Chemotaxonomy of the Oleaceae: Iridoids As Taxonomic Markers

Total Page:16

File Type:pdf, Size:1020Kb

Chemotaxonomy of the Oleaceae: Iridoids As Taxonomic Markers Phytochemistry 60 (2002) 213–231 www.elsevier.com/locate/phytochem Review Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers Søren Rosendal Jensena,*, Henrik Franzyka, Eva Wallanderb aDepartment of Chemistry, The Technical University of Denmark, DK-2800, Lyngby, Denmark bBotanical Institute, Go¨teborg University, PO Box 461, SE-40530 Go¨teborg, Sweden Received 19 December 2001; received in revised form 6 March 2002 Abstract The distribution and biosynthesis of iridoid glucosides in the Oleaceae is reviewed and five distinct biosynthetic pathways to iri- doids have been identified in the family, deoxyloganic acid apparently being a common intermediate. Likewise, the distributions of caffeoyl phenylethanoid glycosides (CPGs), i.e. verbascoside and its analogues, as well as cornoside are listed. Iridoid glucoside data exist for 17 genera of Oleaceae and the occurrence of iridoids from the different biosynthetic pathways correlate extremely well with the phylogenetic classification inferred from recent chloroplast DNA sequence data. Thus the tribe Fontanesieae (Fontanesia)contains ‘‘normal’’ secoiridoids, Forsythieae (Abeliophyllum, Forsythia) contains cornoside and/or iridoids from the forsythide pathway, Myxopyreae (Myxopyrum, Nyctanthes) have iridoids from the myxopyroside pathway, and finally, the two tribes Jasmineae and Oleeae (the remaining genera) both contain iridoids from the oleoside pathway. Within Jasmineae, one group of Jasminum sp. is characterized by the presence of jasminin or similar compounds, while another group of Jasminum species and Menodora display derivatives of 10-hydroxyoleoside, compounds not present in the other group. CPGs are reported from about half of the species investigated. With regard to taxonomy at the order level, the chemical data might support a position within or close to Lamiales due to the common presence of CPGs, the iridoids being of less significance since they are of a type that are barely found elsewhere. # 2002 Elsevier Science Ltd. All rights reserved. Keywords: Oleaceae; Taxonomy; Phylogeny; Iridoid glucosides; Biosynthesis; Verbascoside; Cornoside; Menodora; Forestiera; Nestegis Contents 1. Introduction ............................................................................................................................................................................... 214 2. Biosynthesis of iridoids ..............................................................................................................................................................214 3. Iridoids and CPGs in Oleaceae ..................................................................................................................................................216 3.1. Abeliophyllum ....................................................................................................................................................................216 3.2. Forsythia............................................................................................................................................................................216 3.3. Nyctanthes ......................................................................................................................................................................... 218 3.4. Myxopyrum .......................................................................................................................................................................218 3.5. Fontanesia..........................................................................................................................................................................218 3.6. Menodora...........................................................................................................................................................................218 3.7. Jasminum ...........................................................................................................................................................................218 3.8. Syringa............................................................................................................................................................................... 220 3.9. Ligustrum...........................................................................................................................................................................221 3.10. Fraxinus............................................................................................................................................................................. 222 3.11. Chionanthus .......................................................................................................................................................................222 3.12. Forestiera...........................................................................................................................................................................223 3.13. Olea ................................................................................................................................................................................... 223 * Corresponding author. Tel.: +45-4525-2157/03; fax: +45-4593-3968. E-mail address: [email protected] (S.R. Jensen). 0031-9422/02/$ - see front matter # 2002 Elsevier Science Ltd. All rights reserved. PII: S0031-9422(02)00102-4 214 S.R. Jensen et al. / Phytochemistry 60 (2002) 213–231 3.14. Nestegis.............................................................................................................................................................................. 223 3.15. Phillyrea............................................................................................................................................................................. 224 3.16. Picconia ............................................................................................................................................................................. 224 3.17. Osmanthus ......................................................................................................................................................................... 224 4. Discussion .................................................................................................................................................................................. 224 5. Experimental .............................................................................................................................................................................. 227 5.1. Menodora robusta (Benth. A) Grey ...................................................................................................................................227 5.2. Forestiera acuminata (Michx.) Poir. ..................................................................................................................................227 5.3. Nestegis sandwicensis (Gray) O. & I. Deg. & L. Johnson..................................................................................................227 Acknowledgements..........................................................................................................................................................................227 References ....................................................................................................................................................................................... 227 1. Introduction when hydrolyzed by the enzymes in the plant (Konno et al., 1998, 1999). Thus, the glucoside is compartmenta- The Oleaceae is a family of medium size with 25 genera lized in the cells of the intact plant, but when the tissue and about 600 species. With regard to chemical con- is damaged by insect chewing, the compound is hydro- stituents, it has been quite extensively investigated. It is lyzed to the aglucone which react irreversibly with the mainly characterized by the presence of iridoid gluco- proteins and renders these more or less indigestible and sides and phenylethanoid derivatives in the form of thus useless, especially with regard to the essential esters and glycosides of tyrosol (p-hydroxyphenyl-etha- amino acid lysine. nol) and in particular the closely related dopaol (3,4- dihydroxyphenyl-ethanol). Coumarins and lignan glu- cosides are also common in the family, but they appear 2. Biosynthesis of iridoids to have a more limited distribution (Hegnauer, 1969, 1990). The presence of iridoids is linking Oleaceae both The iridoids are of terpenoid origin and their biosynth- to Lamiales and to Gentianales, and since most of the esis has been fairly well investigated (Inouye and Uesato, iridoids are formally of the seco-type, a closer relation- 1986; Jensen, 1991, 1992), thus it is known that two main ship with Gentianales is indicated. This fact was among routes exist. One main route (route I;Fig.1)isleading others adopted by Dahlgren (Dahlgren et al., 1981; from iridodial (1) via iridotrial (2) to deoxyloganic acid (3) Dahlgren, 1989) to place Oleales as a sister group to which is the known precursor of many carbocyclic iridoids Gentianales. However, the presence of tyrosol/dopaol- having the 8b-stereochemistry including loganin (6)and derivatives in Oleaceae, both as iridoid esters and loganic acid (10), secologanin and secologanic acid (11) (mainly) as verbascoside and its analogues (caffeoyl as well as the derived secoiridoids and complex indole phenylethanoid glycosides=CPGs) could conversely
Recommended publications
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
    Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Appendix 2, Ranges for Optimal and Suboptimal Growth for Site, Climate, and Soil Variables
    APPENDIX 2 Ranges for Optimal and Suboptimal Growth for Site, Climate, and Soil Variables Climate and soil data in these figures were provided by the Landscape Change Research Group (U.S. Forest Service, n.d.). Current climate parameter data are from Hayhoe et al. (2007) and are based on United States Historical Climatology network data from 1961- 1990. Soil and topographic parameter data are from STATSGO data (Soil Conservation Service 1991). For further information, see the Climate Change Atlas website: https:// www.fs.fed.us/nrs/atlas/. Optimal elevation ranges were derived from information in “Silvics of North America” (Burns and Honkala 1990), Leak and Graber (1974), Beckage et al. (2008), and other sources. Depth to bedrock (minimum rooting depth) values come from the PLANTS database (NRCS 2014). Because optimal and suboptimal ranges are not known for minimum rooting depth, arrows indicate the beginning of the range. 143 Elevation (m): range for optimal growth 0 200 400 600 800 1000 1200 1400 1600 Quercus alba Fraxinus pennsylvanica Quercus prinus Pinus strobus Castanea dentata Ulmus americana Acer rubrum Fraxinus americana Juglans cinerea Pinus rigida Quercus rubra Tsuga canadensis Fagus grandifolia Acer saccharum Populus tremuloides Thuja occidentalis Populus grandidentata Picea mariana Pinus resinosa Betula alleghaniensis Picea rubens Betula payrifera Abies balsamea Slope gradient (%): ranges for optimal and suboptimal growth 0 5 10 15 20 25 Picea mariana Thuja occidentalis Populus tremuloides Pinus resinosa Fraxinus pennsylvanica
    [Show full text]
  • Forsythia.Pdf
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 18 April 2016 Forsythia, Forsythia spp. Forsythia is both the common and genus name of a group of deciduous fl ower shrubs in the olive family (Oleaceae) named after William Forsyth, a Scottish botanist who was at that time Director of the Royal Garden at Kensington and a founding member of England’s Royal Horticultural Society. The 11 or so species are primarily native to eastern Asia, with one species from Europe. The two quite variable species F. suspensa and F. viridissima were the fi rst to be brought from the Far East to Europe. Forsythia × intermedia is a hybrid of these species that was introduced in continental Europe Forsythia is a common landscape plant in the about 1880. Many Midwest. other crosses using the same two parents have been made so plants with this name can be quite variable. F. suspensa tends to have a widely open to drooping habit, but a more upright form found in China in 1861 was given the (incorrect) name F. fortunei. Other species discovered in the early 1900’s – F. giraldiana from China and F. ovata from Korea – as well as the European species F. europaea, have been used in 20th-century American crosses. Hardiness varies by species, with most in zones 5-8, but many of the hybrids are hardier than the parents, surviving in zones 4 or even 3. The unrelated white forsythia, Abeliophyllum distichum, has many of the same characteristics as forsythia, blooming White forsythia, Abeliophyllum about the same time, but with white fl owers.
    [Show full text]
  • Hemiptera, Heteroptera, Miridae, Isometopinae) from Borneo with Remarks on the Distribution of the Tribe
    ZooKeys 941: 71–89 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.941.47432 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Two new genera and species of the Gigantometopini (Hemiptera, Heteroptera, Miridae, Isometopinae) from Borneo with remarks on the distribution of the tribe Artur Taszakowski1*, Junggon Kim2*, Claas Damken3, Rodzay A. Wahab3, Aleksander Herczek1, Sunghoon Jung2,4 1 Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland 2 Laboratory of Systematic Entomology, Depart- ment of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea 3 Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Universiti, BE1410, Darussalam, Brunei 4 Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea Corresponding author: Artur Taszakowski ([email protected]); Sunghoon Jung ([email protected]) Academic editor: F. Konstantinov | Received 21 October 2019 | Accepted 2 May 2020 | Published 16 June 2020 http://zoobank.org/B3C9A4BA-B098-4D73-A60C-240051C72124 Citation: Taszakowski A, Kim J, Damken C, Wahab RA, Herczek A, Jung S (2020) Two new genera and species of the Gigantometopini (Hemiptera, Heteroptera, Miridae, Isometopinae) from Borneo with remarks on the distribution of the tribe. ZooKeys 941: 71–89. https://doi.org/10.3897/zookeys.941.47432 Abstract Two new genera, each represented by a single new species, Planicapitus luteus Taszakowski, Kim & Her- czek, gen. et sp. nov. and Bruneimetopus simulans Taszakowski, Kim & Herczek, gen. et sp. nov., are described from Borneo.
    [Show full text]
  • 'Ca. Phytoplasma Fraxini' Y
    248 UNIVERSIDAD MILITAR NUEVA GRANADA ESPECIES ARBÓREAS DE LAS FAMILIAS EUPHORBIACEAE, PITTOSPORACEAE Y SALICACEAE SON INFECTADAS POR ‘CA. PHYTOPLASMA FRAXINI’ Y ‘CA. PHYTOPLASMA ASTERIS’ EN INFECCIONES MIXTAS EN BOGOTÁ, COLOMBIA Fecha de recepción: 4 de octubre de 2013 • Fecha de aceptación: 15 de noviembre de 2013 TREE SPECIES OF EUPHORBIACEAE, PITTOSPORACEAE AND SALICACEAE FAMILIES ARE INFECTED BY ‘CA. PHYTOPLASMA FRAXINI’ AND ‘CA. PHYTOPLASMA ASTERIS’ IN MIXED INFECTIONS IN BOGOTA, COLOMBIA Laura M. Perilla-Henao1 • Liliana Franco-Lara2,3 RESUMEN La presencia de fitoplasmas del grupo 16SrI (‘Ca. Phytoplasma asteris’) fue reportada en Croton spp. (Eu- phorbiaceae), Pittosporum undulatum (Pittosporaceae) y Populus nigra (Salicaceae), en Bogotá. En este traba- jo se reporta la existencia adicional de fitoplasmas del grupo 16SrVII‘Ca. Phytoplasma fraxini’ en estas mismas especies de árboles ornamentales, por técnicas moleculares como PCR anidada, RFLP y secuenciación del gen 16SrRNA. Los resultados muestran la existencia de un complejo de fitoplasmas de los grupos 16SrI y 16SrVII que se asocian con síntomas como deformación general de la corona, ramas en copo, amarillamiento, elonga- ción anormal de brotes apicales, escobas de bruja y rebrotación epicórmica que afectan el estado de sanidad de los árboles. En diciembre de 2013 la prevalencia sintomática en Croton spp., P. undulatum y P. nigra y se estimó en 36%, 93% y 85% respectivamente. Este trabajo presenta evidencia de que plantas de familias dife- rentes a Oleaceae que son susceptibles a fitoplasmas del grupo 16SrVII y que en este caso se encuentran en infecciones mixtas con fitoplasmas del grupo 16SrI. Se presentan evidencias de una enfermedad emergente de alta prevalencia en estas especies de árboles han pasado desapercibidas hasta la fecha, pero suponen un riesgo para la supervivencia de los árboles urbanos en Bogotá.
    [Show full text]
  • Plant List by Hardiness Zones
    Plant List by Hardiness Zones Zone 1 Zone 6 Below -45.6 C -10 to 0 F Below -50 F -23.3 to -17.8 C Betula glandulosa (dwarf birch) Buxus sempervirens (common boxwood) Empetrum nigrum (black crowberry) Carya illinoinensis 'Major' (pecan cultivar - fruits in zone 6) Populus tremuloides (quaking aspen) Cedrus atlantica (Atlas cedar) Potentilla pensylvanica (Pennsylvania cinquefoil) Cercis chinensis (Chinese redbud) Rhododendron lapponicum (Lapland rhododendron) Chamaecyparis lawsoniana (Lawson cypress - zone 6b) Salix reticulata (netleaf willow) Cytisus ×praecox (Warminster broom) Hedera helix (English ivy) Zone 2 Ilex opaca (American holly) -50 to -40 F Ligustrum ovalifolium (California privet) -45.6 to -40 C Nandina domestica (heavenly bamboo) Arctostaphylos uva-ursi (bearberry - zone 2b) Prunus laurocerasus (cherry-laurel) Betula papyrifera (paper birch) Sequoiadendron giganteum (giant sequoia) Cornus canadensis (bunchberry) Taxus baccata (English yew) Dasiphora fruticosa (shrubby cinquefoil) Elaeagnus commutata (silverberry) Zone 7 Larix laricina (eastern larch) 0 to 10 F C Pinus mugo (mugo pine) -17.8 to -12.3 C Ulmus americana (American elm) Acer macrophyllum (bigleaf maple) Viburnum opulus var. americanum (American cranberry-bush) Araucaria araucana (monkey puzzle - zone 7b) Berberis darwinii (Darwin's barberry) Zone 3 Camellia sasanqua (sasanqua camellia) -40 to -30 F Cedrus deodara (deodar cedar) -40 to -34.5 C Cistus laurifolius (laurel rockrose) Acer saccharum (sugar maple) Cunninghamia lanceolata (cunninghamia) Betula pendula
    [Show full text]
  • New Records of Alien Species in the Ohio Vascular Flora1
    New Records of Alien Species in the Ohio Vascular Flora1 MICHAEL A. VINCENT AND ALLISON W. CUSICK, Department of Botany, Miami University, Oxford, OH 45056, and Division of Natural Areas and Preserves, Ohio Department of Natural Resources, Fountain Square, Columbus, OH 43224 ABSTRACT. Examination of specimens of vascular plants from various herbaria, as well as field collections, have revealed 70 taxa not previously reported for Ohio, or previously reported without documentation. This paper documents these new taxa, 44% of which are escapes of woody landscape plants. The specimens cited represent 55 genera in 30 families. Of these, the following genera are first reports for the state: Achyranthes, Albizia, Carthamus, Cercidiphyllum, Cotoneaster, Dactyloctenium, Fontanesia, Gaillardia, Guizotia, Gypsophila, Stenosiphon, Tripsacum, and Zinnia. Cercidiphyllaceae is the only family reported as new for the state. Some taxa cited in this paper represent first reports as escapes for North America. These are Cotoneaster divaricatus (Rosaceae), Fontanesia fortunei (Oleaceae), Magnolia X soulangeana (Magnoliaceae), Magnolia stellata (Magnoliaceae), Viburnum buddleifolium (Capri- foliaceae), and Viburnum x rhytidiphylloides (Caprifoliaceae). OHIO J SCI 98 (2): 10-17, 1998 INTRODUCTION these proved to be new to the state. Specimens were The alien element in the Ohio vascular flora is dynamic. also examined at the following herbaria: BAYLU, BHO, Taxa appear, flourish, and, occasionally, disappear on BGSU, CINC, CLM, CM, DAO, F, GA, GB, GH, ISC, KE, waves of disturbance. Agriculture, transportation, urbani- MICH, MO, MU, NA, NLU, NY, OS, OSH, UAM, UC, US, zation and a host of anthropogenic factors constantly VDB, and VPI (herbarium acronyms from Holmgren and alter habitats and introduce novelties into our flora.
    [Show full text]
  • Recommended Trees to Plant
    Recommended Trees to Plant Large Sized Trees (Mature height of more than 45') (* indicates tree form only) Trees in this category require a curb/tree lawn width that measures at least a minimum of 8 feet (area between the stree edge/curb and the sidewalk). Trees should be spaced a minimum of 40 feet apart within the curb/tree lawn. Trees in this category are not compatible with power lines and thus not recommended for planting directly below or near power lines. Norway Maple, Acer platanoides Cleveland Norway Maple, Acer platanoides 'Cleveland' Columnar Norway Maple, Acer Patanoides 'Columnare' Parkway Norway Maple, Acer Platanoides 'Columnarbroad' Superform Norway Maple, Acer platanoides 'Superform' Red Maple, Acer rubrum Bowhall Red Maple, Acer rubrum 'Bowhall' Karpick Red Maple, Acer Rubrum 'Karpick' Northwood Red Maple, Acer rubrum 'Northwood' Red Sunset Red Maple, Acer Rubrum 'Franksred' Sugar Maple, Acer saccharum Commemoration Sugar Maple, Acer saccharum 'Commemoration' Endowment Sugar Maple, Acer saccharum 'Endowment' Green Mountain Sugar Maple, Acer saccharum 'Green Mountain' Majesty Sugar Maple, Acer saccharum 'Majesty' Adirzam Sugar Maple, Acer saccharum 'Adirzam' Armstrong Freeman Maple, Acer x freemanii 'Armstrong' Celzam Freeman Maple, Acer x freemanii 'Celzam' Autumn Blaze Freeman, Acer x freemanii 'Jeffersred' Ruby Red Horsechestnut, Aesculus x carnea 'Briotii' Heritage River Birch, Betula nigra 'Heritage' *Katsura Tree, Cercidiphyllum japonicum *Turkish Filbert/Hazel, Corylus colurna Hardy Rubber Tree, Eucommia ulmoides
    [Show full text]