes subdivisées. Source - © 20?? Stephanie (sur Blogger), modifié - CC BY-SA 3.0 Figure 5. Beroe, un cténophore actuel sans tentacule, de 3 à 6 cm de long. Cependant, dans cet article, les auteurs ne parvenaient pas à rapprocher clairement ce fossile d'un groupe édiacarien précis. Les rameaux visibles sur Stromatoveris leur ont paru ciliés, ce qui les a amenés à rapprocher cet organisme des Cténophores (Figure 5 et Figure 9), animaux marins translucides, majoritairement planctoniques (certains secondairement benthiques), à deux feuillets tissulaires séparés par une mésoglée — animaux diploblastiques, comme les Cnidaires — à symétrie radiaire ou « biradiaire », portant de « longues rangées de cellules ciliées à rôle locomoteur, ressemblant à des peignes, d'où le nom du taxon (du grec ctenos, peigne »[4] (Lecointre et Le Guyader, 2017 [5]). Avec cette interprétation, les Rangeomorphes et Erniettomorphes édiacariens seraient donc polyphylétiques et ne formeraient pas un groupe naturel ; la morphologie de Stromatoveris résulterait d'une convergence. Source - © 2006 Shu et al. [7] Figure 6. Images de Stromatoveris publiées dans Science en 2006. Cette conclusion a été remise en question dès l'année suivante (Hoyal Cuthill et Han, 2018 [3]). L'article publié en ligne en août 2018 dans la revue Paleontology, et dont l'un des signataires de la description de 2006 est co-auteur, la réfute à nouveau. Comme souvent, ce revirement s'explique par l'obtention de nouveaux spécimens fossiles, permettant d'affiner les observations initiales : en l’occurrence, les huit exemplaires décrits en 2006 ont été rejoints par 206 nouveaux spécimens ! Avec ces nouveaux spécimens, Hoyal-Cutill et Han [3] proposent un modèle interprétatif tridimensionnel de tous ces organismes ramifiés, dont Stromatoveris psygmoglena (Figure 7). Dans ce modèle, un axe vertical porte des « pétales », étalés dans un ou plusieurs plans, assemblés au niveau de « coutures » (seam), et eux-mêmes subdivisés https://planet-terre.ens-lyon.fr/ressource/Stromatoveris-Ediacara.xml - Version du 07/04/21 5/7 en rameaux, juxtaposés en quinconce et à leur tour divisés en tubes (Figure 7, encadré F). Source - © 2018 Hoyal Cuthill et Han [3] Figure 7. Modèle interprétatif des Petalonemae, sur la base de Stromatoveris. Car, en comparant attentivement — sur des caractères évidemment
Recommended publications
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • Bibliography
    1 Bibliography 1. Datopian (n.d.). Global Temperature Time Series. Author. Retrieved from https://datahub.io/core/global-temp#data 2. Adibekyan, V. (2019). Heavy Metal Rules. I. Exoplanet Incidence and Metallicity. Geosciences, 9(3), 105. doi:10.3390/geosciences9030105 3. Allen, J. F., Thake, B., & Martin, W. F.(2019). Nitrogenase Inhibition Limited Oxygenation of Earth’s Proterozoic Atmosphere. Trends in Plant Science, 24(11), 1022–1031. doi:10.1016/j.tplants.2019.07.007 4. Anderson, H. M., Barbacka, M. K., Bamford, M. K., Holmes, W. B. K., & An- derson, J. M. (2019). Umkomasia (megasporophyll): Part 1 of a Reassess- ment of Gondwana Triassic Plant Genera and a Reclassification of Some Previously Attributed. Alcheringa: An Australasian Journal of Palaeon- tology, 43(1), 43–70. doi:10.1080/03115518.2018.1554748 5. Budde, G., Burkhardt, C., & Kleine, T. (2019). Molybdenum Isotopic Evi- dence for the Late Accretion of Outer Solar System Material to Earth. Na- ture Astronomy, 3(8), 736–741. doi:10.1038/s41550-019-0779-y 6. Cabral, N., Lagarde, N., Reylé, C., Guilbert-Lepoutre, A., & Robin, A. (2019). The Chemical Composition of Planet Building Blocks As Predicted by Stellar Population Synthesis. Astronomy & Astrophysics, 622, A49. doi :10.1051/0004-6361/201833750 7. Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E., & Walsh, K. J. (2019). The Early Instability Scenario: Terrestrial Planet Formation dur- ing the Giant Planet Instability, and the Effect of Collisional Fragmenta- tion. Icarus, 321, 778–790. doi:10.1016/j.icarus.2018.12.033 8. Doyle, A. E., Young,E. D., Klein, B., Zuckerman, B., & Schlichting, H.
    [Show full text]
  • Constructional and Functional Anatomy of Ediacaran Rangeomorphs
    Geological Magazine Constructional and functional anatomy of www.cambridge.org/geo Ediacaran rangeomorphs Nicholas J Butterfield Original Article Department of Earth Sciences, University of Cambridge, Cambridge, UK CB2 3EQ Cite this article: Butterfield NJ. Constructional Abstract and functional anatomy of Ediacaran rangeomorphs. Geological Magazine https:// Ediacaran rangeomorphs were the first substantially macroscopic organisms to appear in the doi.org/10.1017/S0016756820000734 fossil record, but their underlying biology remains problematic. Although demonstrably hetero- trophic, their current interpretation as osmotrophic consumers of dissolved organic carbon Received: 28 February 2020 (DOC) is incompatible with the inertial (high Re) and advective (high Pe) fluid dynamics Revised: 15 June 2020 Accepted: 19 June 2020 accompanying macroscopic length scales. The key to resolving rangeomorph feeding and physiology lies in their underlying construction. Taphonomic analysis of three-dimensionally Keywords: preserved Charnia from the White Sea identifies the presence of large, originally water-filled Neoproterozoic; Eumetazoa; external compartments that served both as a hydrostatic exoskeleton and semi-isolated digestion cham- digestion; fluid dynamics; hydrostatic skeleton; bers capable of processing recalcitrant substrates, most likely in conjunction with a resident microbiome; taphonomy microbiome. At the same time, the hydrodynamically exposed outer surface of macroscopic Author for correspondence: Nicholas J rangeomorphs would have dramatically enhanced both gas exchange and food delivery. A Butterfield, Email: [email protected] bag-like epithelium filled with transiently circulated seawater offers an exceptionally efficient means of constructing a simple, DOC-consuming, multicellular heterotroph. Such a body plan is broadly comparable to that of anthozoan cnidarians, minus such derived features as muscle, tentacles and a centralized mouth.
    [Show full text]
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • New Finds of Skeletal Fossils in the Terminal Neoproterozoic of the Siberian Platform and Spain
    New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain ANDREY YU. ZHURAVLEV, ELADIO LIÑÁN, JOSÉ ANTONIO GÁMEZ VINTANED, FRANÇOISE DEBRENNE, and ALEKSANDR B. FEDOROV Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., Debrenne, F., and Fedorov, A.B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontologica Polonica 57 (1): 205–224. A current paradigm accepts the presence of weakly biomineralized animals only, barely above a low metazoan grade of or− ganization in the terminal Neoproterozoic (Ediacaran), and a later, early Cambrian burst of well skeletonized animals. Here we report new assemblages of primarily calcareous shelly fossils from upper Ediacaran (553–542 Ma) carbonates of Spain and Russia (Siberian Platform). The problematic organism Cloudina is found in the Yudoma Group of the southeastern Si− berian Platform and different skeletal taxa have been discovered in the terminal Neoproterozoic of several provinces of Spain. New data on the morphology and microstructure of Ediacaran skeletal fossils Cloudina and Namacalathus indicate that the Neoproterozoic skeletal organisms were already reasonably advanced. In total, at least 15 skeletal metazoan genera are recorded worldwide within this interval. This number is comparable with that known for the basal early Cambrian. These data reveal that the terminal Neoproterozoic skeletal bloom was a real precursor of the Cambrian radiation. Cloudina,the oldest animal with a mineralised skeleton on the Siberian Platform, characterises the uppermost Ediacaran strata of the Ust’−Yudoma Formation. While in Siberia Cloudina co−occurs with small skeletal fossils of Cambrian aspect, in Spain Cloudina−bearing carbonates and other Ediacaran skeletal fossils alternate with strata containing rich terminal Neoprotero− zoic trace fossil assemblages.
    [Show full text]
  • The Palaeontology Newsletter
    The Palaeontology Newsletter Contents100 Editorial 2 Association Business 3 Annual Meeting 2019 3 Awards and Prizes AGM 2018 12 PalAss YouTube Ambassador sought 24 Association Meetings 25 News 30 From our correspondents A Palaeontologist Abroad 40 Behind the Scenes: Yorkshire Museum 44 She married a dinosaur 47 Spotlight on Diversity 52 Future meetings of other bodies 55 Meeting Reports 62 Obituary: Ralph E. Chapman 67 Grant Reports 72 Book Reviews 104 Palaeontology vol. 62 parts 1 & 2 108–109 Papers in Palaeontology vol. 5 part 1 110 Reminder: The deadline for copy for Issue no. 101 is 3rd June 2019. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 100 2 Editorial This 100th issue continues to put the “new” in Newsletter. Jo Hellawell writes about our new President Charles Wellman, and new Publicity Officer Susannah Lydon gives us her first news column. New award winners are announced, including the first ever PalAss Exceptional Lecturer (Stephan Lautenschlager). (Get your bids for Stephan’s services in now; check out pages 34 and 107.) There are also adverts – courtesy of Lucy McCobb – looking for the face of the Association’s new YouTube channel as well as a call for postgraduate volunteers to join the Association’s outreach efforts. But of course palaeontology would not be the same without the old. Behind the Scenes at the Museum returns with Sarah King’s piece on The Yorkshire Museum (York, UK). Norman MacLeod provides a comprehensive obituary of Ralph Chapman, and this issue’s palaeontologists abroad (Rebecca Bennion, Nicolás Campione and Paige dePolo) give their accounts of life in Belgium, Australia and the UK, respectively.
    [Show full text]
  • CAMBRIAN SURVIVOR AMONG SMALL CARBONACEOUS FOSSILS (SCFS) by BEN J
    [Palaeontology, Vol. 63, Part 5, 2020, pp. 733–752] COCHLEATINA: AN ENIGMATIC EDIACARAN– CAMBRIAN SURVIVOR AMONG SMALL CARBONACEOUS FOSSILS (SCFS) by BEN J. SLATER1 ,THOMASH.P.HARVEY2, ANDREY BEKKER3 and NICHOLAS J. BUTTERFIELD4 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villav€agen 16, Uppsala 752 36, Sweden; [email protected], [email protected] 2School of Geography, Geology & the Environment, University of Leicester, University Rd, Leicester LE1 7RH, UK 3Department of Earth & Planetary Sciences, UC Riverside, 900 University Av., Riverside, CA 92521, USA 4Department of Earth Sciences, University of Cambridge, Downing St, Cambridge CB2 3EQ, UK Typescript received 26 November 2019; accepted in revised form 6 March 2020 Abstract: Conspicuously few body-fossil taxa are known descriptions for Cochleatina and C. canilovica, and critically to span the Ediacaran–Cambrian boundary, a pattern usually evaluate previous biological interpretations, drawing compar- taken to signal either a terminal Proterozoic mass extinction, isons with metazoan, algal and protistan analogues. We or taphonomic failure. We draw attention to the emerging reject hypotheses supporting Cochleatina as a metazoan record of small carbonaceous fossils (SCFs), which exhibit mouthpart, and suggest new grounds for viewing Cochleatina continuous preservation spanning this critical interval. Here as a potential multicomponent predator that trapped protists we focus on the enigmatic SCF Cochleatina, a morphologi- among microbial mats. Most occurrences are from Baltica, cally complex coil-shaped problematicum that ranges across but we synthesize sporadic reports of Cochleatina from other the Ediacaran–Cambrian divide, and is potentially among palaeocontinents, pointing to its global distribution during the oldest fossil occurrences of metazoans. We report new the latest ~10 myr of the Ediacaran and majority of the ear- material of Cochleatina canilovica from the Ediacaran of liest Cambrian Fortunian Stage.
    [Show full text]
  • The Advent of Animals: the View from the Ediacaran SPECIAL FEATURE
    The advent of animals: The view from the Ediacaran SPECIAL FEATURE Mary L. Drosera,1 and James G. Gehlingb,c aDepartment of Earth Sciences, University of California, Riverside, CA 92521; bSouth Australia Museum, Adelaide, SA 5000, Australia; and cUniversity of Adelaide, Adelaide, SA 5000, Australia Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved December 9, 2014 (received for review April 15, 2014) Patterns of origination and evolution of early complex life on this relationships within the Ediacara Biota and, importantly, reveals the planet are largely interpreted from the fossils of the Precam- morphologic disparity of these taxa. brian soft-bodied Ediacara Biota. These fossils occur globally and However, although fossils of the Ediacara Biota are not easily represent a diverse suite of organisms living in marine environments. classified with modern taxa, they nonetheless provide the record Although these exceptionally preserved fossil assemblages are typi- of early animals. One of the primary issues is that they are soft- cally difficult to reconcile with modern phyla, examination of the bodied and preserved in a manner that is, in many cases, unique to morphology, ecology, and taphonomy of these taxa provides keys to the Ediacaran. An alternative venue for providing insight into these their relationships with modern taxa. Within the more than 30 million organisms and the manner in which they fit into early animal evo- y range of the Ediacara Biota, fossils of these multicellular organisms lution is offered by examination of the paleoecology, morphology, demonstrate the advent of mobility, heterotrophy by multicellular and taphonomy of fossils of the Ediacara Biota.
    [Show full text]
  • Lower Cambrian Vendobionts from China and Early Diploblast Evolution
    REPORTS provide exceptional morphological detail. Pre- Lower Cambrian Vendobionts from sumably they were rapidly buried by storm events, and most are oriented at a shallow angle China and Early Diploblast Evolution to the bedding plane. The split between part and counterpart is therefore oblique, necessitating D.-G. Shu,1,2* S. Conway Morris,3* J. Han,1 Y. Li,4 X.-L. Zhang,1 H. Hua,1 Z.-F. Zhang,1 composite reconstructions of each specimen J.-N. Liu,1 J.-F. Guo,1 Y. Yao,1 K. Yasui5 (Figs. 1, C to E, and 2, B and C). The body is foliate, with a bluntly terminating Ediacaran assemblages immediately predate the Cambrian explosion of metazoans and should stalk that lacks obvious attachment structures have played a crucial role in this radiation. Their wider relationships, however, have remained (Figs. 1; A, C, D, and F; and 2; A, B, and D). refractory and difficult to integrate with early metazoan phylogeny. Here, we describe a frondlike Body length ranges between 2.5 and 7.5 cm. fossil, Stromatoveris (S. psygmoglena sp. nov.), from the Lower Cambrian Chengjiang Lagersta¨tte Orientations were adopted for convenience and (Yunnan, China) that is strikingly similar to Ediacaran vendobionts. The exquisite preservation imply no direct homologies with other orga- reveals closely spaced branches, probably ciliated, that appear to represent precursors of the nisms. Upper and lower surfaces are markedly diagnostic comb rows of ctenophores. Therefore, this finding has important implications for the different. The former bears prominent branches early evolution of this phylum and related diploblasts, some of which independently evolved a with quite pronounced relief.
    [Show full text]
  • The Two Phases of the Cambrian Explosion
    Edinburgh Research Explorer The two phases of the Cambrian Explosion Citation for published version: Zhuravlev, AY & Wood, R 2018, 'The two phases of the Cambrian Explosion', Scientific Reports. https://doi.org/10.1038/s41598-018-34962-y Digital Object Identifier (DOI): 10.1038/s41598-018-34962-y Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Scientific Reports General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 www.nature.com/scientificreports OPEN The two phases of the Cambrian Explosion Andrey Yu. Zhuravlev1 & Rachel A. Wood2 The dynamics of how metazoan phyla appeared and evolved – known as the Cambrian Explosion – Received: 18 July 2018 remains elusive. We present a quantitative analysis of the temporal distribution (based on occurrence Accepted: 24 October 2018 data of fossil species sampled in each time interval) of lophotrochozoan skeletal species (n = 430) Published: xx xx xxxx from the terminal Ediacaran to Cambrian Stage 5 (~545 – ~505 Million years ago (Ma)) of the Siberian Platform, Russia.
    [Show full text]
  • 2 the Evolutionary Significance of the Chengjiang Biota
    The Cambrian Fossils of Chengjiang, China The Flowering of Early Animal Life The Cambrian Fossils of Chengjiang, China The Flowering of Early Animal Life Second Edition Hou Xian-guang, David J. Siveter, Derek J. Siveter, Richard J. Aldridge, Cong Pei-yun, Sarah E. Gabbott, Ma Xiao-ya, Mark A. Purnell, Mark Williams This edition first published 2017 © 2017 by John Wiley & Sons Ltd. First edition published 2004 © 2004 by Blackwell Science Ltd. Registered Office John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book, please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners.
    [Show full text]