Interference in Frequency-Modulation Reception
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radio Frequency Interference Analysis of Spectra from the Big Blade Antenna at the LWDA Site
Radio Frequency Interference Analysis of Spectra from the Big Blade Antenna at the LWDA Site Robert Duffin (GMU/NRL) and Paul S. Ray (NRL) March 23, 2007 Introduction The LWA analog receiver will be required to amplify and digitize RF signals over the full bandwidth of at least 20–80 MHz. This frequency range is populated with a number of strong sources of radio frequency interference (RFI), including several TV stations, HF broadcast transmissions, ham radio, and is adjacent to the FM band. Although filtering can be used to attenuate signals outside the band, the receiver must be designed with sufficient linearity and dynamic range to observe cosmic sources in the unoccupied regions between the, typically narrowband, RFI signals. A receiver of insufficient linearity will generate inter-modulation products at frequencies in the observing bands that will make it difficult or impossible to accomplish the science objectives. On the other hand, over-designing the receiver is undesirable because any excess cost or power usage will be multiplied by the 26,000 channels in the full design and may make the project unfeasible. Since the sky background is low level and broadband, the linearity requirements primarily depend on the RFI signals presented to the receiver. Consequently, a detailed study of the RFI environment at candidate LWA sites is essential. Often RFI surveys are done using antennas optimized for RFI detection such as discone antennas. However, such data are of limited usefulness for setting the receiver requirements because what is relevant is what signals are passed to the receiver when it is connected to the actual LWA antenna. -
Microwave Frequency Demodulation Using Two Coupled Optical Resonators with Modulated Refractive Index
PHYSICAL REVIEW APPLIED 15, 034056 (2021) Microwave Frequency Demodulation Using two Coupled Optical Resonators with Modulated Refractive Index Adam Mock * School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan 48859, USA (Received 16 October 2020; revised 1 February 2021; accepted 10 February 2021; published 18 March 2021) Traditional electronic frequency demodulation of a microwave frequency voltage is challenging because it requires complicated phase-locked loops, narrowband filters with fixed passbands, or large footprint local oscillators and mixers. Herein, a different frequency demodulation concept is proposed based on refractive index modulation of two coupled microcavities excited by an optical wave. A frequency- modulated microwave frequency voltage is applied to two photonic crystal microcavities in a spatially odd configuration. The spatially odd perturbation causes coupling between the even and odd supermodes of the coupled-cavity system. It is shown theoretically and verified by finite-difference time-domain sim- ulations how careful choice of the modulation amplitude and frequency can switch the optical output from on to off. As the modulating frequency is detuned from its off value, the optical output switches from off to on. Ultimately, the optical output amplitude is proportional to the frequency deviation of the applied voltage making this device a frequency-modulated-voltage to amplitude-modulated-optical- wave converter. The optical output can be immediately detected and converted to a voltage that would result in a frequency-demodulated voltage signal. Or the optical output can be fed into a larger radio- over-fiber optical network. In this case the device presents a compact, low power, and tunable route for multiplexing frequency-modulated voltages with amplitude-modulated optical communication systems. -
Additive Synthesis, Amplitude Modulation and Frequency Modulation
Additive Synthesis, Amplitude Modulation and Frequency Modulation Prof Eduardo R Miranda Varèse-Gastprofessor [email protected] Electronic Music Studio TU Berlin Institute of Communications Research http://www.kgw.tu-berlin.de/ Topics: Additive Synthesis Amplitude Modulation (and Ring Modulation) Frequency Modulation Additive Synthesis • The technique assumes that any periodic waveform can be modelled as a sum sinusoids at various amplitude envelopes and time-varying frequencies. • Works by summing up individually generated sinusoids in order to form a specific sound. Additive Synthesis eg21 Additive Synthesis eg24 • A very powerful and flexible technique. • But it is difficult to control manually and is computationally expensive. • Musical timbres: composed of dozens of time-varying partials. • It requires dozens of oscillators, noise generators and envelopes to obtain convincing simulations of acoustic sounds. • The specification and control of the parameter values for these components are difficult and time consuming. • Alternative approach: tools to obtain the synthesis parameters automatically from the analysis of the spectrum of sampled sounds. Amplitude Modulation • Modulation occurs when some aspect of an audio signal (carrier) varies according to the behaviour of another signal (modulator). • AM = when a modulator drives the amplitude of a carrier. • Simple AM: uses only 2 sinewave oscillators. eg23 • Complex AM: may involve more than 2 signals; or signals other than sinewaves may be employed as carriers and/or modulators. • Two types of AM: a) Classic AM b) Ring Modulation Classic AM • The output from the modulator is added to an offset amplitude value. • If there is no modulation, then the amplitude of the carrier will be equal to the offset. -
En 300 720 V2.1.0 (2015-12)
Draft ETSI EN 300 720 V2.1.0 (2015-12) HARMONISED EUROPEAN STANDARD Ultra-High Frequency (UHF) on-board vessels communications systems and equipment; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU 2 Draft ETSI EN 300 720 V2.1.0 (2015-12) Reference REN/ERM-TG26-136 Keywords Harmonised Standard, maritime, radio, UHF ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. -
Data-Over-Cable Service Interface Specifications DOCSIS 1.0 Radio
This version is superseded by the ANSI/SCTE 22-1 standard available here: http://www.scte.org/standards/Standards_Available.aspx Data-Over-Cable Service Interface Specifications DOCSIS 1.0 Radio Frequency Interface Specification SP-RFI-C01-011119 Notice This document is a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. (CableLabs®) for the benefit of the cable industry in general. Neither CableLabs, nor any other entity participating in the creation of this document, is responsible for any liability of any nature whatsoever resulting from or arising out of use or reliance upon this document by any party. This document is furnished on an AS-IS basis and neither CableLabs, nor other participating entity, provides any representation or warranty, express or implied, regarding its accuracy, completeness, or fitness for a particular purpose. Copyright 1997-2001 Cable Television Laboratories, Inc. All rights reserved. SP-RFI-C01-011119 Data-Over-Cable Service Interface Specifications 1.0 Document Status Sheet Document Control Number: SP-RFI-C01-011119 Document Title: Radio Frequency Interface Specification Revision History: I01 – First Release, March 26, 1997 I02 – Second Issued Release, October 8, 1997 I03 – Third Issued Release, February 2, 1998 I04 – Fourth Issued Release, July 24, 1998 I05 – Fifth Issued Release, November 5, 1999 I06 – Sixth Issued Release, August 29, 2001 C01 – Closed, November 19, 2001 Date: November 19, 2001 Status: Work in Draft Issued Closed Progress Distribution Restrictions: Author CL/Member CL/ Public Only Member/ Vendor Key to Document Status Codes: Work in An incomplete document designed to guide discussion and generate Progress feedback that may include several alternative requirements for consideration. -
Amplitude Modulation(AM)
Introduction to Modulation: Amplitude Modulation(AM) Sharlene Katz James Flynn Overview Modulation Overview Basics of Amplitude Modulation (AM) AM Demonstration GRC Exercise 2 Flynn/Katz 7/8/10 Why do we need Modulation/Demodulation? Example: Radio transmission Voice Microphone Transmitter Electric signal, Antenna: 20 Hz – 20 Size requirement KHz > 1/10 wavelength c 3×108 Antenna too large! 5 Use modulation to At 3 KHz: λ = = 3 =10 =100km f 3×10 transfer ⇒ .1λ =10km information to a higher frequency 3 Flynn/Katz 7/8/10 Why do we need Modulation/Demodulation? (cont’d) Frequency Assignment Reduction of noise/interference Multiplexing Bandwidth limitations of equipment Frequency characteristics of antennas Atmospheric/cable properties 4 Flynn/Katz 7/8/10 Basic Concept of Modulation The information source Typically a low frequency signal Referred to as the “baseband signal” X(f) x(t) t f Carrier A higher frequency sinusoid baseband Modulated Modulator Example: cos(2π10000t) carrier signal Modulated Signal Some parameter of the carrier (amplitude, frequency, phase) is varied in accordance with the baseband signal 5 Flynn/Katz 7/8/10 Types of Modulation Analog Modulation Amplitude Modulation, AM Frequency Modulation, FM Double and Single Sideband, DSB and SSB Digital Modulation Phase Shift Keying: BPSK, QPSK, MSK Frequency Shift Keying, FSK Quadrature Amplitude Modulation, QAM 6 Flynn/Katz 7/8/10 Amplitude Modulation (AM) Block Diagram x(t) m x + xAM(t)=Ac [1+mx(t)]cos wct Ac cos wct Time Domain Signal information -
NTSC Specifications
NTSC Modulation Standard ━━━━━━━━━━━━━━━━━━━━━━━━ The Impressionistic Era of TV. It©s Never The Same Color! The first analog Color TV system realized which is backward compatible with the existing B & W signal. To combine a Chroma signal with the existing Luma(Y)signal a quadrature sub-carrier Chroma signal is used. On the Cartesian grid the x & y axes are defined with B−Y & R−Y respectively. When transmitted along with the Luma(Y) G−Y signal can be recovered from the B−Y & R−Y signals. Matrixing ━━━━━━━━━ Let: R = Red \ G = Green Each range from 0 to 1. B = Blue / Y = Matrixed B & W Luma sub-channel. U = Matrixed Blue Chroma sub-channel. U #2900FC 249.76° −U #D3FC00 69.76° V = Matrixed Red Chroma sub-channel. V #FF0056 339.76° −V #00FFA9 159.76° W = Matrixed Green Chroma sub-channel. W #1BFA00 113.52° −W #DF00FA 293.52° HSV HSV Enhanced channels: Hue Hue I = Matrixed Skin Chroma sub-channel. I #FC6600 24.29° −I #0096FC 204.29° Q = Matrixed Purple Chroma sub-channel. Q #8900FE 272.36° −Q #75FE00 92.36° We have: Y = 0.299 × R + 0.587 × G + 0.114 × B B − Y = −0.299 × R − 0.587 × G + 0.886 × B R − Y = 0.701 × R − 0.587 × G − 0.114 × B G − Y = −0.299 × R + 0.413 × G − 0.114 × B = −0.194208 × (B − Y) −0.509370 × (R − Y) (−0.1942078377, −0.5093696834) Encode: If: U[x] = 0.492111 × ( B − Y ) × 0° ┐ Quadrature (0.4921110411) V[y] = 0.877283 × ( R − Y ) × 90° ┘ Sub-Carrier (0.8772832199) Then: W = 1.424415 × ( G − Y ) @ 235.796° Chroma Vector = √ U² + V² Chroma Hue θ = aTan2(V,U) [Radians] If θ < 0 then add 2π.[360°] Decode: SyncDet U: B − Y = -┼- @ 0.000° ÷ 0.492111 V: R − Y = -┼- @ 90.000° ÷ 0.877283 W: G − Y = -┼- @ 235.796° ÷ 1.424415 (1.4244145537, 235.79647610°) or G − Y = −0.394642 × (B − Y) − 0.580622 × (R − Y) (−0.3946423068, −0.5806217020) These scaling factors are for the quadrature Chroma signal before the 0.492111 & 0.877283 unscaling factors are applied to the B−Y & R−Y axes respectively. -
Radio-Frequency Heating of Magnetic Nanoparticles
Radio-Frequency Heating of Magnetic Nanoparticles A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science by Mohammud Zafrullah JAGOO BSc., University of Mauritius, 2009 2012 Wright State University Wright State University School of Graduate Studies March 16, 2012 I hereby recommend that the thesis prepared under my supervision by Mohammud Zafrullah Jagoo entitled RF Heating of Magnetic Nanoparticles be accepted in partial fulfillment of the requirements for the degree of Master of Science. Gregory Kozlowski, Ph.D. Thesis Director Lok C. Lew Yan Voon, Ph.D. Chair, Department of Physics Committee on Final Examination Gary Farlow, Ph.D. Jerry Clark, Ph.D. Andrew Hsu, Ph.D. Dean, Graduate School Z. Jagoo Jagoo, Mohammud Zafrullah. M.S., Department of Physics, Wright State University, 2012. Radio-Frequency Heating of Magnetic Nanopar- ticles. Abstract In the present study, a power supply capable of converting a direct current into an alternating current was built. The frequency of oscillation of the output current could be varied from 174.8 kHz to 726.0 kHz by setting a set of capacitors in resonance. To this power supply is attached a 20-turns copper coil in the shape of a spiral. Because of the high heat generated in the coil, the latter has to be permanently water-cooled. A vacuum pump removes the air between the sample holder and the coil. A fiber optic temperature sensor with an accuracy of 0.001 ◦C was used to measure the temperature of the nanoparticles. Four ferromagnetic nanoparticles (CoFe2O4, NiFe2O4, Ni0.5Zn0.5Fe2O4, Co0.4Ni0.4Zn0.2Fe2O4) with different magnetic properties were subjected to heat- ing. -
Guide to Wireless Regulations in the United States
Guide to Wireless Regulations in the United States Table of Contents 1 The FCC Road Part 15: From Concept to Approval 5 The Approval Process 9 Considerations for Operation within the 260–470MHz Band 15 Considerations for Operation within the 902–928MHz Band 19 Frequently Asked Questions 23 Contacting the FCC 25 CFR 47 Part 2 (Abridged) 85 CFR Part 15 (Abridged) 149 FCC-Approved Domestic Test Facilities 158 Power Conversion Table for 50Ω System The FCC Road Part 15: From Concept to Approval Introduction Many manufacturers have avoided making their products wireless because of uncertainty over the approval and certification process. While it is true that RF increases the effort and cost of bringing a product to market, it also can add significantly to the function and salability of a completed product. Thanks to a growing number of easily applied radio frequency (RF) devices such as those offered by Linx, manufacturers are now able to quickly and reliably add wireless functionality to their products. The issue of legal compliance for the finished product is straightforward when approached in logical steps. Purpose of this Application Note This application note gives a brief overview of the legal issues governing the manufacture and sale of RF products intended for unlicensed operation in the United States under CFR 47 Part 15. In the United States the Federal Communications Commission (FCC) is responsible for the regulation of all RF devices. The FCC requires any device that radiates RF energy to be tested for compliance with FCC rules. These rules are contained in the Code of Federal Regulations (CFR), Title 47. -
Saleh Faruque Radio Frequency Modulation Made Easy
SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING Saleh Faruque Radio Frequency Modulation Made Easy 123 SpringerBriefs in Electrical and Computer Engineering More information about this series at http://www.springer.com/series/10059 Saleh Faruque Radio Frequency Modulation Made Easy 123 Saleh Faruque Department of Electrical Engineering University of North Dakota Grand Forks, ND USA ISSN 2191-8112 ISSN 2191-8120 (electronic) SpringerBriefs in Electrical and Computer Engineering ISBN 978-3-319-41200-9 ISBN 978-3-319-41202-3 (eBook) DOI 10.1007/978-3-319-41202-3 Library of Congress Control Number: 2016945147 © The Author(s) 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
ES442 Lab 6 Frequency Modulation and Demodulation
ES442 Lab#6 ES442 Lab 6 Frequency Modulation and Demodulation Objective 1. Build simple FM demodulator by using frequency discriminator 2. Build simple envelope detector for FM demodulation. 3. Using MATLAB m-file and simulink to implement FM modulation and demodulation. Part List 1uF capacitor (2); 10.0Kohm resistor, 1.0Kohm resistor, Power supply with +/-5V, Scope and frequency analyzer, FM signal Generator. Estimated Time About 90 minutes. Introduction Frequency modulation is a form of modulation, which represents information as variations in the instantaneous frequency of a carrier wave. In analog applications, the carrier frequency is varied in direct proportion to changes in the amplitude of an input signal. This is shown in Fig. 1. Figure 1, Frequency modulation. The FM-modulated signal has its instantaneous frequency that varies linearly with the amplitude of the message signal. Now we can get the FM-modulation by the following: where Kƒ is the sensitivity factor, and represents the frequency deviation rate as a result of message amplitude change. The instantaneous frequency is: Ver 2. 1 ES442 Lab#6 The maximum deviation of Fc (which represents the max. shift away from Fc in one direction) is: Note that The FM-modulation is implemented by controlling the instantaneous frequency of a voltage-controlled oscillator(VCO). The amplitude of the input signal controls the oscillation frequency of the VCO output signal. In the FM demodulation what we need to recover is the variation of the instantaneous frequency of the carrier, either above or below the center frequency. The detecting device must be constructed so that its output amplitude will vary linearly according to the instantaneous freq. -
ETS 300 750 TELECOMMUNICATION May 1996 STANDARD
DRAFT EUROPEAN pr ETS 300 750 TELECOMMUNICATION May 1996 STANDARD Source: EBU/CENELEC/ETSI JTC Reference: DE/JTC-00VHFTXHU ICS: 33.060.20 Key words: broadcasting, radio, transmitter, FM, VHF, audio European Broadcasting Union Union Européenne de Radio-Télévision EBU UER Radio broadcasting systems; Very High Frequency (VHF), frequency modulated, sound broadcasting transmitters in the 66 to 73 MHz band ETSI European Telecommunications Standards Institute ETSI Secretariat Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: [email protected] Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16 Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the * foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1996. © European Broadcasting Union 1996. All rights reserved. Page 2 Draft prETS 300 750: May 1996 Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page. Page 3 Draft prETS 300 750: May 1996 Contents Foreword .......................................................................................................................................................5 1 Scope